
1

MotionCor2 User Manual

Shawn Zheng

University of California San Francisco

Version 1.5.0 Released on May 31, 2022

General: MotionCor2 is a multi-GPU program that corrects beam-induced sample motion

recorded on dose fractionated movie stacks. It implements a robust and efficient iterative

alignment algorithm that delivers precise measurement and correction of both global and local

motions at single pixel level, suitable for both single-particle and tomographic images.

MotionCor2 is sufficiently fast to keep up with automated data collection. The result is an

exceptionally robust strategy that can work on a wide range of data sets, including those very close

to focus or with very short integration times. Application significantly improves Thon ring quality

and 3D reconstruction resolution. MotionCor2 is a comprehensive program that integrates gain

correction, detection and correction of individual and cluster of bad pixels, dose weighting, and

supports both MRC, TIFF, and EER file formats.

 MotionCor2 is free for academic use and can be downloaded from:

 http://msg.ucsf.edu/software

Contacts:

Suggestions, discussions, and technical support:

Shawn Zheng: szheng@msg.ucsf.edu

Licensing MotionCor2:

David Agard: agard@msg.ucsf.edu

Yifan Chen: YCheng@ucsf.edu

2

Contents

1. Installation and System Requirement ... 4

1.1. CPU Memory ... 4

2. Quick Start .. 4

3. Running on multiple GPUs ... 5

3.1. Use a subset of GPUs ... 6

4. Apply gain reference ... 6

4.1. Rotate and flip gain references... 7

5. Subtract dark reference ... 7

MotionCor2 -InMrc /home/data/Stack_0001.mrc \ ... 8

6. Alignment configuration ... 8

7. Exclude initial and final frames .. 8

8. Align to a specific frame ... 9

9. Dose weighting ... 9

9.1. Generate dose weight sum of select frames ... 10

9.2. Movies acquired with various frame exposures ... 10

10. Correct anisotropic magnifications ... 11

11. Image binning by Fourier cropping .. 11

12. Batch processing ... 12

13. Support for TIFF movies .. 13

14. Support for EER movies ... 14

15. Output motion correct stack .. 14

16. Low-signal movies .. 15

16.1. Group frames to enhance signals ... 15

16.2. Non-uniform grouping ... 15

17. Correct camera defects .. 16

18. Archive raw movies .. 16

3

19. Taking into account of frame blurring .. 17

20. Generate odd and even sums ... 17

21. Generate log files .. 17

22. On-the-fly motion correction .. 17

23. Miscellaneous ... 18

24. Release report .. 18

25 Frequently asked questions .. 20

4

1. Installation and System Requirement

MotionCor2 is a GPU accelerated program that runs on Linux platform equipped with one

or more advanced nVidia GPU cards. The current version was compiled on Centos 7. Various

executables are provided for CUDA 10.0, 10.1, 10.2, 11.1, 11.2, and 11.3, respectively. CUFFT

and LibTIFF are required.

MotionCor2 is a single-program package. Once unpacked, it is ready to go should correct

libraries be installed properly. MotionCor2 supports MRC, TIFF, and EER files where movies are

saved.

1.1. CPU Memory

MotionCor2 buffers as many frames as possible in GPU memory, which is, very often, far

from enough to hold the entire gain-corrected movie. The remaining frames have to stay in CPU

memory. For this sole reason, the capacity of CPU RAM dictates the sizes of movies that can be

processed. It is important to estimate how much CPU memory is needed given the typical sizes of

movies routinely collected or the upper limit of movie sizes given the CPU memory of an existing

system. For simplicity and certainty, our estimate assumes all movie frames on CPU side. Gain

corrected movie needs 4Byte/pixel. As a result, a 100-frame K3 super-res movie occupies 36GB

memory after gain correction. A single MotionCor2 process roughly allocate 1.25 x 36 = 45GB

memory if it runs in single mode. When running in batch mode, see section 12, MotionCor2 loads

a second movie (1B/pixel) as soon as the first one gets processed. In most cases there are two

movies in CPU memory at the same time, one gain corrected and one not. Therefore, the system

is recommended to have 45 + 9 = 54GB memory. We would also like to have an extra 100GB

memory for other processes.

2. Quick Start

MotionCor2 is a command-line program configurable by means of command-line

parameters. The following is the minimum configuration to run the program.

MotionCor2 -InMrc /home/data/Stack_0001.mrc -OutMrc /home/data/CorrectedSum.mrc

This configuration makes MotionCor2 correct only the global motion. The processing starts with

loading the movie “Stack_0001.mrc” and the gain reference is searched in the extended header of

5

Stack_0001.mrc. If found, the gain reference is loaded and applied to each frame. Otherwise the

program proceeds without gain correction. The global motion is then measured and corrected by

phase shift in Fourier space.

The minimum configuration for MotionCor2 to correct both global and local motion is as

follows.

MotionCor2 -InMrc /home/data/Stack_0001.mrc -OutMrc /home/data/CorrectedSum.mrc \

-Patch 5 5

MotionCor2 first corrects the global motion for each frame and then divides the corrected

frames into 5x5 patches on which the local motion is measured. Once completed, the distance-

based scheme is used to interpolate local motions at individual pixels, which are then corrected in

real space. For K3 movie, it is recommended to use -Patch 7 5 instead.

3. Running on multiple GPUs

MotionCor2 can run on multiple GPUs by distributing computation onto each participating

GPU. A faster GPU will be assigned more computation than the slower ones. The following

example shows the configuration of using 4 GPUs.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc -Patch 5 5 \

-Gpu 0 1 2 3

In this example the hosting node has 4 GPUs installed with unique IDs of 0 1 2 3. The

GPU IDs can be found by running a nVidia program nvidia-smi on the command line. GPU 0

will be used if -Gpu does not appear on the command line.

6

It is very important to note that each GPU can only be used by one MotionCor2 process. If

any GPU is shared across multiple processes, motion correction may fail and the system many

hang! It is strongly recommended to use nvidia-smi to check before starting MotionCor2. The

following is an example of results reported by nvidia-smi.

Fig. 1 nvidia-smi shows that two GPUs, 0 and 1, are installed. Both of them are currently used

by a MotionCor2 process.

3.1. Use a subset of GPUs

In case multiple MotionCor2 processes are needed to run side by side, -Gpu and -UseGpus

can be used together to split all free GPUs over all processes. -Gpu should be followed by the IDs

of installed GPUs and -UseGpus specifies how many GPUs will be used by a process. MotionCor2

maintains a text file MotionCor2_FreeGpus.txt in /tmp to track all free GPUs. For a system has

four GPUs installed, for example, we can start two processes using -Gpu 0 1 2 3 -UseGpus 2. Each

process chooses 2 free GPUs to run. When all GPUs are in use, the next process then cannot be

started.

4. Apply gain reference

Gain reference can be saved either in the extended header of MRC files or as a separate

MRC file. The following example shows how to specify the gain reference on the command line.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

7

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc \

-Patch 5 5

In this example MotionCor2 loads the gain reference from “MyGainRef.mrc”. If this file

is not found, the extended header of “Stack_0001.mrc” will be checked for gain reference. If gain

reference is not found, MotionCor2 proceeds without gain correction.

4.1. Rotate and flip gain references

Gain reference is usually collected in accordance with the chip orientation. Movies can be

rotated and/or flipped. MotionCor2 give users options to rotate/flip the gain reference to match the

orientation of collected movies by means of -RotGain and -FlipGain.

-RotGain: rotate gain reference counter clockwise. It takes four values from 0 to 3.

 0 − no rotation, default,

 1 − rotate 90°,

 2 − rotate 180°,

 3 − rotate 270°.

-FlipGain: flip the gain reference.

 0 − no flipping, default,

 1 − flip upside down (flip around horizontal axis),

 2 − flip left right (flip around vertical axis).

If both -RotGain and -FlipGain are enabled, the gain reference will be rotated first and flipped

next.

5. Subtract dark reference

Dark reference can be loaded from a MRC file. If it is loaded successfully, dark reference

will be subtracted from each frame before gain reference is applied. The following example shows

how to specify dark reference on the command line.

8

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc \

-Dark /home/data/MyDarkRef.mrc \

-Patch 5 5

We assume dark and gain references bear the same orientation. As a result, -RotGain and

-FlipGain settings are also applied to the dark reference.

6. Alignment configuration

Users can set the number of iterations and the tolerance for alignment error. The

corresponding parameters are highlighted in red in the following example.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc \

-Dark /home/data/MyDarkRef.mrc \

-Patch 5 5 \

-Iter 10

-Tol 0.5

The iterative alignment procedure terminates when either the alignment error is less than

0.5 pixel or 10 iterations have reached.

7. Exclude initial and final frames

The following example shows how to throw away 2 starting frames and 3 frames at the

end. The discarded frames are neither included in alignment nor in the corrected sum.

9

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc \

-Dark /home/data/MyDarkRef.mrc \

-Patch 5 5 -Iter 10 -Tol 0.5 \

-Throw 2 -Trunc 3

If not specified, all frames are included.

8. Align to a specific frame

By default, a movie stack is aligned to its central frame. However, there are some occasions

when users want to align their stacks to a specific frame. This is can be done by specifying the

frame number after –FmRef. The frame number is zero-indexed based upon the loaded frames.

9. Dose weighting

MotionCor2 implemented the dose weighting scheme developed by Grant et al. [1]. The

following example shows how to enable dose weighting.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc \

-Patch 5 5 -Iter 10 \

-Tol 0.5 -Throw 2 \

-Kv 300 -PixSize 0.5 -FmDose 1.2

Users need to specify the high tension in kV, and the pixel size of the input movie in

angstrom, and the frame dose in e/Å2. If any of the three parameters is missing, dose weighting is

skipped. When dose weighting is enabled, both dose-weighted and unweighted sums are generated.

10

The weighted sum is saved in the file with its name appended with “_DW”. In the aforementioned

example the corresponding file name is then Corrected Sum_DW.mrc.

9.1. Generate dose weight sum of select frames

MotionCor2 automatically generates a third sum of selected frames that fall within the

user-specified dose range. The default range "–SumRange 3.0 25.0" sums the frames whose

accumulated doses fall within the range from 3 to 35 e/A2. The MRC file storing this sum has the

file name appended with "_DWS". This option can be turned off if the zeroes are specified.

9.2. Movies acquired with various frame exposures

Data collection with variable frame exposure (VFE) is used to reduce blurring in early

frames resulting from much stronger early motion. In the past when frame exposure was fixed, 3-

5 early frames are typically excluded. However, the abandoned early frames are the least radiation

damaged and would bear high-resolution information if not blurred by the stronger beam-induced

motion. VFE uses shorter exposures to mitigate the blur in early frames and longer exposures for

later ones to reduce the movie size. It has been made available recently in SerialEM. However,

each frame in a VFE movie no longer receives the same dose. As a result, the single input of frame

dose following –FmDose would be unable to correctly determine the accumulated dose. In a joint

effort to support Thermal Fisher EER movies, MotionCor2 added a new option –FmIntFile that

stands for Frame Integration File, a 3-column text file for this purpose. The first column lists the

number of frames that have the same exposure. The second column lists number of raw frames

being summed into rendered frames. The third column is the dose a raw frame receives during its

exposure. A raw frame refers to the frame in a movie file to be processed by MotionCor2. A

rendered frame is the simple sum of one of more raw frames. From now on, motion correction is

performed on rendered frames instead of raw frames. If –FmIntFile does not appear on the

command line, rendered frames are the same as raw frames.

Here is an example assuming a movie is acquired using three frame exposures. Frame 1 to

20 is acquired at 20 ms/frame, 21 to 60 at 40 ms/frame, and 61 to 140 at 60 ms/frame. Note that

the dose received by each frame can be calculated given dose rate, pixel size, and frame exposure.

For simplicity, let’s assume we have already calculated the dose for frame 1, 0.15 e/A2. The frame

integration file following –FmIntFile should be as follows:

11

 20 1 0.15

 40 1 0.30

 80 1 0.45

The second column indicates the input movie is rendered as it is and the third column lists

the dose distribution over the frames. In this case, –FmDose will be ignored. Users still need to

provide pixel size (–PixSize) and high tension (–Kv) in order to enable dose weighting.

10. Correct anisotropic magnifications

Anisotropic magnification causes images less magnified in one direction (major axis) and

more magnified in the direction (minor axis) perpendicular to major axis. MotionCor2 corrects

anisotropic magnification by stretching the image along the major axis. Users need to obtain the

parameters of anisotropic magnification using Tim Grant’s program mag_distortion_estimate

[2]. These parameters can then be provided to MotionCor2 using “-Mag” that is followed by major

scale, minor scale, and the angle of the major scale. In the following example MotionCor2 corrects

the anisotropic magnification that has major scale of 1.003, minor scale of 0.998, and 34.0° of

distortion angle reported by mag_distortion_estimate.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc -Patch 5 5 -Iter 10 -Tol 0.5 \

-Throw 2 \

-Kv 300 -PixSize 0.5 -FmDose 1.2 \

-Mag 1.003 0.998 34.0

Note: In the previous versions of MotionCor2, “-Mag” should be followed by magnifications

rather than scales. Therefore, users need to invert the scales to magnifications.

11. Image binning by Fourier cropping

Image binning is implemented by cropping in Fourier domain. -FtBin can be used to bin

the motion-corrected image to a specified resolution. Values for this option can be either an integer

12

or a float that is bigger than 1. In the following case, the output image is cropped in Fourier space

by 1.5x.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \

-OutMrc /home/data/CorrectedSum.mrc \

-Gain /home/data/MyGainRef.mrc \

-Patch 5 5 \

-Iter 10 \

-Tol 0.5 \

-Throw 2 \

-FtBin 1.5

If the raw movie stacks are collected in super-resolution mode and the final images is

intended to be binned, we recommend to use the super-resolution stacks as input and let

MotionCor2 do the binning. This is a better practice than passing binned stack to MotionCor2.

Since the local motion is corrected by linear interpolation that has low-pass effect in Fourier space,

it is preferred to correct the local motion at super-resolution pixel to minimize the loss of high-

frequency information due to interpolation.

12. Batch processing

Batch processing overlaps the disk operation with the intensive computation involved in

motion correction. As a result, the disk I/O time is almost completely shadowed by the

computational time. MotionCor2 automates the sequential motion correction of multiple single-

particle movie stacks based upon pattern recognition of file names. “-Serial 1” enables the batch

processing. There are two scenarios. First, when the folder contains only the movie stacks, the

following examples shows the how to configure the command line.

MotionCor2 -InMrc /home/data/ \

-OutMrc /home/Sum/Corrected \

-Gain /home/Ref/MyGainRef.mrc \

13

-Patch 5 5 -Iter 10 -Tol 0.5 -Throw 2 \

-Kv 300 -PixSize 0.5 -FmDose 1.2 \

-FtBin 2 -Gpu 0 1 \

-Serial 1

In this case all the MRC files in “/home/data/” are treated as movie stacks and corrected

sequentially. The corrected sums are named by prefixing “Corrected” to the input file names and

saved in “/home/Sum/” directory.

If the input folder contains mixed files, the following example shows how to configure the

command line for the program to choose only the MRC stack files.

MotionCor2 -InMrc /home/data/Stack_ \

-InSuffix Raw.mrc \

-OutMrc /home/Sum/Corrected \

-Gain /home/Ref/MyGainRef.mrc \

-Patch 5 5 -Iter 10 -Tol 0.5 -Throw 2 \

-Kv 300 -PixSize 0.5 -FmDose 1.2 \

-FtBin 2 -Gpu 0 1 \

-Serial 1

MotionCor2 chooses only the files with names prefixed with “Stack_” and suffixed with

“Raw.mrc” in “/home/data” directory. Here are two examples, “Stack_1234Raw.mrc” and

“Stack_3456-Raw.mrc”.

13. Support for TIFF movies

-InTiff is used specify an input of TIFF file. Currently, there is no support for batch processing

of TIFF files. The support of TIFF files is limited to single-particle movie stacks.

14

MotionCor2 -InTiff /home/data/Stack_0001.tif \

-OutMrc /home/Sum/Corrected_0001.mrc \

-Gain /home/Ref/MyGainRef.mrc \

-Patch 5 5 -Iter 10 -Tol 0.5 -Throw 2 \

-Kv 300 -PixlSize 0.5 -FmDose 1.2 \

-Gpu 0 1

14. Support for EER movies

Version 1.4.0 starts to support EER movies. –InEer has been added for users to input EER

movies. In addition, users also need to specify EER sampling using –EerSampling followed by a

value from 1, 2, and 3 corresponding to 1x, 2x, and 4x upsampling, respectively. Since an EER

movie usually contains hundreds of raw frames, motion correction on the original movie would

become very inefficient, if not impossible due to the limitation of system memory. Therefore, we

recommend using –FmIntFile to convert the input movie into the rendered one that contains,

ideally, less than 200 rendered frames. As described in section 9.2, –FmIntFile expects a three-

column text file. The following is an exemplary file for converting an EER movie of 567 EER

frames into the rendered one containing 103 rendered frames. Again, a rendered frame is a sum of

multiple raw frames, i.e. the EER frames in this case.

120 3 0.1

447 7 0.1

The first line converts 120 EER frames into 40 rendered frames and the second line yields

63 rendered frames. Users can add more lines if the conversion of finer granularity is needed. The

last column is the dose in e/A2 each EER frame receives. Motion correction is done on the rendered

frames.

15. Output motion correct stack

Motion corrected stacks can be generated by specifying “-OutStack 1” along with the

motion corrected sum. Note that in this setup the dose weighting step is skipped. As a result, the

15

corrected sum and stack are not dose weighted. The output stack is stored in a MRC file with

“_Stk” appended to the end of the output file name. This option is not available for dose

fractionated tomographic tilt series.

As of version 1.4.4, this option has a second parameter that specifies binning in z, i.e,

number of frames to be summed per output frame in the corrected stack. “-OutStack 1 4”, for

example, means the output frame is a sum of 4 motion-corrected frames.

16. Low-signal movies

There are two parameters users can play with. The first one is B-factor. Its value can be

changed by -Bft. Since version 1.1.0, -Bft takes two parameters of which the first one is used in

global-motion measurement and the second is for local-motion.

16.1. Group frames to enhance signals

Another parameter is to adjust the setting of -Group whose default value is 1. For movies

with low signal to noise ratio, a bigger value has been found quite effective. -Group instructs the

program to equally divide the input stack into non-overlapping sub-groups. Instead of aligning

individual frames, the sums of these sub-groups are aligned. The shifts of individual frames are

then interpolated and extrapolated. For example, -Group 3 divides the input stack of 120 frames

into 40 sub-groups, each containing 3 frames. As opposed to increasing B-factor, this is a

recommended approach.

16.2. Non-uniform grouping

When a raw movie is rendered by means of -FmIntFile, non-uniform grouping will be

automatically invoked if -Group appears on the command line. There are two cases that involve

non-uniform grouping. The first one is the frame integration file has the second column filled with

different values. Assume an integration file has the following content and -Group 4 appears on the

command line.

20 1 0.3

40 2 0.3

80 4 0.3

16

The first 20 frames will be grouped every 4 frames. Frame 21 to 60 will be grouped every

2 frames. The last 80 frames will not be grouped. Motion measurement is then performed on the

(5 + 20 + 80 = 105) group summed images. EER movies or movies collected at high frame rate

fall into this case.

Movies collected using variable frame exposure fall into the second case where the second

column of the frame integration file filled with 1s but the dose in the third column varies. It is the

third column that will be used to determine the non-uniform grouping. Again, assume a frame

integration file as follows and -Group is set to 4.

20 1 0.3

40 1 0.6

80 1 1.2

In this case, the first 20 frames will be grouped every 4 frames. Since each of the next 40

frames receives two times of the dose as opposed to the first 20 frames, they will be grouped every

2 frames. The last 80 frames will not be grouped since their frame dose is 4 times of the first 20

frames.

17. Correct camera defects

In addition to dynamically detect and correct defects in acquired movie stacks, users can

specify fixed regions of defects in a text file. This file is composed of multiple lines of which each

contains four space-separated integers, x, y, w, and h that define a rectangular region of defects. x

and y are the pixel coordinates of the lower left corner of such a region where w and h denote the

width and height, respectively. The full path of this text file should follow the tag “-DefectFile”.

The defective pixels will be replaced with random picks of good pixels in their neighborhood.

18. Archive raw movies

This function has been deprecated.

17

19. Taking into account of frame blurring

Since version 1.1.0, there is a newly introduced option "-InFmMotion 1" that takes into

account of motion-induced blurring of each frame. The test on T20S proteasome data set shows,

although not significant, noticeable resolution improvement of reconstruction. By default, this

option is off.

20. Generate odd and even sums

Users can use “-SplitSum 1” to generate even and odd sums that are the partial sums of

even and odd frames, respectively. The corresponding MRC files are appended with “EVN” and

“ODD”, respectively.

 As of version 1.4.7, the odd and even sums can also be generated even when the dose

weighting parameters are not provided in the command line. In this case, the odd and even sums

are not dose weighted.

21. Generate log files

Since version 1.4.6, “-LogFile” has been replaced with “-LogDir” followed by the full path

to the directory that holds the log files. The log files are the text files with “.log” extension and

named after the output MRC files.

22. On-the-fly motion correction

Since version 1.3.2, MotionCor2 has added a function to facilitate the on-the-fly motion

correction. This function allows a new process to be started without being tied to specific GPU(s).

As long as there are free GPUs at the moment of start, which are not in use by any other

MotionCor2 processes, the process can be started immediately. Once the process finishes, it frees

its GPU(s), which then become available for new processes. This function is enabled with -Gpu

and -UseGpus where -Gpu lists all the GPU IDs installed on your system and -UseGpus specifies

number of free GPUs to be used in the process.

At UCSF we are able to perform real-time motion correction when the data collection runs

as fast as 4 K3 movies per minute with each containing 200 frames. This is achieved by running 8

18

MotionCor2 jobs in Scipion on a Linux workstation equipped with 756 GB CPU memory and 8

nVidia 2080ti cards. Each process is started with

-Gpu 0 1 2 3 4 5 6 7 \

-UseGpus 1

Please be reminded that the architecture PCIe Bus plays a significant role in the overall

performance of running multiple jobs simultaneously since MotionCor2 involves intensive data

exchange between CPU and GPU memory. In general, more PCIe bus lanes are strongly preferred.

If interested, please feel free to contact the author for more information.

23. Miscellaneous

Starting the program without specifying any argument will display all the command line

parameters with brief descriptions. Using -v displays the version number and build date.

24. Release report

Version 1.0.0 − Release on 07-05-2017

Per user requests, we start using version number instead of date to track the release of

MotionCor2. The first version number indicates major changes have been made. The second

number denotes minor changes or features added. The last number typically refers to bug fixing.

 Allow users to specify camera defects in an input file.

 Support batch processing of TIFF stacks.

 Support archiving MRC stacks.

 Revised how users should enter the parameters of anisotropic magnification.

 Provide “-PhaseOnly” option for cross correlation used in alignment.

Version 1.0.1 − Release on 09-06-2017

This version significantly improves computational efficiency by buffering as many

frames in GPU memory as possible. This strategy significantly reduces the overhead of copying

frames from CPU to GPU. As a result, as much as 50% of the computational time can be saved.

19

Importantly, each GPU cannot be shared by two MotionCor2 processes at the same time.

If a GPU is used in one MotionCor2 process, the second MotionCor2 process should not use this

GPU. Otherwise, both processes will yield incorrect results and CUDA errors due to GPU memory

limitation. The new functions are:

 Dark-reference correction.

 Overlapped patches for local motion correction.

Version 1.1.0 − Release on 09-06-2017

This version further improves the speed of motion correction and more robust compared to

previous releases. The new functions are:

 -GpuMemUsage allows users to specify how much GPU memory is used to buffer

 movie frames.

 -InFmMotion allows to take into account motion-induced blurring on each frame.

 -Bft takes an optional second parameter that is used for measuring local motion.

Version 1.4.0 − Release on 09-25-2020

Sequential processing of EER movies is implemented.

Version 1.4.5 − Release on 10-22-2021

This version can generate z-binned motion-corrected movies.

Version 1.4.7 − Release on 11-23-2021

This version generates odd and even sums even if the dose weighting parameters are not

provided. In this case, the odd and even sums are not dose weighted.

Version 1.5.0 − Release on 05-31-2022

20

This version detects the locations of features for local motion correction. The patch centers

are placed at locations where features are detected.

Fig. 2 Red crosses denotes the uniform-distributed patch centers.

Cyan crosses denote the actual patch centers where local motion are measured.

25 Frequently asked questions

The input movie stack is already gain corrected. MotionCor2 reports on the terminal

“Apply gain to the stack”. Will the gain reference be applied again in MotionCor2?

No, as long as the gain reference is not provided from the command line as a MRC file or not

contained in the extended header of the MRC file of the input movie stack.

Are the bad and hot pixels detected different from camera_defects_pixels?

Yes, they are different since MotionCor2 detects them dynamically.

I got the following error messages, what went wrong?

“Error: CCufft2D failed, unable to create CUFFT_R2C plan.”

“Error: CCufft2D::Forward: an illegal memory access was encountered.”

“Error: CCufft2D::Forward: an illegal memory access was encountered.”

These error messages are most likely caused by incompatibility between CUDA driver and CUDA

toolkit. Ask system administrator to check if both the driver and the toolkit are of the same version.

I noticed that the output and log file always list the frame shifts relative the first frame, no

ma matter what value “-FmRef” is set to.

21

The output and log files list the shifts relative to the first frame. However, the correction is relative

to the central frame by default. “-FmRef” is a switch that allows to choose the reference either the

central frame by giving it a non-zero value or the first frame by setting it zero.

Does MotionCor2 work on Falcon images?

Yes.

