REAPR version 1.0.18

Martin Hunt

Feb 234 2015

Contents

1

Installation

1.1 Prerequisites
1.2 Imstall REAPR

Brief instructions

Overview

Examples

4.1 Alwaysrun fachecko
4.2 Small genome, using short and long insert reads
4.3 Large genome, using short and long insert reads
4.4 Any size genome, where only one library of reads is available
Interpreting the output

5.1 Sanity checks

5.2 Summary

file and errors/warnings GFFo L.

5.3 Broken assembly L

Common Tasks

6.1 Facheck

6.2 Smaltmap
6.3 Perfectmap L
6.4 Perfectfrombam
6.5 Pipeline
6.6 Plots e
6.7 Seqrename Lo

Advanced Tasks

7.1 Preprocesso
7.2 Stats e
7.3 Fedrate e e e e e
T4 Scoreo e
7.5 Break e e e e e

7.6 Summary

References

11
11
11
11

13
13
13
14
14
15
15
16

17
17
17
18
20
23
23

25

1 Installation

1.1 Prerequisites

You will need R [6] to be already installed and in your path, in addition to these Perl
modules:

e File::Basename

e File::Copy

e File: :Spec

e File::Spec::Link
e Getopt::Long

e List::Util

REAPR uses several free software packages in order to run, most of which come bun-
dled with the REAPR code and do not need to be installed separately. The bundled
tools are BamTools [1], SAMtools [4], Tabix [3] (C++ version (https://github.com/
ekg/tabixpp)) and SNP-o-matic [5]. REAPR can make files for viewing in Artemis [2],
therefore we recommend installing Artemis (at least version 15.0.0) for viewing the results.

1.2 Imnstall REAPR

Check that you have R and the Perl modules listed above installed, then download the
tarball and run:

tar -zxf Reapr_1.0.18.tgz
cd Reapr_1.0.18
./install.sh

Then add reapr to your $PATH. You can check that the installation worked by downloading
the test data from ftp://ftp.sanger.ac.uk/pub4d/resources/software/reapr/Reapr_
1.0.18.test_data.tar.gz. Then run the following.

tar -zxf Reapr_1.0.18.test_data.tar.gz
cd Reapr_1.0.18.test_data
./test.sh

https://github.com/ekg/tabixpp
https://github.com/ekg/tabixpp
ftp://ftp.sanger.ac.uk/pub4/resources/software/reapr/Reapr_1.0.18.test_data.tar.gz
ftp://ftp.sanger.ac.uk/pub4/resources/software/reapr/Reapr_1.0.18.test_data.tar.gz

2 Brief instructions

REAPR uses several third-party tools, some of which can fall over on certain contig names.
Therefore it is a good idea before you do anything else (like mapping reads to your assem-
bly) to run

reapr facheck assembly.fa

If it returns no errors, then run the pipeline. Otherwise, rename your contigs with
reapr facheck assembly.fa new_assembly

The prerequisites for REAPR are as follows.
1. An assembly in FASTA format assembly.fa.

2. A BAM file of paired reads mapped to the assembly. This can be made manually
or by using the smaltmap function of REAPR, which maps using SMALT with the
recommended settings described below. If you have a large number of reads and
are using a compute farm to run the mapping yourself in parallel, then you can run
smaltmap with the -x option to see the recommended mapping commands.

The input BAM file should be sorted by coordinate, indexed and have duplicates
either marked or removed. REAPR will ignore reads marked as duplicates. Reads
in a pair should be pointing towards each other. We recommend SMALT (http:
//www.sanger.ac.uk/resources/software/smalt/) with the options -x -r. This
will map reads repetitively (-r) and map each reads in a pair independently of each
other (-x). Independent mapping is important, so that reads in a pair are not
incorrectly forced to be mapped near to each other.

Reads in this BAM file can be from any technology and can have any read length.
The only restriction is that they must be paired reads with the correct orientation
being to point towards each other.

The higher your read coverage, the better the results. For minimum coverage, it
is best to think in terms of fragment coverage, since REAPR analyses fragments
to determine assembly breakpoints. A minimum of ~15X fragment coverage will
suffice.

3. Optionally, high-quality (probably short insert Illumina) paired to use the informa-

tion when mapping them perfectly and uniquely to the assembly. Doing this will
allow REAPR to accurately call error-free bases in the assembly. It will not affect
the error calling. The correct orientation of these reads should be to point towards
each other.
By default REAPR will not count a base as error-free if it has less than 5X perfect
and unique coverage of these reads. If these high-quality reads were used to do
the assembly, then there will almost certainly be enough coverage to use them for
REAPR.

If you want to use perfect unique mapping information, run the pipeline with these com-
mands:

http://www.sanger.ac.uk/resources/software/smalt/
http://www.sanger.ac.uk/resources/software/smalt/

reapr smaltmap assembly.fa long_1.fq long_2.fq long_mapped.bam
reapr perfectmap assembly.fa short_1.fq short_2.fq i_size perfect_prefix
reapr pipeline assembly.fa long_mapped.bam outdir perfect_prefix

where short_1.fq/short_2.fqare FASTQ files of the short insert read pairs, long_1.fq/
long_2.fq are FASTQ files of the long insert read pairs and i_size is the insert size of
the short insert reads. Note that the first two commands are independent and can be run
in parallel. If you are not using perfect unique mapping information, then run the pipeline
with

reapr smaltmap assembly.fa long_1.fq long_2.fq long_mapped.bam
reapr pipeline assembly.fa long_mapped.bam outdir

REAPR always assumes that the reads are ‘innies’. The output files will all be in the
directory outdir, the most important of which are

1. 03.score.errors.gff.gz, a report of the errors found;

2. 04.break.broken_assembly.fa, a new version of the assembly, with scaffolds bro-
ken based on the errors found;

3. 05.summary.report.txt, a summary of the errors found in the assembly, plus con-
tiguity statistics (N50 etc) of the original and broken assemblies.

To view a contig of interest, for example contigl, with Artemis, use the following two
commands.

reapr plots -s reapr reapr.stats.gz plot.contigl assembly.fa contigl
./plot.contigl.run_art.sh

The first command generates the necessary files and the second starts Artemis.

Map reads to

Use high-quality reads (optional)
genome
High qualit; Genome -
readgs (EASTyQ) assembly Large insert
(FASTA) reads
(FASTQ)

Yy

\ Map reads to assembly
.g. SMALT
No REAPR pipeline =)

Large
genome?

REAPR
Map reads to REAPR facheck Mapped
assembly perfectmap o (e
(SMALT) reads (BAM)

REAPR
preprocess
REAPR stats

REAPR
fcdrate

Mapped
reads (BAM)

REAPR
perfectfrombam

Perfect
mapping
plot files

Per-base
stats

Y

REAPR score

Per-base score,
error calls
(GFF)

Y
REAPR break

Broken
assembly
(FASTA)

REAPR
summary

Errors and
quality
summary

Figure 1: REAPR workflow. Blue background boxes show REAPR tasks (pipeline is a
shortcut for running facheck, preprocess, stats, fcdrate, score, break and summary).

3 Overview

REAPR uses read pairs mapped to an assembly in order to evaluate that assembly. High
quality paired reads (typically from a short insert Illumina library) are used to help score
each base of the assembly, and large insert data (from any technology) are used to call
assembly errors. Use of short insert data is optional. A schematic of the REAPR pipeline
is shown in Figure 1.

The error types described later should be self-explanatory, with one exception. REAPR
identifies breakpoints in the assembly by analysing fragment coverage and also the frag-
ment coverage distribution (FCD) at each base (see Figure 2). The difference between the
expected FCD and actual FCD at each base is referred to as the ‘FCD error’. An FCD
error usually represents incorrect scaffolding, a large insertion or deletion in the assembly,

or sometimes a false join in a contig.
The pipeline needs, as a minimum, a BAM file of paired reads mapped to an assembly

p p

Coverage A

. =Area Ideal . “hrea

Ideal

ol Distance from test position (p) 0l Distance from test position (p)

Figure 2: Fragment coverage distribution (FCD), calculated at position p in the genome.
Only read pairs, shown in black, spanning p are counted towards the calculation (grey reads
are ignored). The resulting fragment coverage is plotted (shown in black) and compared
to the ideal shape (green). The difference in area between the two plots is the FCD error,
coloured in red. Plots are normalised to have a maximum gy value of 1 and the x values
are scaled so that the ideal plot has y = 0 when x = £1. (a) and (b) show the FCD
calculation for a base which is not in a gap and in a gap respectively.

to call assembly errors. REAPR will work best if these read pairs are from a large insert
library, but any paired data can be used. We recommend that you use the largest insert
data available.

Optionally, if you have high-quality reads which are expected to mostly map perfectly
to the assembly (typically this would be a short insert Illumina library), these can be used
to help score each base of the genome. This is done by mapping the read pairs perfectly
and uniquely to the assembly, so that both reads in a pair are mapped only if they match
perfectly across their entire length and cannot be mapped to more than one place in the
genome.

The general usage is

reapr <task> [options]

where task is one of facheck, gapresize, preprocess, perfectmap, stats, score, break,
plots or pipeline.

REAPR uses several third-party tools, some of which can fall over on certain contig
names. Therefore it is a good idea before mapping, to run

reapr facheck assembly.fa

where assembly.fa is your FASTA file containing the assembly. If it returns no errors,
then it is safe to run the pipeline. Otherwise, rename your contigs with

reapr facheck assembly.fa new_assembly

Note that the contig names in the assembly FASTA file must exactly match those in the
input BAM file. For example, many read mappers will ignore everything after the first

whitespace character in a name. facheck replaces ‘bad’ characters with an underscore. If
this were to lead to non-unique names in the output, then the offending names will have
.1, .2, ...appended. Hence the recommendation to check your contig names before doing
the mapping.

If short insert Illumina reads are available, then first run perfectmap. This stage
assumes that all reads are of the same length. Then the pipeline can be run (as outlined
previously). The stages of the pipeline are preprocess, stats, score, break and can be
run with one call to pipeline.

preprocess samples the first million bases of the assembly (excluding gaps), in order
to get estimates of various stats that are needed when stats is run. The task stats needs
a BAM file and (if you ran perfectmap earlier) a perfect mapping plot file, as input. This
will generate statistics at each position in the assembly. After stats, the task score is
run in order to score each position in the genome and make a GFF file of errors in the
assembly. This task needs the files made by stats in order to run. A broken assembly
can be made with break, which uses the errors file to make the broken assembly.

A single call to pipeline is usually all that is needed. It will work in most cases,
however it does not allow any control over the options at each step. If settings other
than the defaults are required, it is necessary to run the tasks one by one, changing the
parameters at each stage. When running pipeline, each system call is printed to stdout,
so you can see exactly what was run and easily rerun a stage with different options from
those chosen by the pipeline.

Finally, the task plots can be used to generate Artemis plot files from the statistics.
It needs the statistics file made by stats to run and can optionally use the scores file
made by scores. The files made by plots can be quite large, and there are several made
per contig, so this task is not run by default as part of the pipeline.

4 Examples

How you run REAPR will depend on the input data: whether or not you have short insert
reads in order to call error-free bases accurately, and the size of the genome. All the
combinations are listed below, with the following filenames:

e assembly.fa: FASTA file of the assembly
e short_1.fq, short_2.fq: FASTQ files of the forward and reverse short insert reads.

e long_1.fq, long_2.fq: FASTQ files of the forward and reverse large insert reads
(could be the same as the short insert reads).

The definition of a ‘small’ and ‘large’ genome is probably dependent on memory re-
sources. If you are using short insert reads to generate perfect unique mapping depth,
then this is the part that can be high memory. The small genome method is very fast,
at the cost of high memory usage and the assumption that all reads are the same length.
It used 2GB, 6GB and 26GB of memory on genomes of size 23MB, 100MB and 380MB
respectively. The large genome method uses significantly less memory, at the expense of
speed.

4.1 Always run facheck

To make sure you have no sequence names that could break the pipeline, run this first:
reapr facheck assembly.fa

If it returns an error, then make a new FASTA file of your assembly with:
reapr facheck assembly.fa assembly_renamed

The new FASTA file will be called assembly_renamed.fa.

4.2 Small genome, using short and long insert reads

reapr perfectmap assembly.fa short_1.fq short_2.fq 300 perfect
reapr smaltmap assembly.fa long_1.fq long_2.fq long_mapped.bam
reapr pipeline assembly.fa long_mapped.bam output_directory perfect

where we have short insert reads with an insert size of 300bp.

4.3 Large genome, using short and long insert reads

reapr smaltmap assembly.fa short_1.fq short_2.fq short_mapped.bam
reapr perfectfrombam short_mapped.bam perfect 100 500 3 4 76

reapr smaltmap assembly.fa long_1.fq long 2.fq long_mapped.bam
reapr pipeline assembly.fa long_mapped.bam output_directory perfect

In this example, reads in a pair pointing towards each other, in the insert size range 100—
500bp, with mapping quality at least 4 and alignment score at least 76 would be used to
generate the perfect and uniquely mapped depth at each base of the genome. Reads will
be counted as repetitive if their mapping quality is < 3. Note that mapping quality scores
are mapper-dependent; this example has suitable values for SMALT. Most mappers give
a low mapping quality to a read which maps to multiple places in the genome and so a
high enough value should be chosen to exclude these reads. The alignment score will vary
between mappers and read length. A score of 76 would be perfect mapping, if the scoring
scheme is 1 for a match and all the reads are 76bp long.

4.4 Any size genome, where only one library of reads is available

The most common case of one library only is a single short insert Illumina lane. In this
case, use them as the ‘long’ insert reads as well as short. The commands are:

reapr perfectmap assembly.fa reads_1.fq reads_2.fq <insert_size> perfect
reapr smaltmap assembly.fa reads_1.fq reads_2.fq mapped.bam
reapr pipeline assembly.fa mapped.bam output_directory perfect

or for a large genome, use perfectfrombam, instead of perfectmap, as outlined above.

If only large insert reads are available, then it is probably not worth running perfectmap,
since they are unlikely to be of high enough quality. You can still use REAPR to call errors,
but won’t get accurate error-free base calls. In this case, just run

reapr smaltmap assembly.fa reads_1.fq reads_2.fq mapped.bam
reapr pipeline assembly.fa mapped.bam output_directory

10

5 Interpreting the output

5.1 Sanity checks

It is a good idea to sanity check the output, to make sure that the input to the pipeline
looks sensible. The first thing REAPR does is estimate various parameters by sampling
from the reads. The results of this stage are in the directory 00.Sample/. Things you
should check:

e The GC/coverage bias - look at the plot gc_vs_cov.lowess.pdf.

e The fragment size distribution. There are three plots:
insert.in.pdf, insert.out.pdf and insert.same.pdf.
These show the distributions for the innies, outties and reads in the same direction.
The innies plot should reflect your expected insert size distribution and the other
two plots should just be noise.

e Check that the numbers in insert.stats.txt look sensible. See section §7.1 for
more information on this file.

5.2 Summary file and errors/warnings GFF

As long as the sanity checks look OK, the next thing is to look at the final summary
file 05.summary.report.txt. This has the contiguity statistics of the input assembly, a
summary of the errors and warnings made by REAPR and contiguity statistics of the
assembly after breaking by REAPR. The four types of error are as follows.

1. FCD errors within a contig — a region thati does not contain a gap (one or more Ns)
and triggered an FCD error

2. FCD error over a gap — as above, but the region does contain a gap

3. Low fragment coverage within a contig — a region with low fragment coverage (default
is no coverage) that does not contain a gap.

4. Low fragment coverage over a gap — as above, but the region does contain a gap.

There are also warnings generated from other types of inconsistencies in the read mapping.
The errors and warnings are written to the GFF file 03.score.errors.gff.gz, which is
indexed with tabix.

5.3 Broken assembly

REAPR makes a broken assembly, 04.break.broken assembly.fa, based on the error
calls. If an error is over a gap, then that scaffold is broken into two at the gap. If the
error contains more than one gap, then the scaffold is broken at each gap. If an error is
not over a gap, then the region is replaced with Ns because usually it’s not a breakpoint,
but an insertion or deletion, and the contigs shouldn’t be broken.

The sequences that are replaced with Ns are written either to the broken assembly
file or to a separate file called 04.break.broken _assembly bin.fa. By default, any of

11

these sequences that are shorter than 1000bp are written to the bin file, and the remaining
longer sequences are written to the broken assembly. These sequences are given names the
start with “REAPR_bin”. The 1000bp cutoff can be changed using the option -m when
running reapr break.

If you want to be more agressive at this stage, by breaking at every error (regardless of
whether or not it is over a gap), use the —a option. This can be a good tactic if you plan
to run a scaffolder on the broken assembly, as any false-positive breaks should be fixed by
the scaffolder anyway.

12

6 Common Tasks

The tasks that your are most likely to want to use are described below in detail.

6.1 Facheck

This checks that the names of the sequences in a FASTA file are compatible with the
REAPR pipeline. It can also make a new FASTA file with safe names. Usage:

reapr facheck assembly.fa [new_assembly]

If the optional new_assembly is not given, this simply checks that the contig names in
the FASTA file assembly.fa will not break the pipeline. It dies with an error message at
the first occurrence of a bad name. If the optional new_assembly is given, then two files
are output. The first is a new FASTA file, new_assembly.fa, with renamed contigs. The
second is a file of old to new names, new_assembly.info, where each line is of the form

old_name new_name

Fields are tab-delimited.

6.2 Smaltmap

This maps reads to the assembly using SMALT. The output is a sorted and indexed BAM
file with duplicates removed. Usage:

reapr smaltmap [options] <assembly.fa> <reads_1.fastq> <reads_2.fastg> \
<out.bam>

Options:

-k <int>
The -k option (kmer hash length) when indexing the genome
with ’smalt index’ [13]
-s <int>
The -s option (step length) when indexing the genome
with ’smalt index’ [2]
-m <int>
The -m option when mapping reads with ’smalt map’ [not used by default]
-n <int>
The number of threads used when running ’smalt map’ [1]
-y <float>
The -y option when mapping reads with ’smalt map’.
The default of 0.5 means that at least 50% of each read must map
perfectly. Depending on the quality of your reads, you may want to
increase this to be more stringent (or consider using -m) [0.5]
-X
Use this to just print the commands that will be run, instead of

13

actually running them

-u <int>
The -u option of ’smalt sample’. This is used to estimate the insert
size from a sample of the reads, by mapping every n"th read pair [1000]

6.3 Perfectmap

This is an optional first step of the pipeline, which is recommended if you have high quality
paired reads. If generates parfect and uniquely mapping read coverage, for input into the
REAPR pieline. Usage:

reapr perfectmap <assembly.fa> <reads_1.fastq> <reads_2.fastg> \
<mean fragment size> <prefix of output files>

The ntP read in each fastq file should specify a read pair, with reads pointing towards
each other. All reads must be the same length. If the FASTQ files have the extension .gz,
they will be assumed to be gzipped and dealt with accordingly. The per-base coverage is
written to a tab-delimited, bgzipped and tabix indexed file called out.perfect_cov.gz,
where each line has the format

chromosome_name position coverage

and positions are 1-based. Note that any chromsomes that have zero coverage across their
entire length will not be in this file. A histogram of the coverage is written to out.hist,
with each line of the (tab-delimited) form

coverage count

This file stops at coverage 100, with the count at coverage 100 meaning a coverage > 100.
This is very fast to run, but can by quite high memory, especially if the genome is
large (more than a few 100MB). For large genomes, see perfectfrombam.

6.4 Perfectfrombam

This is an alternative to perfectmap, for use with large genomes. You will need a BAM
file of paired reads as input, with each alignment record having an alignment score, AS,
tag present. Usage:

reapr perfectfrombam [options] <in.bam> <prefix of output files> \
<min insert> <max insert> <repetitive max qual> <perfect min qual> \
<perfect min alignment score>

The BAM file will be filtered, so that only paired reads pointing towards each other, within
the given insert size range and with at least the given mapping quality and alignment score
are included. The filtered reads are used to generate the read depth across the genome.
Output files are in the same format as those of perfectmap. Additionally, repetitive
regions are called, by taking bases covered by any read with that read or its mate having
mapping quality less than the cutoff chosen by ‘repetitive max qual’.

14

6.5 Pipeline

This is a shortcut for running facheck, preprocess, stats, fcdrate, score and break
in turn. See section 2 for examples. Usage:

reapr pipeline [options] <assembly.fa> <in.bam> <out directory> \
[perfectmap prefix]

Options:

-stats|fcdratel|score|break option=value
You can pass options to stats, fcdrate, score or break
if you want to change the default settings. These
can be used multiple times to use more than one option. e.g.:
-stats i=100 -stats j=1000
If an option has no value, use 1. e.g.
-break b=1
-fcdcut <float>
Set the fcdcutoff used when running score. Default is to
run fcdrate to determine the cutoff. Using this option will
skip fcdrate and use the given value.

-X
By default, a bash script is written to run all
the pipeline stages. Using this option stops the
script from being run.

6.6 Plots

This makes plot files for a given sequence from the assembly, for viewing in Artemis.
Prerequisites:

1. the per base statistics file made by stats;

2. the assembly in FASTA format.
Usage:

reapr plots [options] <stats.per_base.gz> <out prefix> <assembly.fa> <contig id>
Options:

-s, —score <scores prefix>
This should be the outfiles prefix used when score was run

This will write several files to be read by Artemis. To start Artemis, run
./outprefix.run_art.sh

If you also ran score, then use the option -s to make a score plot and a GFF file for your
contig of interest. These will also be opened when Artemis is started.

15

6.7 Seqrename

This can rename all the reference sequences in a BAM file. Use this if you already mapped
your reads before finding that facheck failed. It saves spending the time remapping reads.
Usage:

reapr seqrename <rename file> <in.bam> <out.bam>

where rename_file is the *.info file made by facheck.

16

7 Advanced Tasks

The tasks listed in this section should not normally need to be used — they are for advanced
users.

7.1 Preprocess

This stage samples from the assembly and BAM file in order to estimate various parameters
such as fragment coverage. It also does the necessary calculations for GC vs coverage
correction. Prerequisites:

1. A BAM file of paired reads mapped to the assembly. This BAM file needs to be
sorted by coordinate (e.g. with samtools sort) and indexed (samtools index).
It should also have duplicates marked (using MarkDuplicates from Picard http:
//picard.sourceforge.net) or removed (samtools rmdup). Note that the reads
should point towards each other.

2. The assembly to which the reads were mapped, in FASTA format.
Usage:
reapr preprocess <assembly.fa> <in.bam> <outdir>

The files relating to the sampling are written in the directory outdir/Sample/. The esti-
mates of insert size related statistics are written to insert.stats.txt. These should be
self-explanatory, except inner_mean_cov, which is the mean coverage of inner fragments
(often called the ‘inner mate pair distance’). The ave value is the calculated ‘average’ in-
sert size and is usually the mode insert size. However, particularly for large insert libraries,
we often find that the mode is very small and not close to the mean. If this happens, then
ave is set to the ‘mode’ within one standard deviation of the mean.

7.2 Stats

This step generates mapping statistics at each base of the assembly. Prerequisite: that
you have run preprocess. Usage:

reapr stats [options] <preprocess output directory> <outfiles prefix>

Options:

-f <int>
Insert size [ave from stats.txt]
-i <int>
Minimum insert size [pcl from stats.txt]
-j <int>
Maximum insert size [pc99 from stats.txt]
-m <int>
Maximum read length (this doesn’t need to be exact, it just

17

 http://picard.sourceforge.net
 http://picard.sourceforge.net

determines memory allocation, so must be >= max read length) [2000]

-p <string>

Name of .gz perfect mapping file made by ’perfectmap’
-q <int>

Ignore reads with mapping quality less than this [0]
-s <int>

Calculate FCD error every n"th base
[ceil((fragment size) / 1000)]

-u <string>
File containing list of chromosomes to look at
(one per line)

The main output file is outprefix.per_base.gz. This is a tab-delimited bgzipped and
tabix indexed file containing statistics calculated at each base of the genome. Coordinates
are 1-based. The columns of this file are described in Table 1.

In addition to the file of statistics, the following plots are made:

outprefix.read_coverage.pdf
outprefix.fragment_coverage.pdf
outprefix.fragment_length.pdf
outprefix.FCDerror.pdf

Each plot is generated using its associated R file *.R. The first two plots are histograms of
the read and inner fragment coverage of each base of the assembly. The third plot is the
distribution of fragment lengths. The final plot is the distribution of FCD errors at each
base.

The stats task also writes a file of summary statistics, outprefix.global_stats.txt,
which is described in Table 2.

7.3 Fcdrate

This calculates the cutoff to decide if a given window is an FCD failure or not. The cutoff
is required to run the task score. Usage:

reapr fcdrate [options] <preprocess directory> <stats prefix> \
<prefix of outut files>

Options:

-1 <int>
Window length [insert_size / 2] (insert_size is taken to be
sample_ave_fragment_length in the file global_stats.txt file made by stats)
-p <int>
Percent of bases in window > fcd cutoff to call as error [80]
-s <int>
Step length for window sampling [100]
-w <int>
Max number of windows to sample [100000]

18

Column number Column heading Description

1 chr Sequence (chromosome/contig/scaffold) name

2 pos Position in sequence (1-based)

3 perfect_cov Proportion of perfect and uniquely mapping reads

4 read_cov Read coverage on forwards strand

5 prop_cov Proportion of properly paired reads on forwards
strand

6 orphan_cov Proportion of orphaned reads on forwards strand

7 bad_insert_cov Proportion of reads with wrong insert size on for-
wards strand

8 bad_orient_cov Proportion of reads in wrong orientation on forwards
strand

9 read_cov_r Read coverage on reverse strand

10 prop_cov_r Proportion of properly paired reads on reverse strand

11 orphan_cov_r Proportion of orphaned reads on reverse strand

12 bad_insert_cov_r Proportion of reads with wrong insert size on reverse
strand

13 bad_orient_cov_r Proportion of reads in wrong orientation on reverse
strand

14 frag_cov Inner fragment coverage

15 frag_cov_err Relative error in inner fragment coverage

16 FCD_mean Mean insert size of just fragments covering this posi-
tion, treating the plot as a histogram centred on zero
(so a mean of zero is ideal)

17 clip_f1 Number of reads soft-clipped at the left end on for-
wards strand

18 clip_rl Number of reads soft-clipped at the left end on re-
verse strand

19 clip_fr Number of reads soft-clipped at the right end on for-
wards strand

20 clip_rr Number of reads soft-clipped at the right end on re-
verse strand

21 FCD_err FCD error. This is set to -1 if there are no fragments
covering the position.

22 mean_frag_length Mean length of the fragments covering this position

Table 1: Description of columns in the file out.per_base.gz made by the task stats.

19

Name Description

read_cov_mean Mean properly paired read coverage of each base

read_cov_sd Standard deviation of properly paired read coverage

read_cov_mode Mode properly paired read coverage

fragment_cov_mean Mean inner fragment coverage

fragment_cov_sd Standard deviation of inner fragment coverage

fragment_cov_mode Mode inner fragment coverage

fragment_length_mean Mean fragment size

fragment_length_mean_sd Standard deviation of fragment size

fragment_length_mode Mode fragment size

fragment_length_min Minimum fragment size

fragment_length_max Maximum fragment size

use_perfect Whether or not perfect mapping reads were used (0 for no, 1 for
yes)

sample_ave_fragment_length Average fragment length from sample made by preprocess

fcd_skip The skip distance for calculating the FCD error (every nth base
is used)

Table 2: Description of columns in the file out.global _stats.txt made by the task
stats.

The cutoff is determined by sampling windows across the genome. For each window,
the cutoff needed to call this window as an error is calculated. In other words (using the
defaults), for a given window we find the cutoff value ¢ such that 80% of the values in this
window are greater than c¢. This allows us to generate a plot of the proportion of windows
which would be called as incorrect, for a range of FCD cutoff values. An example plot is
shown in Figure 3. The FCD cutoff is chosen to be the first value encountered, starting
from the right, such that both the first and second derivatives are more than 0.01. The
derivatives are normalised so that they lie in the interval [—1, 1]. The idea is that we want
to catch the turning point in the plot, to the left of which the majority of windows fail
simply fail due to background noise.

7.4 Score

This task scores each base of the genome and reports errors in the assembly. The two
most important files this task makes are as follows.

e outprefix.score.gz. This is a bgzipped, tab-delimited and tabix indexed file with
lines of the form
chromosome_name position score
The score at each base ranges from —1 to 1. A score of 1 means no errors were
detected. The smaller the score, the more errors were found, with 0 being the worst
score. Bases within gaps are always given a score of —1.

e outprefix.errors.gff.gz. Thisis a bgzipped and tabix indexed gff file containing
errors and warnings about the assembly. This file is required to run the task break.
See Table 3 for a description.

20

1.0

W y=057

0.5

Proportion of failed windows
0.0

-05
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FCD cutoff

Figure 3: Example plot produced by the task fcdrate. The black line shows the proportion
of failed windows at each cutoff value. The dashed green and blue lines are the first and
second derivatives respectively of the black line. The read line shows the chosen cutoff
value (in this example, at 0.57).

Prerequisites:
1. the same BAM file as was used as input to stats;
2. the statistics file made by stats.

Usage:

reapr score [options] <assembly.fa.gaps.gz> <in.bam> <stats prefix> \
<FCD cutoff> <prefix of output files>

Options:

-f <int>
Minimum inner fragment coverage [1]

-g <int>
Max gap length to call over [0.5 * outer_mean_insert_sizel

-1 <int>
Length of window [100]

-p <int>
Use perfect mapping reads score with given min coverage.
Incompatible with -P.

-P <int>
Same as -p, but force the score to be zero at any position with
at least the given coverage of perfect mapping reads and which has an
OK insert plot, , i.e. perfect mapping reads + insert distribution
override all other tests when calculating the score.

21

Error type Description

FCD This means that the FCD failed at the given coordinates. The
score in the file (column 6) is the mean error in the region

FCD_gap As for FCD, but there is a gap in the region

Frag_cov The fragment coverage was too low in this region. The score in

Frag_cov_gap
Low_score
Link

Clip

Repeat

Read_cov
Perfect_cov

the file (column 6) is the mean fragment coverage in the region
As for Frag_cov, but there is a gap in the region

Ths score in this region was too low (default < 0.5)

This means that a significant proportion of the reads in this region
mapped to elsewhere (to the region given in column 9) in the
assembly

A significant proportion of the reads were clipped to map to this
position (with reads clipped and mapped to both strands)

A collapsed repeat, with the mean relative error in fragment cov-
erage given in column 6

This region has low coverage of proper read pairs

Low coverage of perfect uniquely mapping reads in this region

Read_orientation

(default < 5)

This region has a significant proportion of read pairs mapped in
the wrong orientation (i.e. pointing away from each other or in
the same direction)

Table 3: Description of error types in the file out.errors.gff.gz made by the task score
‘Error type’ is what appears in the third column of the file.

-q

-u

-w

Incompatible with -p.

<float>

Max bad read ratio [0.33]

<int>

Min read coverage [max(l, mean_read_cov - 4 * read_cov_stddev)]
<float>

Repeat calling cutoff. -R N means call a repeat if fragment
coverage is >= N * (expected coverage).
Use -R O to not call repeats [2]

<int>

Min score to report in errors file [0.4]

<int>

FCD error window length for error calling [insert_size / 2]
<float>

Min % of bases in window needed to call as bad [0.8]

There are many options for this task, all of which can be calculated automatically

from the results of stats. Each statistic, such as read coverage or fragment coverage,
is analysed over a sliding window. If a window is found with a large fraction of errors,
such as low fragment coverage, then that statistic as called as ‘bad’ in that window. The
window length and cutoff values used to determine what constitutes a ‘bad’ score are all
optional parameters, with defaults picked automatically.

22

7.5 Break

This task uses the errors file made by score to make a new version of the assembly, where
scaffolds are broken at FCD or low fragment coverage errors. Regions called as an FCD
error or have low fragment coverage, which do not contain a gap, are replaced with Ns. In
case you want to keep these sequences, the regions are written to a separate FASTA file
called out_prefix.broken_assembly bin.fa.

Prerequisites:

1. the assembly in FASTA format;

2. the GFF errors file made by score
Usage:

reapr break [options] <assembly.fa> <errors.gff.gz> <outfiles prefix>
Options:

-a
Agressive breaking: break contigs at any FCD or low_frag error, as
opposed to the default of replacing with Ns. Incompatible with -b

Ignore FCD and low fragment coverage errors that do not contain
a gap (the default is to replace these with Ns). incompatible with -a
-e <float>
Minimum FCD error [O0]
-1 <int>
Minimum sequence length to output [1]
-m <int>
Max sequence length to write to the bin. Sequences longer
than this are written to the main assembly output. This is to stop
long stretches of sequence being lost [999]
-t <int>
When -a is used, use this option to specify how many bases
are trimmed off the end of each new contig around a break.
-t N means that, at an FCD error, a contig is broken at the middle
coordinate of the error, then N bases are
trimmed off each new contig end [O0]

7.6 Summary

This is run at the end of the pipeline, produing a summary of the error calls and contiguity
statistics of the original and broken assembly. Usage:

reapr summary [options] <assembly.fa> <score prefix> <break prefix> \
<outfiles prefix>

where score prefix is the outfiles prefix used when score was run, and break prefix.
is the outfiles prefix used when break was run. Options:

23

-e <float>
Minimum FCD error [0]

24

8
[1]

References

Derek W Barnett, Erik K Garrison, Aaron R Quinlan, Michael P Stromberg, and
Gabor T Marth. BamTools: a C++4 API and toolkit for analyzing and managing
BAM files. Bioinformatics (Ozxford, England), 27(12):1691-2, June 2011.

Tim Carver, Simon R Harris, Matthew Berriman, Julian Parkhill, and Jacqueline A
McQuillan. Artemis: an integrated platform for visualization and analysis of high-
throughput sequence-based experimental data. Bioinformatics (Ozford, England),
28(4):464-9, February 2012.

Heng Li. Tabix: fast retrieval of sequence features from generic TAB-delimited files.
Bioinformatics (Ozford, England), 27(5):718-9, March 2011.

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The Sequence Alignment/Map format
and SAMtools. Bioinformatics (Oxford, England), 25(16):2078-9, August 2009.

Heinrich Magnus Manske and Dominic P Kwiatkowski. SNP-o-matic. Bioinformatics
(Oxford, England), 25(18):2434-5, September 2009.

R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

25

	Installation
	Prerequisites
	Install REAPR

	Brief instructions
	Overview
	Examples
	Always run facheck
	Small genome, using short and long insert reads
	Large genome, using short and long insert reads
	Any size genome, where only one library of reads is available

	Interpreting the output
	Sanity checks
	Summary file and errors/warnings GFF
	Broken assembly

	Common Tasks
	Facheck
	Smaltmap
	Perfectmap
	Perfectfrombam
	Pipeline
	Plots
	Seqrename

	Advanced Tasks
	Preprocess
	Stats
	Fcdrate
	Score
	Break
	Summary

	References

