
Version 1.4.1 Last updated 20th March 2015

This document is released under the GNU Free documentation license version 1.3 (https://www.gnu.org/copyleft/fdl.html)

BamM is a c library, wrapped in python, that parses BAM files.

The code is intended to provide a faster, more stable interface to parsing BAM files than
PySam, but doesn't implement all / any of PySam's features.

Do you want all the links that join two contigs in a BAM?

Do you need to get coverage?

 Would you like to just work out the insert size and orientation of some mapped reads?

Then BamM is for you!

For impatient people

1. $ bamm make -d <reference.fna> -c read1.R1.fq.gz read1.R2.fq.gz ...

2. $ bamm parse -c covs.tsv -l links.tsv -i inserts.tsv -b mapping.bam

3. $ bamm extract -g BIN_1.fna -b mapping.bam

*BamM make produces indexed and sorted BAM files which contain only reads that mapped.

https://www.gnu.org/copyleft/fdl.html

Table of Contents

Installation...3

Dependencies...3
Installing BamM... 3

Testing your installation...4

BamM command line overview...5

Making BAM files...5
Passing extra information to BamM...6

Getting information from a collection of BAM files...7
Finding the insert size and relative orientation of paired reads.....................................8
Creating a coverage profile from several BAM files...9
Finding reads that link 2 contigs...10

Extracting reads from BAM files...10

Using BamM as a python library..12

Calculating coverage profiles, insert types or linking reads...................................12

Installation
The BAM parsing is done using c and a few external libraries. This slightly complicates
the BamM installation process but fortunately not too much.

The GNU Guix way

The most straightforward way to install BamM is to use GNU Guix. After installing Guix
itself:

 $ guix pull

 $ guix package --install bamm

This will install BamM itself, as well as all of its dependencies including BWA, samtools,
python, numpy, grep, etc. without polluting the rest of your system. BamM was
incorporated into the master branch of Guix on 14 Aug, 2016 so is not included in Guix
0.11.0, but will likely be included in the version following. So, if you are using a newer
version the ‘guix pull’ is not needed.

Dependencies

If you're running 'BamM make' or you want to run nosetests after installation you'll need
to have BWA and Samtools installed. Installation of these tools is really straightforward.
You can find the code and instructions at:

Samtools: http://sourceforge.net/projects/samtools
(BamM is tested against v1.2)

BWA: https://github.com/lh3/bwa (BamM is tested against v0.7.12)

The two external dependencies of BamM; libcfu (v1.0.3) and htslib (v1.2.1) are bundled
with the source. I strongly advise against trying to install libcfu independently but there
may be some reasons to use a local install of htslib. The notes below are for installing on
Ubuntu but they should be transferable to other *nix systems. Be aware that some
users have reported difficulty installing the dependencies (htslib) and BamM on
OSX, you may need some sysadmin-fu (or need to find someone with a suitable amount
of sysadmin-fu) to get things going properly. I strongly doubt this code will work on a
Windows system.

First, you need git, zlib, numpy, a C-compiler and some friends. On Ubuntu this looks like:

 $ sudo apt-get -y install git automake build-essential zlib1g-dev python2.7-
numpy libtool

Installing BamM

Get the latest version from github (BamM is not available on pip):

 $ git clone https://github.com/Ecogenomics/BamM.git

If you are using the bundled htslib and libcfu or if these tools are installed system-wide
then installation is very straight forward:

 $ sudo python setup.py install

https://github.com/lh3/bwa
http://sourceforge.net/projects/samtools

If you installed one or more of these libraries locally then you need to tell setup.py
where they are:

 $ python setup.py install --with-libhts-lib /path/to/htslib

 --with-libhts-inc /path/to/htslib --with-libcfu-inc /path/to/libcfu/include/

 --with-libcfu-lib path/to/libcfu/lib/

Relative paths are OK. You can add the --prefix flag to setup.py to install BamM locally.
Once done, don't forget to add BamM to your PYTHONPATH. Also, if htslib and libcfu are
in non-standard places and you plan to access the C code, you'll need to mess with your
LD_LIBRARY_PATH.

Testing your installation

After install you can test your installation using nosetests.

First, make sure pip, nose, bwa and samtools are installed:

 $ sudo aptitude install python-pip

 $ sudo pip install nose pysam

Now test BamM:

 $ cd BamM

 $ nosetests

You *should see output like this

$ nosetests

...

--

Ran 45 tests in 4.574s

OK

If you have any errors then you should try fix them now (or they may bite you
downstream).

BamM command line overview

I've wrapped the python in a script / library called BamM.

BamM has 3 modes; 'make', 'parse' and 'extract'. The first option allows you to make
BAM files. The second option lets you derive coverage profiles or linking information.
The final option lets you extract reads that map to a set(s) of contigs.

Making BAM files

BamM make

Description:

Map several read sets onto a single reference with one command.

Required arguments:

 -d –database <file.fna> name of fna file to map reads onto

And at least one of:

 -i --interleaved <interleaved.fa> [<interleaved.fa> ...] shuffled reads

 -c --coupled <coupled.fa> [<coupled.fa> …] paired files

 -s --single <single.fa> [<single.fa> ...] singleton read files

Optional arguments:

 -p --prefix '' prefix to apply to BAM files

 -o --out_folder '.' write to this folder

 --index_algorithm auto algorithm bwa uses for indexing

 --alignment_algorithm mem algorithm bwa uses for alignment

 --extras '' pass extra arguments to BWA

 -k --keep False keep all the database index files etc after

 -K --kept False assume the indices already exist, don't re-make

 -f --force False force overwrite of index files if they are present

 --output_tam False output TAM file instead of BAM file

 -t –threads 1 max number of threads to use

 -m --memory 2GB/thread maximum memory to use per bwa process

Suffix K/M/G recognized

 --show_commands False show all commands made by the wrapper

 --quiet False suppress output from the mapper

 --silent False suppress all output

Example usage:

 $ bamm make -d my_assembly.fa -i ileaved_1.fastq.gz ileaved_2.fastq.gz -c

 paired_R1.fastq.gz paired_R2.fastq.gz -s unpaired.fastq.gz [-t 20] [-v]

This command will make 4 BAM files by mapping the two interleaved read sets, the one
paired read set and the singleton read set onto the reference my_assembly.fa

The code calls BWA and Samtools to produce a set of sorted and indexed BAM files. If
you specify -t <threads> then BamM will pass this onto BWA and Samtools.

Use -v to get more verbose output.

NOTE: To save space, the final BAM files contain only mapped reads.

NOTE: Output files are automatically named based on the names of the read files and
the database, however you can specify the output directory and a prefix to append to
the beginning of all output files.

Passing extra information to BamM

 $ bamm make -d my_assembly.fa -i ileaved_1.fastq.gz ileaved_2.fastq.gz –
extras “mem:-k 25”

 $ bamm make -d my_assembly.fa -i ileaved_1.fastq.gz ileaved_2.fastq.gz –
extras “aln:-l 25,sampe:-s -a 100”

The first command will pass the extra argument “-k 25” to bwa mem. The second
command will pass the extra arguments “-l 25” to bwa aln and “-s -a 100” to bwa sampe.

WARNING
Values passed using --extras are not checked by BamM. This represents a significant
security risk if BamM is being run with elevated privileges. Thus you should NEVER run
'bamm make' as root or some other powerful user, ESPECIALLY if you are providing
access to multiple / unknown users.

Getting information from a collection of BAM files

BamM parse

Description:

BamM parse lets you find the insert size(s) and relative read orientation(s)
associated with a collection BAM files, it lets you find paired reads that link contigs
together and it also lets you create coverage profiles of individual contigs across
multiple BAM files.

Required arguments:

 -b –bamfiles <bamfile> [<bamfile> …] space separated list of BAM files to parse

Optional arguments:

 -l --links '' filename to write pairing links to

 -i –inserts '' filename to write insert distributions to

 -c –coverages '' filename to write coverage profiles to

 -n –num_types 1 number of insert/orientation types per BAM

 -m --coverage_mode pmean how to calculate coverage* (req --coverages)

 -r –cutoff_range ? used to calculate upper / lower rejection cut

 offs when calculating coverage

 --length ANY minimum Q length

 --base_quality ANY base quality threshold (Qscore)

 --mapping_quality ANY mapping quality threshold

 --max_distance ANY maximum allowable edit distance from

 query to reference

 --use_secondary False use reads marked with the secondary flag

 --use_supplementary False use reads marked with the supplementary flag

 -v, --verbose False be verbose

 -t –threads 1 maximum number of threads to use

The 'cutoff_range' variable is used for trimmed mean and outlier mean. This argument
takes at most two values. The first is the lower cut off and the second is the upper. If
only value is supplied then lower == upper.

Example usage:

Finding the insert size and relative orientation of paired reads

 $ bamm parse -b file.bam

Produces output like this:

 #file insert stdev orientation supporting

 file.bam 899.7514 14.7167 IN 10000

The IN orientation indicates that this is an Illumina-style paired-end (PE) library with an
insert of ~900 bp and a standard deviation of ~15 bp. Illumina-style mate pair (MP)
libraries will typically have orientation OUT.

Many MP libraries also have a shadow library which looks like someone added some PE
reads to the mix. You can tell BamM to look for more than one insert type by specifying
the -n option:

 $ bamm parse -n 2 -b mate_pair_file.bam

Produces output like this:

 #file insert stdev orientation supporting

 mate_pair_file.bam 2524.4540 729.1291 OUT 10000

 mate_pair_file.bam 251.6253 44.7241 IN 10000

Multiple BAM files are separated using spaces. The -n argument is space separated too.
By default BamM prints this info to stdout. Use the -i argument to specify a file to write
the results to.

 $ bamm parse -b pe_file.bam mp_file.bam -n 1 2 -i inserts.tsv

This command will analyse the reads in pe_file.bam and try to find one insert type and
the reads in mp_file.bam and try to find two insert types. The resulting table will be
written to the file inserts.tsv.

Creating a coverage profile from several BAM files

When passed the '-c <filename>' argument, BamM will produce a table of coverage
values for each BAM file. This is referred to as a coverage profile.

 $ bamm parse -c coverage.tsv -m <COV_MODE> -b f1.bam f2.bam f3.bam

Produces this output in the file 'coverage.tsv'

 #contig Length f1.bam f2.bam f3.bam

 contig_1 946 103.0000 327.0000 369.0000

 contig_3 1147 130.0000 492.0000 778.0000

 contig_5 1465 228.0000 643.0000 970.0000

 contig_7 168 34.0000 82.0000 102.0000

 contig_9 4045 899.0000 1756.0000 2649.0000

The -t option indicates the maximum number of threads BamM will use. This option
speeds up the process but you should only use as may threads as you have BAM files. If
you have 6 BAM files then you'll see no improvement when using -t 6, -t 7 or -t 700.

Coverage calculation modes

BamM implements several coverage calculation methods. The user can choose the
method using the -m argument.

opmean: Outlier pileup coverage: average of reads overlapping each base, after bases
with coverage outside mean +/- 1 standard deviation have been excluded. The number of
standard deviation used for the cutoff can be changed with --coverage_range.

pmean: Pileup coverage: average of number of reads overlapping each base

tpmean: Trimmed pileup coverage: average of reads overlapping each base, after bases
with in the top and bottom 10% have been excluded. The 10% range can be changed
using --coverage_range.

counts: Absolute number of reads mapping

cmean: Like 'counts' except divided by the length of the contig

pmedian: Median pileup coverage: median of number of reads overlapping each base

Finding reads that link 2 contigs

When passed the '-l <filename>' argument, BamM will find paired reads that link contigs.

 $ bamm parse -l links.tsv -b f1.bam f2.bam f3.bam

Produces this output in the file links.tsv:

 #cid_1 cid_2 len_1 pos_1 rev_1 len_2 pos_2 rev_2 file

 contig_2203 contig_3479 1664 334 0 3873 2866 0 f2.bam

 contig_2203 contig_3479 1664 384 0 3873 2818 0 f2.bam

 contig_2203 contig_3479 1664 383 0 3873 2831 0 f2.bam

 contig_2203 contig_3479 1664 349 0 3873 2864 0 f2.bam

 contig_2203 contig_3479 1664 338 0 3873 2862 0 f2.bam

The first (non-header) line is interpreted like this:

contig_2203 is linked to contig_3479.

The first read is towards the start of contig_2203 (len_1 == 1664, pos_1 == 334) and is in
the same orientation as the contig (rev_1 == 0)

The second (paired) read is towards the end of contig_3479 (len_2 == 3873, pos_2 ==
2866) and is also in the same orientation as the contig (rev_2 == 0)

The linking information was extracted from file: f2.bam.

The lines following this one describe other links between the two contigs.

NOTE: the -i, -c and -l options are not mutually exclusive and can be run at the same
time.

Extracting reads from BAM files

BamM extract

Description:

Extract reads that map to collections of contigs from a collection of BAM files.

Required arguments:

 -g --groups <group> [<group> ...] files containing reference names (1 per line) or

contigs file in fasta format

 -b --bamfiles <file> [<file> ...] BAM files to parse

Optional arguments:

 -p --prefix '' prefix to apply to output files

 -o --out_folder '.' write to this folder

 --mix_bams False use the same file for multiple BAM files

 --mix_groups False use the same files for multiple group groups

 --mix_reads False use the same files for paired/unpaired reads

 --interleave False interleave paired reads in ouput files

 --mapping_quality 0 mapping quality threshold

 --use_secondary False use reads marked with the secondary flag

 --use_supplementary False use reads marked with the supplementary flag

 --max_distance 1000 maximum edit distance from query to reference

 --no_gzip False do not gzip output files

 --headers_only False extract only (unique) headers

 -v, --verbose False be verbose

 -t --threads 1 maximum number of threads to use

Example usage:

Extract all reads mapping to a particular set of contigs

 $ BamM extract -g group1.file group2.file -b f1.bam f2.bam f3.bam

Will extract all reads from each of the three BAM files that map to the contigs in group1
or group2. The 'group' files can be multiple (gzipped) FASTA (like the fna files you can
extract from GroopM) or lists of contig headers (one sequence per line).

Unless specified otherwise, BamM differentiates between paired and unpaired reads
(from a mapping and group perspective), reads from different BAM files and reads
mapping to contigs in different groups.

Paired reads may not be paired when mapped (only one read maps). Also paired reads
may map to different groups / bins, so when they're extracted they are unpaired in a
group sense. BamM preserves this (and other) information in the read header.

 The read header has the following format:

>g_<group>;p_<pairing_info>;b_<bamfile>;c_<contig_id>;r_<read_id>

Where:

 <group> the name of the group / bin file with the contig this read maps to.

 <pairing_info> describes the pairing information about this read (see below).

 <bamfile> the name of the BAM file containing this read.

 <contig_id> the id of the contig the read maps to.

 <read_id> the id of the read as given in the BAM file.

The pairing information has the following format:

 p_<code>R_<code>M_<code>G;

Where <code> is one of:

P Paired N Not applicable

U Unpaired E Error

For example:

p_PR_PM_PG; indicates a paired read that is mapped as a pair to contig(s) within

the same group.

p_PR_PM_UG; indicated a paired read that is mapped as a pair to contig(s) that are

in different groups.

p_PR_UM_NG; indicates a paired read where only this read was mapped.

p_UR_NM_NG; indicates an unpaired read.

NOTE: this command can produce A LOT of output files.

Using BamM as a python library

BamM is intended to be used as a python library in any code that needs to produce
coverage profiles or paired read linking information. The dev docs will be more useful
than this quick guide (see http://ecogenomics.github.io/BamM/dev_docs/). But it's here
to give a taste of what you can do with BamM.

Calculating coverage profiles, insert types or linking reads

The following snippet shows how to calculate a coverage profile within your code.

first import it

from BamM.bamParser import BamParser

from bamm.bamFile import BM_coverageType

choose the type of coverage to calculate and make a parser

cov_type = BM_coverageType(CT.P_MEAN_OUTLIER, 1, 1)

BP = BamParser(cov_type)

get a list of BAM files and parse them

bam_files = ['file1.bam', 'file2.bam']

BP.parseBams(bam_files,

 doLinks=False, # set to False for no links

 doCovs=True, # set to False for no coverages

 threads=2) # 2 files so use 2 threads

http://ecogenomics.github.io/BamM/dev_docs/

The BamParser has an instance variable called a BamFileInfo (BFI). This object contains
all the information that has been derived from the BAM files.

 BP.BFI.numBams the number of BAMs that were parsed

 BP.BFI.bamFiles path to the BAM files

 BP.BFI.numContigs the number of contigs in the BAM files

 BP.BFI.contigLengths array of contig lengths

 BP.BFI.contigNames array of contig names

BP.BFI.coverages matrix of coverage values (numContigs x numBams)

 BP.BFI.links hash of links (see dev docs for more information)

The BamParser comes with several pre-written print functions:

BP.printBamTypes() print insert information as detailed above

BP.printCoverages() print coverage information

BP.printLinks() print linking read information

All of these functions print to stdout. If you supply a file name then BamM will print the
information there.

