
2478–2483 Nucleic Acids Research, 2002, Vol. 30, No. 11 © 2002 Oxford University Press

Fast algorithms for large-scale genome alignment and
comparison
Arthur L. Delcher1,2, Adam Phillippy1, Jane Carlton3 and Steven L. Salzberg3,4,*
1Department of Computer Science, Loyola College in Maryland, Baltimore, MD 21210, USA, 2Celera Genomics,
45 West Gude Drive, Rockville, MD 20850, USA, 3The Institute for Genomic Research, Rockville, MD 20850, USA
and 4Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Received January 25, 2002; Revised March 13, 2002; Accepted March 27, 2002

ABSTRACT

We describe a suffix-tree algorithm that can align the
entire genome sequences of eukaryotic and prokaryotic
organisms with minimal use of computer time and
memory. The new system, MUMmer 2, runs three times
faster while using one-third as much memory as the
original MUMmer system. It has been used successfully
to align the entire human and mouse genomes to each
other, and to align numerous smaller eukaryotic and
prokaryotic genomes. A new module permits the align-
ment of multiple DNA sequence fragments, which has
proven valuable in the comparison of incomplete
genome sequences. We also describe a method to align
more distantly related genomes by detecting protein
sequence homology. This extension to MUMmer aligns
two genomes after translating the sequence in all six
reading frames, extracts all matching protein sequences
and then clusters together matches. This method has
been applied to both incomplete and complete genome
sequences in order to detect regions of conserved
synteny, in which multiple proteins from one organism
are found in the same order and orientation in another.
The system code is being made freely available by the
authors.

INTRODUCTION

Genome sequence alignment research has developed highly
efficient algorithms for alignment of protein sequences, which
have been implemented in very widely used BLAST (1) and
FASTA (2) systems. In 1999, as the number of complete
genome sequences was rapidly increasing, we introduced a
method for efficient alignment of large-scale DNA sequences,
in the order of millions of nucleotides (3). This alignment
system, called MUMmer, is capable of aligning complete
bacterial genomes in <1 min on a standard desktop computer.
The central algorithm of MUMmer takes two input sequences,
either DNA or proteins, and finds all subsequences longer than
a specified minimum length k that are identical between the
two inputs. These matches are guaranteed to be maximal, in
that they cannot be extended on either end without incurring a
mismatch, and in the original system they are also unique,
occurring exactly once in each input sequence. This last

constraint has been relaxed in the new system, as explained
below. This core algorithm is implemented using a suffix-tree
data structure, which permits very fast and memory-efficient
comparisons of the sequences.

The MUMmer system has been used to make a number of
important discoveries about large-scale genome structure.
Alignments of related bacterial species led to the discovery
that chromosome-scale inversions are a common evolutionary
phenomenon in these species, and that the inversions are nearly
always symmetric about the origin of replication (4). These
inversions show up as X-shaped alignments in the dot plot of
all the DNA sequences conserved between two species. The
X-alignments have been observed by running MUMmer to
compare the following pairs of species: Escherichia coli and
Vibrio cholerae, Mycobacterium tuberculosis and Myco-
bacterium leprae, Chlamydia trachomatis and Chlamydia
pneumoniae, Staphylococcus aureus and Bacillus subtilis,
Streptococcus pneumoniae and Streptococcus pyogenes,
Pseudomonas aeruginosa and Pseudomonas putida, Helico-
bacter pylori strains 26695 and J99, and others.

MUMmer was used to construct alignments of the five chromo-
somes of the model plant Arabidopsis thaliana, which range in
size from 17 to 29 million base pairs (Mb), against one another.
These alignments revealed the striking discovery that the entire
genome appears to have duplicated recently, and >60% of the
genome, as it exists today, is part of large-scale duplications (5).
An earlier MUMmer-aided analysis based on the first two
completed chromosomes from that organism revealed a 5 Mb
duplication between chromosomes 2 and 4 (6).

Despite these successful alignments, the original MUMmer
system required relatively large amounts of memory, making it
necessary to use large server computers to align genomes of
more than a few million nucleotides. In addition, the original
implementation could only handle DNA sequences. When the
draft sequence of the human genome was nearing completion,
we needed a method to align entire human chromosomes
rapidly and accurately. We redesigned the algorithm, as
described below, to require far less memory and in the process
to run much faster. The new system was used successfully to
align all the chromosomes of the human genome to each other
and to the mouse genome, demonstrating that it can handle
essentially all genome sequences, even those of mammals.

Another improvement in MUMmer 2 is the ability to align
protein or DNA sequences. The need for this became necessary
after our first attempts to align human chromosomes to each

*To whom correspondence should be addressed at: The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Tel: +1 301 315 2537; Fax: +1 301 838 0208; Email: salzberg@tigr.org



Nucleic Acids Research, 2002, Vol. 30, No. 11 2479

other (7), searching for duplications similar to those we had
found in Arabidopsis. Our initial searches using DNA
sequence alignments revealed no large-scale duplications in
the human genome. We realized that if there had been more
ancient duplications, these might yet be detectable in the
protein sequences. Therefore, we enhanced MUMmer by
giving it the ability to align large protein sequences, and
applied it to human as follows. For each human chromosome,
we concatenated all proteins in order (regardless of strand) to
create 24 mini-proteomes. We then used MUMmer to align
each chromosome to the entire genome at the protein level.
This was much more successful, revealing hundreds of small-
scale and many large-scale duplications all of them apparently
quite ancient (7). For example, one of the most striking findings
was that >70% of human chromosome 14 appears to be an
ancient duplication of part of chromosome 2.

The complete system source code for MUMmer 2 is freely
available from the TIGR website, at http://www.tigr.org/software/
mummer/.

ALGORITHMIC IMPROVEMENTS

MUMmer uses suffix trees (8) to create an internal representation
of a genome sequence, and based on this representation it can
align two genomes in linear time and space. For example,
MUMmer 1.0 aligns the 4.7 Mb genome of E.coli and the
3.0 Mb large chromosome of V.cholerae in 74 s on a 1 GHz
desktop computer, requiring 293 megabytes (MB) of memory.
The memory requirement of 38 bytes/bp, although it grows
only linearly with the size of the input sequences, is still a
limitation of the original system. This has been dramatically
reduced in MUMmer 2. For the same two genomes, the new
system computes the alignment in only 27 s and requires only
100 MB of memory. Both speed and memory usage has been
improved by a factor of nearly three.

There are three significant technical improvements in the
core algorithms of MUMmer 2. The first is a reduction in the
amount of memory used to store suffix trees. By employing
techniques described by Kurtz (9) the amount of memory used
in the suffix tree was reduced to at most 20 bytes/bp (or amino
acid, or other character). The maximum memory usage occurs
in the case when each internal node in the suffix tree has only
two children. In practice, however, many nodes have more
than two children (particularly in the case of polypeptide
sequences), which reduces the actual memory requirement.

The second significant core improvement is an alternative
algorithm to find initial exact matches. The original algorithm
(3) built a suffix tree containing two input sequences, and then
found all maximal unique matches (MUMs) between them
(Fig. 1). A MUM is a subsequence that occurs in two exactly
matching copies, once in each input sequence, and that cannot
be extended in either direction. This algorithm is still available
in the MUMmer 2 system, but the default algorithm is now a
procedure that stores in the suffix tree only one sequence,
which we call the reference sequence. The second sequence,
which we call the query, is then ‘streamed’ against the suffix
tree, exactly as if it were being added but without actually
adding it. This technique was introduced by Chang and Lawler
(10) and is fully described (8). Using this process we identify
where the query sequence would branch off from the tree,
thereby finding all matches to the reference sequence (Fig. 1).

Wherever a branch occurs at a tree position with just a single
leaf beneath it, the match is unique in the reference sequence.
By checking the character immediately preceding the start of
this match we can determine whether it is a maximal match.

Thus, in time proportional to the length of the query
sequence, we can identify all maximal matches between it and
a unique string in the reference sequence. Note that these
matches are not necessarily unique in the query sequence.
Because we stream through the query, outputting matches as
we find them, we do not know what sequence will occur later
in the query. The advantage of this method is that only one of
the two sequences is stored in the suffix tree, reducing the
memory requirement by at least half. Further, because of the
streaming nature of the algorithm, once the suffix tree has been
built for the reference sequence, arbitrarily long, multiple
queries can be streamed against it. In fact, we have used these
programs to compare two assemblies of the entire human
genome (each approximately 2.7 billion characters), using
each chromosome as a reference and then streaming the other
entire genome past it (A.Halpern, personal communication).

Figure 1 illustrates how a string is streamed against a suffix
tree to find its unique matches. Here the suffix tree represents
the string atgtgtgtc$. Leaves are represented by squares labeled
with the string position at which the suffix for that leaf starts.
For example, leaf 6 represents the suffix tgtc$ that starts at
position 6 in the string, which is formed by the sequence of
edge labels from the root down to node 6. At the point shown
in the figure, we have matched the input stream starting at
position i, indicated by the arrow. The match extends to the
corresponding arrow position in the tree. In this case we know
that the match is unique because there is a single leaf below
this position in the tree. The number label of the leaf gives the
starting position of the match in the suffix-tree string.

To find the next match, we use the suffix links in the tree,
indicated here by dotted arrows. These links are constructed
for each internal node in the tree. A link points from node u to
node v if the string label from the root to v is equal to the label
from the root to u with the first character removed. For
example, the string label of node i in Figure 1 is tgt and that of node
i + 1 is gt. Note, that is exactly the tree position corresponding to
the next position in the streaming string. From node i we can
continue the match down the tree to determine how far the
match can be extended. Because we match as far as possible in
the tree, our matches are maximal on the right-hand side of the

Figure 1. A sample suffix tree showing the streaming behavior for finding
matches between a query and a reference.



2480 Nucleic Acids Research, 2002, Vol. 30, No. 11

strings being compared. We check the maximality on the
left-hand side by comparing the preceding characters in each
string. In the above example, the match gtc starting at i + 1 in
the streaming string and node 7 in the suffix-tree string is not
maximal on the left because the preceding character in both
strings is a t.

The one-sided uniqueness property of MUMmer 2 can be an
advantage when comparing queries that represent only a partial
genome assembly. In this case there may be overlapping
contigs that were not joined. The overlapping regions would
not be unique in the set of queries, but would have a unique
match to the reference sequence. In general, because of the
subsequent processing performed on matches, we have found
that repetitiveness in the query sequence does not prevent the
algorithm from finding alignments. In fact, because of the
asymmetry of matches, we often process sequence pairs twice,
swapping the reference and the query. MUMmer 2 also
includes an additional program that finds all maximal exact
matches (as were used in the analysis of E.coli strain O157; 11),
with no uniqueness checking in either sequence.

The third technical improvement we have made is the addi-
tion of a new module to cluster matches. The original version
of MUMmer presumed that two complete sequences were to
be aligned, and that no major rearrangements would have
occurred between them. Hence, it computed a single longest
alignment between the sequences. To facilitate comparisons
involving unfinished assemblies and genomes with significant
rearrangements, we have added a module that first clusters
matches together and then finds consistent paths within each
cluster. As a result, the system outputs a series of separate,
independent alignment regions. The clustering is performed by
finding pairs of matches that are sufficiently close and on
sufficiently similar diagonals in an alignment matrix (using
thresholds set by the user), and then computing the connected
components for those pairs. Within each component, a longest
ascending subsequence computation is done to yield the most
consistent sequence of matches in the cluster.

Additional modules are included in the system to compute
alignments between, and extending out from the ends of, exact
matches in a consistent chain. The entire package has been
designed to be as modular as possible, with simple text input/
output formats, to allow the user to mix and match components
or add additional functionality.

ALIGNMENT OF INCOMPLETE GENOMES

Although genome sequencing has become much faster and
cheaper in recent years, one of the major rate-limiting steps in
a genome project is closing all the gaps, or ‘finishing’ the
genome. In a typical whole-genome shotgun-sequencing
(WGSS) project, the genome is broken up into millions of
pieces, which under ideal conditions are a uniform random
sample of the genome. These pieces, which may range in size
from 2 to 150 kb, are then sequenced, usually from both ends
(known as double-ended shotgun sequencing). Current
sequencing technology generates sequence ‘reads’ of ~650 bp
in length. According to the mathematical model of Lander and
Waterman (12), if the reads are generated at random, then
>99% of a genome will be covered by sequencing enough
reads to cover the genome eight times. For a typical 2 Mb
bacterial genome, this requirement for 8× coverage translates

into approximately 25 000 reads. These reads are then assem-
bled to reconstruct the genome. Because no one has yet been
able to generate truly random fragments on real DNA, the result
of assembly is usually a collection of large, unordered DNA
sequences called contigs. The number of contigs for a WGSS
project may range from a few dozen to many thousands for large
genomes. Finishing is the process of determining the order and
orientation of all the contigs, and then generating additional
sequence to fill in all the gaps between them.

In order to speed the process of getting a picture of an
organism, many sequencing projects now dispense with the
finishing phase, or at least delay it indefinitely. Thus, the result
of a genome sequencing effort will consist of hundreds of
contigs that represent 3×, 5×, 8× or some other level of
shotgun coverage. These projects are becoming especially
popular when a reference genome—a sequence that is already
completed—is available for a closely related organism. In
order to extract the greatest value from such projects, we need
a computational method for aligning multiple contigs to a
genome, and for aligning one set of contigs to another.

There is also a need to compare different assemblies to one
another. During the course of a WGSS project, the sequence
reads may be assembled multiple times. In order to understand
how the assemblies change as we go from 5× to 6× (for
example), we need a method that can align the multiple contigs
that result from assembling the genome at each level. The
sequences will obviously be nearly identical, so a sensitive
method like BLAST is unnecessary for this task. MUMmer
alignments are the ideal solution, because their reliance on
exact matches is well suited to the problem. A related need is
for a system that allows us to compare the output of two
sequence assembly programs with one another on the same
input data. There are now at least three assemblers available:
TIGR Assembler (13), phrap (www.phrap.org) and Cap3 (14),
and several more in development. In order to evaluate the very
complex output from these systems, we need to be able to align
very large contigs quickly.

To solve both of these problems, we developed a multiple-contig
alignment program that uses MUMmer 2 as its core alignment
engine. This extension, called NUCmer (nucleotide MUMmer),
takes as input two multi-fasta files representing partial or complete
assemblies. The inputs may be different assemblies of the same
genome, or of different genomes. The algorithm works as follows.

First, NUCmer creates a map of all contig positions within
each of the multi-fasta files. It then concatenates the two files
separately, and simply runs MUMmer to find all exact matches
between the two genomes. These matches are then mapped
back to the separate contigs. In its second step, NUCmer runs a
clustering algorithm for all the MUMs along each contig.
MUMs are clustered together if they are separated by no more
than a user-specified distance. The system then runs a modified
Smith–Waterman dynamic programming alignment algorithm
(15) to align the sequences between the MUMs. In order to
avoid excessive computation in this step, the algorithm permits
only limited mismatches in these gaps between MUMs. The
exact amount of mismatch is specified by the user.

The result of these steps is an alignment of every sequence
contig in the first multi-fasta file to every sequence in the
second. The percent identity is computed and included in the
output. One of the outputs is a sorted list showing how every
contig in the second file matches the first file. Therefore, if the



Nucleic Acids Research, 2002, Vol. 30, No. 11 2481

first file contains a complete reference genome, the output of
NUCmer allows one to simply read off the mapping of contigs
in the second file to that genome. In a matter of minutes, one
has complete order and orientation information about a
partially sequenced genome with respect to a reference species.

The workings of NUCmer are best illustrated with an example.
We took the sequence of Theileria parva (a parasite that causes
East Coast Fever, a usually fatal disease affecting cattle in sub-
Saharan Africa), a genome of ~8 Mb in four chromosomes. At
the time of this analysis, T.parva was in the finishing stage,
consistent of numerous contigs ranging from <1 kb to >1 Mb.
We used NUCmer to compare the largest contig, 1.8 Mb, to the
contigs that existed after 8× sequencing but before finishing. A
portion of the comparison is shown in Table 1.

This large 1.8 Mb contig (approximately the same size as the
entire genome of Haemophilus influenzae, the first genome
ever completely sequenced; 16) was in 32 smaller pieces at the
end of the shotgun phase. Table 1, which contains only the first
eight contigs, shows how these contigs match the first 250 kb
of the large contig. It is immediately clear from this data that
some of the separate contigs overlap: for example, lines two to
three show contigs 347580 and 347624, which overlap by
nearly 400 bp in the large contig. The contigs in lines three to
four overlap by only 15 bp, probably too little for an assembly
program to join together. Lines four to five, in contrast, contain
contigs separated by a gap of 1800 bp in the final assembly.

One important feature of the NUCmer output is that one can
simply read off the order and orientation of one set of contigs with
respect to another. In Table 1, the order of the contigs is given by
reading down the last column, and the orientation of each one can
be found by looking at the third and fourth columns, where
numbers in ascending order indicate that the contigs are aligned
the same way, while descending order indicates that the
contigs are reversed with respect to the reference genome.

The output shown here demonstrates how an assembly has
changed from the shotgun stage to a later, finished stage. If
instead we use NUCmer to compare multiple contigs from an
unfinished genome to a closely related species, then we can
very quickly determine the order and orientation of those

contigs. This mapping information would then have to be verified
by PCR or other finishing steps, but such directed finishing is
far more efficient than finishing a set of unmapped contigs.

USING MUMmer FOR COMPARATIVE GENOME
ANNOTATION

Protein sequences remain conserved much longer, on an
evolutionary time scale, than DNA sequences and, therefore,
protein-based alignments can detect much older relationships
than DNA alignments. The rate of large-scale genome rearrange-
ments is slow enough that sets of homologous protein
sequences can be found in related organisms even though the
DNA sequence conservation is minimal. These conserved
syntenic regions are extremely valuable as a source of insight
into the functions of the proteins comprising them in both
genomes: genes already characterized in one organism, for
example, might be identified correctly in a second organism
based on the synteny between the two. Syntenic regions are
also valuable in focusing the search for conserved regulatory
regions, which sometimes appear as short conserved stretches
of DNA between the protein-coding regions.

Because the MUMmer 2 system can align protein sequences
as well as DNA, it provides a good platform for a system to
detect conserved synteny in protein sequences between two
genomes that may or may not be completely sequenced. We
have built a system extension called PROmer that can very
rapidly compute the protein similarity between all possible
protein-coding regions in two sets of DNA sequences.

Given two multi-fasta input files, PROmer will translate the
DNA to amino acids and then compare each sequence in the first
file to all of the sequences in the second file. Upon completion, the
user is given a list of all significant matches, their respective
sequence IDs, their coordinates, and their percent similarities.
Each individual match usually represents a single exon or
conserved protein domain; because the matching and clustering
parameters are completely user defined, it is possible to expand
the match sizes to include larger syntenic regions. The user can
also view alignments of these matches to determine their signifi-
cance, and in some cases to annotate the precise boundaries of
highly conserved exons. The backbone of PROmer is the suffix-
tree matching algorithm used by MUMmer, but turning the small
exact matches identified by MUMmer into larger alignment
regions takes more effort.

Initially, PROmer translates the DNA into amino acids for
all input sequences in all six reading frames. An index is
created that maps all protein sequences and lengths to the
source DNA, which will be needed later to map the matches
back. The amino acid translations are then filtered to remove
sequences that have an excessive number of stop codons and
thus not likely to be part of a protein. After these steps, each
input genome, which began as a multi-fasta file containing an
unrestricted number of DNA sequences, has been reduced to a
single amino acid sequence that represents the concatenation
of all potential proteins in the genome. These pseudo-
proteomes are passed to MUMmer, which rapidly builds a
suffix tree and finds all exact matches. The index is then used
to translate these matches back onto the original DNA input.

After matches are identified, they are clustered according to
their respective DNA coordinates. A series of consecutive
matches that exceeds a user-specified minimum length and retains

Table 1. A NUCmer alignment of a large contig from T.parva to multiple
smaller contigs from an earlier assembly run

The first two columns, S1 and E1, indicate the start and end coordinates within the
large 1.8 Mb contig. The next two columns, S2 and E2, give the positions within a
corresponding contig from the assembly; this contig ID is shown in the last column.
Columns five and six show then lengths of the two corresponding sequences, and
column seven shows the percentage identity between the two. As expected, the
smaller contigs are nearly identical to the larger one, differing only by nucleotides
that were changed during the manual-editing phase.

S1 E1 S2 E2 Len1 Len2 Percent
identical

Contig

1 19018 22244 3226 19018 19019 99.95 347625

17613 28621 1694 12702 11009 11009 99.22 347580

28243 46869 18627 1 18627 18627 99.97 347624

46855 112190 65337 1 65336 65337 100.00 347656

113996 117073 3079 1 3078 3079 99.97 347325

117842 131466 13625 1 13625 13625 99.99 347606

131485 183004 51519 1 51520 51519 100.00 347623

182996 254867 1 71872 71872 71872 100.00 347559



2482 Nucleic Acids Research, 2002, Vol. 30, No. 11

a consistent order is examined further. If the size of the interval
between matches is less than a user-specified gap length, the
matches are joined into a cluster. The resulting clusters may
include amino acid sequences in competing (inconsistent) reading
frames; thus the next step is to decide which frame, for each
cluster, is the most likely. On the assumption that the correct
reading frame will contain the greatest degree of protein sequence
homology, the frame with the best matches between the two input
genomes is preferred. At the end, each cluster has a series of
amino acid hits in a single consistent reading frame.

When the initial clustering step is complete, PROmer extends
the clusters to enlarge the total coverage of the alignment region.
For this step, the system uses a banded dynamic programming
algorithm (15) that scores the protein matches using the
BLOSUM62 matrix (17). The resulting alignment data is
converted to a delta encoding, which represents the distance
between inserts and deletions as a series of integers. Through
this delta encoding, it is possible to reconstruct any of the
alignments as needed. This makes it possible to tailor utility
programs to parse the delta file and search for specific alignments,
or to display the alignments graphically. The current system
contains two such programs, the first of which provides a
simple graphical display of the actual alignments. This display
provides a quick overview of the overall similarity between the
two input sequences; an example is shown in Figure 2.

Figure 2 shows all of the contigs from Plasmodium yoelii
that mapped to Plasmodium falciparum chromosome 2 (17).
We can see from the 5× assembly that many of the protein-
coding regions in chromosome 2 are present in P.yoelii. (The
telomeric regions are repeat-rich and contain very few genes;
the sub-telomeric regions contain families of genes highly
divergent in both species.) Another PROmer utility creates a
table that captures all the alignment positions (5′ and 3′ ends),
the identifiers of the respective contigs that contain the
matching sequences, and their percent identity. Details from
this mapping are illustrated in Table 2.

Table 2, which is extracted from a much longer list, makes it
clear that P.yoelii contigs a1160, a1236, a3475 and a2330 align
to positions 587k–609k of P.falciparum chromosome 2. Using
this alignment as an anchor, one can examine the sequence
more closely to find other genes that should align but that
may be too distantly related to be detected. One can also

find genes that have been lost from each genome within
these syntenic regions.

The alignment between P.yoelii and P.falciparum highlights
another valuable use of PROmer: creating a map that can be
used for rapidly completing a genome. For genomes such as
the Plasmodium species, where detailed map information is not
available, direct alignment between the species provides a
guide to finishing efforts. Although some rearrangements may
have occurred since the species diverged, in most cases the
bridge created by one sequence when aligned to the other will
indicate the correct order and orientation of separate contigs.
Directed PCR experiments can be conducted to bridge the
gaps. By thoroughly pre- and post-processing the data from
related species with MUMmer and PROmer, we can build
accurate tiling paths and visual alignments in minutes. This
approach gives results comparable with BLAST while
consuming far less computing power. These methods are
already in use to facilitate comparative annotation between the
parasite genomes P.yoelii (5× coverage) and P.falciparum
(coverage ranging from 8× to completely closed). For these
two genomes, ~25 Mb each, PROmer analysis can be
completed in <1 h, while equivalent Blast computations would
take weeks of computing time. More specifically, a PROmer
comparison between chromosome 2 of P.falciparum (1 Mb)
and all the contigs from the 5× assembly of P.yoelii (~25 Mb)
requires ~25 MB of memory and <12 min of runtime on a
standard 500 MHz Pentium III Linux desktop.

The two Plasmodium species are sufficiently divergent that
DNA sequence similarity is difficult to detect, even in
syntenically conserved regions, but protein sequence simi-
larity is usually very significant. For projects like these, where
the genomes are just being sequenced and thousands of genomes
are being discovered as part of the sequencing effort, the PROmer
comparison makes it possible to find entire genes that were
missed in annotation, and to adjust and correct the annotated
coding regions for others.

At least two other systems are now available for comparing
lengthy DNA sequences, and more are under development.
The PIPmaker system (18) uses a hashing approach based on
the BLAST algorithm, with improvements to handle large
input sizes using only linear space (19). PIPmaker finds both
approximate and exact alignments and also generates a very
useful graphical display, showing which portions of the alignment
match at different percent identities. The SSAHA system (20)
uses a hash table to find matches to a query sequence, which is
permitted to be as long as a whole chromosome, very quickly.
With appropriate tuning of its parameters, it was able to
perform the E.coli–V.cholerae alignment described above in
<20 s, although it used 275 MB of memory. The memory usage
of SSAHA is 4k +1 bytes for a minimum match size of k (e.g. 4 Gb
for 15-bp matches), requiring one to use small values of k,
which generates enormous amounts of output. However, the
system includes filters that allow one to restrict the output so
that it includes only longer exact matches, making it behave
similarly to MUMmer.

CONCLUSION

The new MUMmer system is nearly three times faster, needs
only one-third the memory needed by the original version, and
now has algorithmic extensions that permit alignment and

Figure 2. Alignment of multiple fragments from the partially sequenced P.yoelii
genome to chromosome 2 of P.falciparum. Coordinates on chromosome 2 are
displayed along the horizontal axis, and the percent similarity at the amino acid
level is show on the vertical axis. Line segments represent regions detected as
similar, not entire contigs; thus a contig may contain multiple, distinct regions
of similarity. Percent similarity refers only to the coding regions, not to entire
length of each line segment. Contigs from P.yoelii are sorted according to their
mapped position on P.falciparum.



Nucleic Acids Research, 2002, Vol. 30, No. 11 2483

comparison of protein sequence and of multiple sequences
from incomplete genomes. It has been used to compare
sequences as long as entire human chromosomes, for which it
was instrumental in finding large-scale ancient duplications
(7), and it has also been used for whole-genome alignment of
the DNA sequences of numerous bacterial species (4). As
discussed here, it is proving highly valuable in the comparative
analysis of related parasite species. The ability to align
millions of nucleotides in a few minutes on a desktop computer
provides the opportunity to conduct analyses that would be
otherwise too computationally demanding for many researchers.
The enhanced capabilities of the new system make it possible
to detect large-scale relationships between more distantly
related organisms, a feature that is becoming increasingly
important as more and more genome sequences are completed.

ACKNOWLEDGEMENTS

This work was supported in part by grants IIS-9902923 to
S.L.S. and IIS-9820497 to A.L.D. from the National Science
Foundation, and by grant R01-LM06845 to S.L.S. from the
National Institutes of Health. J.C. is supported by funds from
NIAID R01-A142243. The TIGR P.yoelii whole genome
shotgun project is funded by the Department of Army collabo-
rative agreement DAMD17-98-2-8005.

REFERENCES

1. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

2. Pearson,W.R. (2000) Flexible sequence similarity searching with the
FASTA3 program package. Methods Mol. Biol., 132, 185–219.

3. Delcher,A.L., Kasif,S., Fleischmann,R.D., Peterson,J., White,O. and
Salzberg,S.L. (1999) Alignment of whole genomes. Nucleic Acids Res.,
27, 2369–2376.

4. Eisen,J.A., Heidelberg,J.F., White,O. and Salzberg,S.L. (2000) Evidence
for symmetric chromosomal inversions around the replication origin in
bacteria. Genome Biol., 1, 1101–1109.

5. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence
of the flowering plant Arabidopsis thaliana. Nature, 408,796–815.

6. Lin,X., Kaul,S., Rounsley,S., Shea,T.P., Benito,M.I., Town,C.D.,
Fujii,C.Y., Mason,T., Bowman,C.L., Barnstead,M. et al. (1999) Sequence
and analysis of chromosome 2 of the plant Arabidopsis thaliana.
Nature, 402, 761–768.

7. Venter,J.C., Adams,M.D., Myers,E.W., Li,P.W., Mural,R.J., Sutton,G.G.,
Smith,H.O., Yandell,M., Evans,C.A., Holt,R.A. et al. (2001) The
sequence of the human genome. Science, 291, 1304–1351.

8. Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge University
Press, New York.

9. Kurtz,S. (1999) Reducing the space requirement of suffix trees.
Software Pract. Experience, 29, 1149–1171.

10. Chang,W.I. and Lawler,E.L. (1994) Sublinear expected time approximate
string matching and biological applications. Algorithmica, 12, 327–344.

11. Perna,N.T., Plunkett,G.,III, Burland,V., Mau,B., Glasner,J.D., Rose,D.J.,
Mayhew,G.F., Evans,P.S., Gregor,J., Kirkpatrick,H.A. et al. (2001)
Genome sequence of enterohaemorrhagic Escherichia coli O157:H7.
Nature, 409, 529–533.

12. Lander,E.S. and Waterman,M.S. (1988) Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics, 2, 231–239.

13. Sutton,G., White,O., Adams,M. and Kerlavage,A.R. (1995) TIGR
Assembler: a new tool for assembling large shotgun sequencing projects.
Genome Sci. Technol., 1, 9–19.

14. Huang,X. and Madan,A. (1999) CAP3: a DNA sequence assembly
program. Genome Res., 9, 868–877.

15. Waterman,M.S. (1984) Efficient sequence alignment algorithms.
J. Theor. Biol., 108, 333–337.

16. Fleischmann,R.D., Adams,M.D., White,O., Clayton,R.A., Kirkness,E.F.,
Kerlavage,A.R., Bult,C.J., Tomb,J.F., Dougherty,B.A., Merrick,J.M.
et al. (1995) Whole-genome random sequencing and assembly of
Haemophilus influenzae Rd. Science, 269, 496–512.

17. Henikoff,J.G., Pietrokovski,S., McCallum,C.M. and Henikoff,S. (2000)
Blocks-based methods for detecting protein homology. Electrophoresis,
21, 1700–1706.

18. Schwartz,S., Zhang,Z., Frazer,K.A., Smit,A., Riemer,C., Bouck,J.,
Gibbs,R., Hardison,R. and Miller,W. (2000) PipMaker—a web server for
aligning two genomic DNA sequences. Genome Res., 10, 577–586.

19. Chao,K.M., Zhang,J., Ostell,J. and Miller,W. (1995) A local alignment
tool for very long DNA sequences. Comput. Appl. Biosci., 11, 147–153.

20. Ning,Z., Cox,A.J. and Mullikin,J.C. (2001) SSAHA: a fast search method
for large DNA databases. Genome Res., 11, 1725–1729.

Table 2. Detail from the alignment of all contigs from the P.yoelii assembly at 5× coverage to the completed chromosome 2
from P.falciparum

The first two columns show the start and end of a subsequence in P.falciparum that aligns to a contig in P.yoelii at the positions
given in columns three and four. The identifier of the contig is in column five, followed by the length of the alignment, percent
identity and similarity of the translated protein sequence, and the reading frame in each of the DNA sequences that
corresponds to the aligned proteins.

P.falciparum P.yoelii contig Contig ID Length
(bp)

Identity
(%)

Similarity
(%)

Frame

Start End Start End

587286 586992 384 81 a1160 295 47.1 72.1 –1 –3

587626 587374 652 418 a1160 253 55.8 76.7 –3 –2

588691 588271 1594 1180 a1160 421 64.3 80.4 –3 –2

590531 591386 820 1639 a1236 856 49.4 73.1 2 1

597754 598336 1496 2072 a3475 583 57.6 80.3 1 2

598867 599386 2729 3242 a3475 520 56.2 68.7 1 2

600503 600356 4990 4855 a3475 148 62.0 80.0 –2 –1

605666 606053 3844 3481 a2330 388 62.6 82.4 2 –3

606674 607832 3190 1987 a2330 1159 52.9 75.3 2 –3

608543 609323 1234 454 a2330 781 62.8 80.8 2 –3


