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1 Introduction

We document 2 programs: qpWave and qpAdm based on a common set of
ideas related to f4 statistics [?] The first program, qpWave (formerly qp4wave2)
emerged from work with David Reich on the peopling of the Americas [?]. The
second, qpAdm is more recent, and is an attempt to systematize ideas of Iosif
Lazaridis, using f4 statistics in a regression context, but also incorporating
methods from qpWave .

In [?, S6] we showed that if we took a set of a left populations U and a set of b
right populations V and considered the matrix

X(u, v) = F4(u0, u; v0, v)

where u0, v0 are some fixed populations of U and V , and l, r range over all
choices of populations of U , V . We can assume that u 6= u0, v 6= v0, so that the
matrix X is (a− 1)× (b − 1). We then showed that if X had rank r and there
had been n waves of immigration from V to U with no back-migration from U

to V , then:
r + 1 ≤ n

In our initial application we used this to show that there must have been at
least 3 waves of immigration into the (pre-Columbus) Americas.

2 Algorithmic details for qpWave

We describe our computational strategy in a little more detail. We compute X̂,
an estimate of X so that in the notation of [?]

X̂(u, v) = f4(u0, u; v0, v)

We can use the block jackknife [?] to compute V an estimate of the error co-
variance of X . To test if X̂ has rank r we write

X̂ = A.B + E
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where A is (a − 1) × r, B is (e × (b − 1) and E is a matrix of residuals. The
(log) likelihood for (A,B) and implicitly r is:

L(A,B) = −
1

2

∑

i,j,k,l

V −1
i,j;k,lEi,jEk,l

where the residual matrix E is defined by

E = X̂ −A.B

For each r we set A,B initially by an SVD analysis of X , and then iterate,
minimizing L with respect to A, B in turn. For fixed A, L(A,B) is quadratic
in B and can be minimized by solving linear equations. Since A,B only enter
into the likelihood though a matrix product, we see that

A.B = (A.Q).(Q−1B

for any non-singular r × r matrix Q. Thus the number of degrees of freedom is

d((r) = ((a− 1) + (b− 1))r − r ∗ r = r(a + b− (r + 2))

As a check, if r is the maximal rank Min(a−1, b−1), then d(r) = (a−1)(b−1)
which is obviously correct. This is the saturated model, where we fit the data
perfectly.

We compute statistics with a likelihood ratio test.

3 Parameters and output of qpWave

Here is a sample parameter file.

DIR: /home/np29/broaddata/bl14

S1: honjp

indivname: DIR/S1.ind

snpname: DIR/S1.snp

genotypename: DIR/S1.geno

badsnpname: ./cpgmf

popleft: pleft

popright: pright

maxrank: 4

## not needed here

The top lines are parameters that will likely be familiar, for example they are the
same in em convertf, qpDstat, qp3Pop. In this run I did not want to use CpG
sites, which are removed by the badsnpname: line. pleft is a file of populations
1/line, pright also. We have
pleft:
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WHG

LBKNeolithic

YamnayaEBA

while the right population list was:
pright:

Han

Eskimo

Mbuti

Karitiana

Kharia

Onge

Ulchi

(the right set of populations are chosen so that they are differently related to
West Eurasia). Extracts from the output:

f4rank: 0 dof: 12 chisq: 330.440 tail: 1.86337038e-63

dofdiff: 0 chisqdiff: 0.000 taildiff: 1

f4rank: 1 dof: 5 chisq: 46.979 tail: 5.73674279e-09

dofdiff: 7 chisqdiff: 83.460 taildiff: 2.05163995e-57

f4rank: 2 dof: 0 chisq: 0.000 tail: 1

dofdiff: 5 chisqdiff: 46.979 taildiff: 5.73674279e-09

For each line we rank a χ2 statistic and tail area (chisq and tail) comparing with
the saturated model, and also a chi-square statistic and tail for the model with
one rank less. We see here that the rank 1 model has a p− value of 5.7× 10−9,
comparing with the saturated model and can be rejected. We have very strong
evidence here that WHG, LBKNeolithic, YamnayaEBA are not the product of
2 waves from outside West Eurasia. o

The matrices A,B are published and may be useful.

B:

scale 1.000 1.000

Eskimo 1.323 -0.011

Mbuti -0.306 2.300

Karitiana 1.995 0.262

Kharia 0.190 0.592

Onge -0.206 -0.532

Ulchi 0.308 -0.082

A:

scale 1392.604 1651.101

LBKNeolithic -0.533 1.310

YamnayaEBA 1.310 0.533

We show here A,B matrices for the saturated model. (Actually we show
transpos(B), with a scale factor for the columns. From the second column
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Mbuti has a large coefficient, and LBKNeolithic also. From the first column
we see Karitiana and YamnayaEBA. It is therefore not surprising to see from
qpDstat output

D Z

WHG LBKNeolithic Han Mbuti 0.0208 7.780

WHG YamnayaEBA Han Karitiana 0.0239 7.627

WHG YamnayaEBA Han Mbuti 0.0053 1.765

with the first 2 Z scores large, the last much smaller.

We note that the χ2 statistics here, using the LRT are computed using a fixed
covariance V . It would be formally more correct to reestimate V , simultane-
ously with A,B. This would greatly increase complexity, without adding much
precision.

I strongly recommend attempting to keep the population lists here small. If a, b

are large then the covariance V is a big matrix, and in practice will be estimated

poorly. This can be expected to lead to trouble.

4 Finding mixture coefficients — qpAdm

We next describe a novel idea for finding admixture weights using f4 statistics.
This was motivated by work of Iosif Lazaridis, though the details here are quite
distinct. Let T be a target population, S = {s1, s2, . . . sn} a set of source
populations. In the easiest case to consider, when T is an an admixture of
populations of S we can write symbolically

T =

n∑

i=1

wisi

It then follows that for any populations r1, r2
∑

i

wif4(T, si, r1, r2) = f4(T, T, r1, r2)

= 0

A little thought shows that this is true even if the populations si are descendents
of the true source populations, provided that there has been no gen flow between
the most recent ancestor of T, S on the one hand and ancestor of r1, r2 on the
other. [In passing, we note that we used f3 statistics in [?] to derive mixing
coefficients for modern admixture. The methods there require samples of the
actual source and admixed populations, but do not require outgroup populations
as we do here with the ri.]

Thus, if T is admixed, as above, pick a set of outgroup populations R, and
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1. Check, using qpWave , setting left populations L = S, and right popula-
tions R that the matrix X has full rank n− 1.

2. Check, again using qpWave , that letting L = {T, S} the re is no strong
evidence that the rank of X increases.

We now will take T as the base population of L = {T, S}, which simplifies the
algebra. We calculate matrices A,B as in qpWave , with the rank set to n− 2
(corank 1). So the recovered A is of dimensions (n−1)× (n−2). It then follows
that estimates w = (w1,w2, . . .wn) of the admixture weights can be found by
solving the equations:

w.A = 0
n∑

i=1

wi = 1

We can use the block jackknife to compute a covariance matrix for the errors.
[Formally, we should reestimate V as we delete blocks in the jackknife. This is
not presently done, as it would add complexity and seems unlikely to make a
material difference.]

4.1 All subsets regression

Suppose U is a proper) subset of S. It is interesting to require that wi = 0
if si ∈ U . That is populations of U do not contribute to the admixture of
T . This constrains the structure of the matrix A but optimization is still easy
to carry through. It can be shown that if |U | = f , then the saturated model
has (b − a) + f + 1 degrees of freedom. Since in practice n will be small, it
is computationally reasonable to try all proper subsets of S; for each we can
compute the best coefficients and a chi-square score using an LRT.

Here is a sample parameter file.

DIR: /home/np29/broaddata/bl14

S1: honjp

indivname: DIR/S1.ind

snpname: DIR/S1.snp

genotypename: DIR/S1.geno

badsnpname: ./cpgmf

popleft: pleftx

popright: pright

maxrank: 4

## not needed here

The format of the parameter file is identical to that for qpWave . qpop1 is a
file of populations 1/line, superpops also. We have
pleftx:
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CordedWareNeolithic

WHG

LBKNeolithic

YamnayaEBA

while the right population list was the same as pright described in the section
on parameters of qpWave .

BY convention the first population of the left list is the target. So here we are
examining CordedWareNeolithic as a mixture of the other three populations.

Extracts from the output: We begin by testing using qpWave methodology
whether a rank 2 matrix can be accepted. Here we get a p-value of 0.07 and
proceed.

f4rank: 2 dof: 4 chisq: 8.647 tail: 0.0705644793

dofdiff: 6 chisqdiff: -8.647 taildiff: 1

f4rank: 3 dof: 0 chisq: 0.000 tail: i 1

dofdiff: 4 chisqdiff: 8.647 taildiff: 0.0705644793

Next we give the mixture coefficients and standard errors, which are typically
far from independent. Then an error covariance matrix, computed with the
block jackknife.

best coefficients: 0.322 0.053 0.625

std. errors: 0.177 0.114 0.099

error covariance (* 1000000)

31255 -17297 -13957

-17297 13044 4253

-13957 4253 9704

We finally give an ‘all subsets analysis’ where the coefficient under a ’1’ is forced
zero.

fixed pat dof chisq tail prob

000 0 4 5.833 0.211948 0.322 0.053 0.625

001 1 5 30.207 0 1.365 -0.365 0.000 infeasible

010 1 5 6.101 0.296519 0.386 0.000 0.614

100 1 5 9.903 0.078038 0.000 0.226 0.774

011 2 6 37.560 1.36904e-06 1.000 -0.000 0.000

101 2 6 158.115 0 0.000 1.000 0.000

110 2 6 22.327 0.00105618 0.000 -0.000 1.000

Here we see that, at least in this analysis there are reasonable models with Cord-
edWareNeolithic is a mix of either WHG or LBKNeolithic and YamnayaEBA.
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This is unsurprising, given the standard errors above. The point of this note is
not to give a serious phylogenetic analysis but the results here certainly support
a major Steppe contribution to the Corded Ware population, which is entirely
concordant with the archaeology [?].
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