
Eidos: A Simple Scripting Language 

Benjamin C. Haller 

Dept. of Computational Biology 
Cornell University, Ithaca, NY 14853 

bhaller@benhaller.com 

 

Last revised 14 September 2022, for Eidos version 3.0.1 (SLiM version 4.0.1). 



Acknowledgements: 

Thanks to the designers of the C, R, and Objective-C languages, which paved the way for Eidos in so many 
ways.  Thanks to Terence Parr for his excellent book Language Implementation Patterns, which guided much 
of the implementation of Eidos’s tokenizer and parser; and thanks to him also for his grammar of the C 
language, which provided guidance in the development of Eidos’s grammar.  Thanks to Jean Bovet and 
Terence Parr for ANTLRWorks, which was very helpful in designing Eidos’s grammar, and which generated 
the railroad diagrams used in this manual.  Thanks to Philipp Messer for believing me when I said that 
adding a whole language to SLiM would make it much cooler. 

Citation: 

Haller, B.C. (2016). Eidos: A Simple Scripting Language. 
URL: http://benhaller.com/slim/Eidos_Manual.pdf 

URL: 

http://messerlab.org/slim 

License: 

Copyright © 2016–2022 Philipp Messer.  All rights reserved. 

Eidos is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public 
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any 
later version. 

Disclaimer: 

The program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
General Public License (http://www.gnu.org/licenses/) for more details. 

 2

http://benhaller.com/slim/Eidos_Manual.pdf
http://messerlab.org/slim
http://www.gnu.org/licenses/


Contents 

1. Eidos overview  6 ................................................................................................................................
 1.1 Introduction  6 .............................................................................................................................
 1.2 Why Eidos?  7 ..............................................................................................................................
 1.3 A quick summary of the Eidos language  8 ...................................................................................
2. Language features  9 ............................................................................................................................
 2.1 Types, literals, and constants  9 ....................................................................................................
  2.1.1 The integer type  9 ............................................................................................................
  2.1.2 The float type  9 ...............................................................................................................
  2.1.3 The logical type  10 ............................................................................................................
  2.1.4 The string type  10 ..............................................................................................................
 2.2 Vectors  11 ....................................................................................................................................
  2.2.1 Everything is a vector  11 ...................................................................................................
  2.2.2 Sequences: operator :  11 ...................................................................................................
  2.2.3 Concatenation: function c() and type promotion  12 ...........................................................
  2.2.4 Subsets: operator []  13 .......................................................................................................
 2.3 Expressions  14 ..............................................................................................................................
  2.3.1 Arithmetic expressions: operator +, -, *, /, %, ^  14 ............................................................
  2.3.2 Logical expressions: operator |, &, !  15 .............................................................................
  2.3.3 Comparative expressions: operator ==, !=, <, <=, >, >=  16 ...............................................
  2.3.4 String concatenation: operator +  16 ..................................................................................
  2.3.5 The ternary conditional: operator ?else  17 .........................................................................
  2.3.6 Nested expressions: precedence and the use of () for grouping  18 .....................................
 2.4 Variables  19 .................................................................................................................................
  2.4.1 Assignment: operator =  19 ................................................................................................
  2.4.2 Everything is a vector (a reminder)  20 ................................................................................
 2.5 Conditionals  20 ............................................................................................................................
  2.5.1 The if statement and testing for equality  20 ........................................................................
  2.5.2 The if–else statement  22 ....................................................................................................
  2.5.3 A digression: the semicolon, ;  22 .......................................................................................
  2.5.4 Compound statements with { }  22 ......................................................................................
 2.6 Loops  23 ......................................................................................................................................
  2.6.1 The while statement  23 .....................................................................................................
  2.6.2 The do–while statement  24 ................................................................................................
  2.6.3 The for statement  24 ..........................................................................................................
  2.6.4 The next statement  24 .......................................................................................................
  2.6.5 The break statement  25 .....................................................................................................
  2.6.6 The return statement  26 .....................................................................................................
 2.7 Functions  27 .................................................................................................................................
  2.7.1 Calling functions: operator ()  27 ........................................................................................
  2.7.2 The NULL type  28 .............................................................................................................
  2.7.3 The void type  30 ...............................................................................................................
  2.7.4 The functionSignature() function, and introducing function signatures  31 ..........................
  2.7.5 Optional arguments and default values  33 ........................................................................
  2.7.6 Function signatures summarized  33 ..................................................................................
  2.7.7 Named arguments in function calls  34 ..............................................................................
 2.8 Objects  35 ....................................................................................................................................
  2.8.1 The object type  35 .............................................................................................................
  2.8.2 Element access: operator [] and sharing semantics  36 .......................................................
  2.8.3 Properties: operator .  37 ....................................................................................................

 3



  2.8.4 Multiplexed assignment through properties: operator = revisited  38 ..................................
  2.8.5 Comparison with object: operator ==, !=, <, <=, >, >= revisited  39 ..................................
  2.8.6 Methods: operator . and the methodSignature() method  40 ...............................................
 2.9 Matrices and arrays  43 ..................................................................................................................
  2.9.1 Defining matrices and arrays  43 ........................................................................................
  2.9.2 Matrix and array attributes  45 ............................................................................................
  2.9.3 Using Eidos operators and built-in functions with matrices and arrays  45 ..........................
  2.9.4 Subsets of matrices and arrays using operator []  48 ............................................................
 2.10 Comments  51 ...............................................................................................................................
  2.10.1 Single-line comments with //  51 ........................................................................................
  2.10.2 Block comments with /* */  51 ............................................................................................
3. Built-in functions  52 .............................................................................................................................
 3.1 Math functions  52 ........................................................................................................................
 3.2 Statistics functions  56 ...................................................................................................................
 3.3 Distribution drawing and density functions  58 ..............................................................................
 3.4 Vector construction functions  61 ..................................................................................................
 3.5 Value inspection & manipulation functions  63 ..............................................................................
 3.6 Value type testing and coercion functions  67 ................................................................................
 3.7 String manipulation functions  68 ..................................................................................................
 3.8 Matrix and array functions  70 .......................................................................................................
 3.9 Filesystem access functions  72 ......................................................................................................
 3.10 Color manipulation functions  76 ..................................................................................................
 3.11 Miscellaneous functions  78 ..........................................................................................................
4. User-defined functions  85 .....................................................................................................................
 4.1 Declaring and defining new functions  85 .....................................................................................
 4.2 Complex type specifications  86 ....................................................................................................
 4.3 Type specifications that include objects  87 ...................................................................................
 4.4 Optional parameters and default values  89 ...................................................................................
 4.5 Scope with user-defined functions  89 ...........................................................................................
5. Built-in classes  91 .................................................................................................................................
 5.1 Class Object  91 ............................................................................................................................
  5.1.1 Object properties  91 .........................................................................................................
  5.1.2 Object methods  91 ............................................................................................................
 5.2 Class DataFrame  92 ......................................................................................................................
  5.2.1 DataFrame properties  92 ...................................................................................................
  5.2.2 DataFrame methods  92 .....................................................................................................
 5.3 Class Dictionary  94 ......................................................................................................................
  5.3.1 Dictionary properties  95 ....................................................................................................
  5.3.2 Dictionary methods  95 ......................................................................................................
 5.4 Class Image  97 .............................................................................................................................
  5.4.1 Image properties  98 ...........................................................................................................
  5.4.2 Image methods  99 .............................................................................................................
6. EidosScribe   100 ....................................................................................................................................
 6.1 EidosScribe overview  100 ...............................................................................................................
 6.2 Interactive scripting  101 .................................................................................................................
 6.3 File-based script execution  101 ......................................................................................................
 6.4 Code completion  101 .....................................................................................................................

 4



 6.5 Debugging controls  102 .................................................................................................................
  6.5.1 Showing tokenization  102 ...................................................................................................
  6.5.2 Showing the abstract syntax tree (AST)  103 .........................................................................
  6.5.3 Showing the evaluation trace  103 ........................................................................................
7. Colors in Eidos  105 .................................................................................................................................
8. Eidos language reference sheet  107 ........................................................................................................
9. Railroad diagrams  113 ............................................................................................................................
10. The future of Eidos  119 ...........................................................................................................................
11. Credits and licenses for incorporated software  120 .................................................................................
12. References  125 .......................................................................................................................................

 5



1.  Eidos overview 

1.1  Introduction 
To get the obvious question out of the way at the outset: Eidos is pronounced “A-dose”, with the 

accent on the long “a” (as in “day”).  It is a Classical Greek word (εἶδος) meaning “form”, 
“essence”, “type”, or “species”; it is the word that Plato used to refer to his Forms. 

Eidos is, by design, a very simple and unoriginal language.  It is intended to be easy to learn for 
anyone with any experience with programming – or indeed, even for those with none.  For 
example, the traditional “hello, world” program in Eidos is about as simple as it could possibly be: 

print("hello, world!"); 

This manual will set out the language in a very methodical and perhaps tedious manner; it may 
be possible – particularly for those with experience with any ALGOL-based language such as C, 
Java, or R – to learn Eidos largely from the overview given in section 1.3 and the language 
reference sheet in chapter 8.  However, reading the rest of this overview is recommended, at least. 

Eidos is mostly a hybrid between the C and R languages, with a bit borrowed from Objective-C 
as well.  From R it takes the fact that everything in the language is a vector, and many of the built-
in functions are vectorized – they are built to operate directly upon vector variables that contain 
any number of individual values, making the use of for loops and similar constructs unnecessary 
in many cases.  The names and patterns of functions in the base package of R are also borrowed 
liberally, both because they are generally well-designed, and because this borrowing will allow 
users familiar with R to hit the ground running.  R is also the source of the sequence operator, :, 
and the way that subsetting works in Eidos with the [] operator.  From C, on the other hand, Eidos 
takes the use of the . operator to address object members, the mandatory use of semicolons to 
terminate statements, zero-based instead of one-based indexing of vectors – and of course a great 
many properties of its grammar and syntax, which R also inherited from C or its relatives. 

However, Eidos also departs from its ancestors – mostly in the direction of simplicity.  Unlike C, 
there are no variable declarations, and typing is entirely dynamic; variables are created simply by 
assignment, and types are checked only at runtime.  There are no compound assignment operators 
(+=, -=, *=, etc.), no scalar logical operators (&&, ||), no bitwise operators (>>, <<, etc.), no pre/post 
increment or decrement (--, ++), and no pointers.  Although built-in object classes exist, you 
cannot define a new class (or even a struct – or even an enum).  There is no switch statement and 
no goto.  There is only one scope, the global scope, except that user-defined functions execute in 
their own private scope.  The hope is that this simplicity will not be excessively limiting, since the 
tasks to which Eidos will be put are expected to be quite simple. 

What sort of tasks are those?  Eidos is intended to be used to control other software, referred to 
here as “the Context”; section 1.2 will discuss this in detail. 

It is worth noting that Eidos is an interpreted language – it is not “compiled” to the assembly 
language that is run natively by your computer, but instead “interprets” your code on the fly.  You 
might imagine that, rather than the Eidos interpreter being a native speaker of its own language, it 
is a tourist frantically looking up words in a dictionary as it encounters them, piecing together 
meanings from the definitions it finds.  This means that Eidos is relatively slow (but not that slow; 
see section 2.6.5).  For maximal performance, minimize your use of Eidos script, particularly by 
taking advantage of vectorization when possible rather than writing for loops, and using the built-
in functions in Eidos to do as much work as possible for you. 

Eidos has been a lot of fun to develop; I hope it is a pleasure to use as well.  Enjoy! 

 6



1.2  Why Eidos? 
There are lots of programming languages in the world; do we really need another?  Surprisingly, 

the answer is a resounding YES!  Eidos is a rather unusual language, designed to fit a rather 
unusual niche.  There might be another language out there somewhere that would be well-suited 
to that niche, but certainly no popular mainstream language – C, C++, R, Java, Python, whatever – 
would fit the bill; the closest is perhaps Lua, but even Lua is not quite right.  This section will 
explain exactly what Eidos is designed to do and why a new language was needed to do it. 

First of all, Eidos is intended to provide a scriptable layer on top of existing C++ objects.  The 
idea is that objects that are designed and written in C++, and are instantiated and controlled 
principally by C++ code, are nevertheless visible and manipulable in Eidos code.  These C++ 
objects are referred to as the Context; a given use of Eidos is tightly integrated with a Context that 
the script controls.  The C++ object and the Eidos object should be, in some sense, one and the 
same object; scripting proxies, message forwarding, etc., should not be needed.  The built-in types 
in Eidos, similarly, should be C++ types “under the hood”, allowing C++ code to implement Eidos 
functions and primitives without the added complexity of type translation or bridging.  Few 
languages exist that fit this bill; most languages are designed principally to be standalone entities, 
even if some, like R, provide a “back door” to a lower-level language.  Lua is designed to interface 
with a Context, like Eidos, but since it is ANSI C, providing a front end to C++ would be complex. 

Second of all, Eidos is intended to support an interactive workflow; it needs to be an interpreted 
language so that the user can work at an interactive console prompt, typing Eidos commands and 
getting results back without a compile-run cycle.  This is a reason that C++ itself could not fit the 
niche of Eidos, even though Eidos is designed to control a C++ Context. 

Third, Eidos needs to be cross-platform, open-source, and compatible with the GNU copyleft 
license.  This requirement is because the Context that Eidos is particularly designed to control – the 
SLiM evolutionary simulation package – has those requirements. 

Fourth, Eidos needs to be lean, with as few compile-time and run-time dependencies as 
possible.  This is in part because it needs to be easily buildable on a wide variety of platforms, 
including places like high performance computing clusters.  This is also, in part, because Eidos 
needs to be tight on memory and quick to load, since it will be used in environments where those 
resources are scarce.  Eidos is thus self-contained; it uses some code from the GNU Scientific 
Library (GSL), Boost, and other libraries, but that code has been integrated into Eidos itself, such 
that Eidos has no link-time or run-time external dependencies. 

Fifth, it needs to be blazingly fast to set up and tear down a new interpreter.  For some 
applications, a new interpreter will need to be instantiated millions or even billions of times, and 
that overhead may be the main execution time bottleneck.  For example, in a SLiM simulation a 
fitness() callback may be called for each mutation of a given type, in each individual, in each 
subpopulation, in each generation, but the callback may do only a very simple calculation to get 
the resulting fitness value.  Each call to the callback needs a fresh Eidos interpreter with its own 
state variables.  Eidos is highly optimized for this usage case. 

Sixth, Eidos needs to be very simple to use; the target users are not professional programmers, 
but rather biologists (in the case of SLiM).  Lua and C++, among others, fail this test. 

Seventh, it needs to be able to be tightly integrated into a complex custom GUI environment 
(SLiMgui); the language needs to be designed as a module that can be incorporated into a larger 
software project that introspects into, and even modifies, language elements and language objects 
dynamically.  Few languages have been designed for this level of integration with other software. 

Perhaps this makes the need for Eidos more clear.  While it is unfortunate to have to learn yet 
another language, we hope that the simplicity of Eidos will make the learning curve painless. 

 7



1.3  A quick summary of the Eidos language 
This section is a one-page summary of the Eidos language, intended for experienced 

programmers who don’t want to slog through the whole manual.  If it is gibberish to you, skip it. 
Types.  Eidos defines six built-in value types: NULL, logical, integer, float, string, and 

object.  NULL is similar to a null pointer; it often represents the absence of a well-defined value, 
often due to an error.  The logical type represents Boolean values, and may be either true (T) or 
false (F).  The integer and float types represent 64-bit integers and IEEE double-precision floating-
point values, respectively.  The string type represents a string of characters; there is no character 
type in Eidos.  Finally, the object type represents a C++ object of a particular class, usually defined 
by the Context that Eidos is controlling (see section 1.2); Eidos itself defines only a few classes. 

Vectors.  All values in Eidos are vectors of zero or more elements.  Elements themselves are not 
accessible in Eidos; you can get a vector containing a single element (a singleton), but you cannot 
extract the element itself, since Eidos provides no syntax to do so.  Internally, elements are C++ 
types: bool for logical, int64_t for integer, double for float, std::string for string, and a 
subclass of EidosObject for object (NULL is always length zero and thus has no element type).  
Many Eidos operators and functions work with whole vectors, allowing well-designed Eidos code 
to run fairly quickly. 

Expressions.  Eidos defines a familiar set of operators.  Arithmetic operators include + (addition, 
string concatenation), - (negation, subtraction), * (multiplication), / (division), % (modulo), and 
^ (exponentiation).  A range operator, :, produces a vector sequence between its operands.  
Logical operators include | (or), & (and), and ! (not).  Comparison operators are ==, !=, <, <=, >, 
and >=, with != being not-equals.  A subset operator, [], is provided that is similar to that in R, 
taking either a logical vector specifying which corresponding values to take, or an integer vector 
specifying which indices to take.  These operators all work on vector operands, typically allowing 
operands which are either identical in length (in which case the operation is conducted between 
matching pairs of elements) or one of which is a singleton (in which case the singleton is paired 
with every element of the other operand).  A non-vectorized ternary conditional operator, ?else, is 
also available, similar to the ?: operator in C/C++.  Operator precedence is very similar to C/C++ 
precedence; parentheses () may be used to modify the standard order of evaluation. 

Variables.  Variables are defined by assigning a value to a symbol with the = operator; no 
declaration is needed.  Eidos variables all live in a single global scope, except within user-defined 
functions, which get their own private scope.  (However, the Context may choose to modify the 
Eidos symbol tables in a way that resembles scoping, parameter passing, or other such paradigms.) 

Statements.  Statements are semicolon-terminated.  Statement types include null statements (a 
lone ;), expression statements, assignments, if and if-else statements, loops (while, do-while, 
and an iterator-type for-in statement), control-flow statements (next, break, and return, 
essentially as in R), and compound statements enclosed by braces, {}. 

Functions.  Eidos supplies a broad range of built-in functions (see chapter 3), and you may also 
define your own functions within Eidos (see chapter 4).  You may also call a lambda, a string that is 
dynamically interpreted as Eidos code, using functions such as executeLambda() and sapply(). 

Objects.  As mentioned above, object-type elements are C++ objects, usually defined by the 
Context.  Objects may have Eidos properties and methods (not the same as their C++ member 
variables and member functions).  Properties are lightweight – typically getter/setter access to 
simple values – whereas methods are heavyweight, performing computation or having wider 
effects.  The dot operator, ., is used to access properties with the syntax x.property and to call 
methods with the syntax x.method().  The dot operator is also vectorized, which is often useful. 

And there you have it – the Eidos language in one page.  Now let’s go into more detail. 

 8



2.  Language features 

This chapter will lay out essentially all of the fundamental grammar and syntax of Eidos, 
beginning with the basic types of Eidos (section 2.1) and the vector-based approach taken (section 
2.2), and then proceeding on to expressions (section 2.3), variables (section 2.4), conditionals 
(section 2.5), loops (section 2.6), functions (section 2.7), and objects (section 2.8). 

2.1  Types, literals, and constants 

2.1.1  The integer type 
The integer type is used in Eidos to represent integers – whole numbers, with no fractional 

component.  Unlike in many languages, exponential notation may be used to specify integer 
literals (“literals” means values stated literally in the script, rather than derived through 
calculations).  For example, the following are all integer literals in Eidos: 

0 
−179483 
12e8 

The integer type is advantageous primarily because it is exact; it does not suffer from any sort 
of roundoff error. Exact comparison with integer constants is therefore safe; roundoff error will not 
lead to problems caused by 0.999999999 being deemed to be unequal to 1.  However, integer is 
disadvantageous because it can only represent a limited range of values, and beyond that range, 
results will be unpredictable.  Eidos uses 64 bits to store integer values, so that range is quite 
wide; from −9223372036854775806 to 9223372036854775807, to be exact.  That is broad, but it is 
still enormously narrower than the range of numbers representable with the next type, float. 

2.1.2  The float type 
The float type is used in Eidos to represent all non-integer numbers – fractions and real 

numbers.  Exponential notation may be used to specify float literals; in particular, numeric literals 
with a decimal point or a negative exponent are taken to be of type float.  For example, the 
following are all float literals: 

0.0 
−1.2 
12e−3 
1.2e9 

Note that this rule means that some literals, such as the first and last shown above, are 
represented using float even though they could also be represented using integer. 

The float type is advantageous primarily because it can represent an enormously wide range of 
values.  Eidos uses C++’s double type to represent its float values; the range of values allowed will 
depend upon your computer’s architecture, but it will be vast.  If that range is exceeded, or if 
numerical problems occur, type float can also represent values as infinity or as “Not A 
Number” (INF and NAN, respectively, in Eidos).  The float type is thus more robust for operations 
that might produce such values.  The disadvantage of float is that it is inexact; some values cannot 
be represented exactly (just as 1/3 in base 10 cannot be represented exactly, and must be written 
as 0.3333333...).  Roundoff can thus cause comparison errors, overflow and underflow errors, and 
the accumulation of numerical error. 

Several float constants are defined in Eidos; besides INF and NAN, PI is defined as π 
(3.14159...), and E is defined as e (2.71828...). 

 9



2.1.3  The logical type 
The logical type represents true and false values, such as those from comparisons (see section 

2.3.3).  In many languages this type is called something like boolean or BOOL; Eidos follows R in 
using the name logical instead. 

There are no logical literals in Eidos.  However, there are defined constants that behave in 
essentially the same way as literals.  In particular, T is defined as true, and F is defined as false.  
These are the only two values that the logical type can take.  As in a great many other languages, 
these logical values have equivalent numerical values; F is 0, and T is 1 (and in fact any non-zero 
value is considered to be true if converted to logical type).  Values of type integer or float may 
therefore be converted to logical, and vice-versa, as will be seen in later sections. 

2.1.4  The string type 
The string type represents a string of characters – a word, a sentence, a paragraph, the 

complete works of Shakespeare.  There is no formatting on a string – no font, no point size, no bold 
or italic.  Instead, it is just a character stream.  A string literal must be enclosed by quotation 
marks, but those may be either single or double quotation marks, ' or ".  This simplifies writing 
Eidos strings that themselves contain quote characters, because you can delimit the string with the 
opposite kind of quote.  For example, 'You say, "Ere thrice the sun done salutation to the 
dawn"' is a string that contains double quotes, whereas "Quoth the Raven, 'nevermore'." is a 
string that contains single quotes.  Apart from this consideration, it does not matter whether you 
use single or double quotes; the internal representation is the same.  The suggested convention is 
to prefer double quotes, all else being equal, since they are more universally used in other 
programming languages. 

A complication arises if one wishes to include both single and double quotation marks within a 
string; whichever delimiter you choose, one or the other quote character will terminate the 
string literal.  In this case, the quotation marks inside the string must be “escaped” by preceding 
them with a backslash, \.  The backslash can be used to “escape” various other characters; to 
include a newline in a string, for example, use \n, and to include a tab, use \t.  Newlines, in 
particular, can only be included in quoted string literals using a \n escape sequence, since actual 
newlines are not legal – but see below for an alternative.  Since the backslash has this special 
meaning, backslashes themselves must be escaped as \\.  Keeping those escape sequences in 
mind, these are string literals in Eidos: 

"hello, world" 
'this is also a string' 
"this\nis\nfive\nlines\nlong." 
"this contains a tab\tand a backslash: \\." 
'The Foo exclaimed, "foo!"' 
'\'I never said most of the things I said.\' – L. P. "Yogi" Berra' 

Beginning users may wish to skip the rest of this subsection, but for more advanced users, there 
is another way of representing string literals in Eidos.  Sometimes the limitations and 
complications of standard string literals just get in the way; you just want a block of text to be 
interpreted as a string literal, including any newlines that it contains, and without any quoting 
issues, any special interpretation of escape sequences, and so forth.  This is often desirable for 
including a snippet of Eidos code as a string literal in your code, for example (perhaps because 
you plan to pass the string to a function like sapply() or executeLambda() that will interpret it as 
executable code; see chapter 3).  For this purpose, Eidos provides a multiline string literal format, 
roughly following a style commonly called a “here document” in other languages such as Perl, 
PHP, and Ruby.  The idea of these multiline “here document”-style string literals is quite simple; 
since a code sample is worth a thousand words, let’s start with an example: 

 10



<<--- 
hello, 
world 
>>--- 

That is exactly equivalent to the quoted string literal "hello,\nworld"; the start delimiter <<--- 
and the newline following it are removed, the >>--- delimiter and the newline preceding it are 
removed, and everything remaining that was between the delimiters is taken literally, including the 
newline after the comma. 

Stated more precisely, an Eidos multiline string literal starts with a user-defined delimiter of the 
form <<DELIMITER, where DELIMITER may be any sequence of characters whatsoever, or may be 
zero-length.  The <<DELIMITER start delimiter must be immediately followed by a newline.  The 
contents of the string literal begin after that newline, and continue until the point at which a 
newline followed by an end delimiter is encountered, where the end delimiter is of the form 
>>DELIMITER (DELIMITER being the same character sequence as in the start delimiter).  The start and 
end delimiters thus comprise a matched pair, like <<FOO and >>FOO, <<========= and >>=========, 
or simply << and >>.  As long as you choose a delimiter that does not occur within your string 
literal’s text, there will be no problem, and no quoting or escaping will be necessary.  Indeed, 
character sequences such as \n that would be interpreted as special escape sequences in a quoted 
string literal will be treated just like any other characters in a multiline string literal. 

2.2  Vectors 

2.2.1  Everything is a vector 
In Eidos (following R), everything is a vector.  A vector is simply an ordered collection of zero or 

more values of the same type.  That may sound rather arcane; the point is that when you write 9 in 
Eidos, you are not, in fact, referring to a single integer of value 9.  Rather, you are referring to an 
integer vector; that vector happens to contain one value, which is 9.  Often, if you are doing 
calculations with single values (called “scalars”), you can ignore this fact – but not always.  It 
might seem like an unnecessary complication, at first blush, that you cannot simply work with 
scalar values; but in fact the opposite is true.  If Eidos supported scalars in addition to vectors, it 
would have twice as many data types as it has; and if it supported only scalars, and not vectors, 
then a great deal of useful functionality would be missing from the language.  Once you get used 
to working with vectors, it will come to seem very intuitive.  There are good reasons why R is a 
vector-based language, and why Eidos follows in its footsteps. 

So 9 is an integer vector containing one value, 9; OK.  (In Eidos a vector containing exactly 
one value is called a “singleton”, by the way; we will be using that term a lot.)  How do we get 
vectors with more than one value, then?  Section 2.7 and chapter 3 will introduce a variety of 
built-in functions that can produce vectors, but until then, we will follow the lead established in 
the next two sections, which will introduce an operator and a function that produce new vectors. 

2.2.2  Sequences: operator : 
An “operator” is an entity that performs an operation on operands.  That probably sounds 

deliberately obscure, but in fact it is quite simple.  In the statement “1+1 equals 2”, the + symbol is 
an operator, and the two 1 values are the operands upon which the + operator acts.  The + operator 
performs addition; it adds its operands.  Thus do programming-language geeks talk about things.  
(The word “equals” is actually an operator here also; see section 2.3.3). 

The first Eidos operator we’ll discuss is the : operator.  It is used to construct vectors with 
(usually) more than one value.  In particular, it is used to construct sequences, and so it is called 
the sequence operator.  Given operands x and y (standing for any two numbers), the sequence 

 11



operator starts at x and counts, by 1 (or -1, as appropriate) toward y without passing it.  It yields a 
vector containing all of the numbers it encounters along the way. 

To illustrate this, we’ll look at an interactive session in EidosScribe, the interactive Eidos 
interpreter (described in detail in chapter 6).  Here, lines beginning with a > have been entered by 
the user; the > character is the “prompt” shown by EidosScribe to request input from the user, so 
the user did not type the > character but did type what follows it.  The lines following show the 
result produced by Eidos as a result of interpreting the user’s input: 

> 1:5 
 

1 2 3 4 5 
 

> 5:1 
 

5 4 3 2 1 
 

> -1.2:6.5 
 

-1.2 -0.2 0.8 1.8 2.8 3.8 4.8 5.8 

Note that the sequence operator can count down as well as up, that it can handle float as well 
as integer operands, and that negative numbers are allowed. 

2.2.3  Concatenation: function c() and type promotion 
This section will provide a sneak preview of functions, which are covered in more depth in 

section 2.7.  Here we will look at just one function, called c().  The “c” stands for “concatenate”, 
meaning to paste together end-to-end, and that is exactly what c() does.  You can supply it with 
any number of values, as a comma-separated list inside its parentheses, and c() will stick them 
together and give you back a single vector.  For example, here is another interactive session within 
EidosScribe: 

> c(1, 5, 9, 18392, -17, 3) 
 

1 5 9 18392 -17 3 
 

> c(6.5, 3:9, 0) 
 

6.5 3 4 5 6 7 8 9 0 
 

> c(5:7, "foo") 
 

"5" "6" "7" "foo" 

The first example shows that c() simply returns a vector with the values it was passed, in order.  
It might look like it did nothing at all; but in fact it turned the things that were passed to it – six 
integer vectors, each containing one value – into a single integer vector containing six values. 

The second example shows that you can supply float values to c() as well, and even 
sequences constructed with the sequence operator, and it will do the same thing: paste them 
together, end to end, to make a single vector. 

The third example shows what happens if you mix types: integer and string, here.  The c() 
function produces a single vector, necessarily of a single type.  Type string cannot be changed to 
type integer, in general (what integer would "foo" be?), so instead the integer values have to be 
changed to string, and a string vector results.  In fact, a similar thing happened in the second 
example; c() was given a mix of float and integer, and it converted the integer values to float 
to avoid losing information, producing a float vector as a result.  These are both examples of what 
is called “type promotion”, which Eidos does automatically in some cases. 

A digression about type promotion in Eidos might be called for here, while we are on the 
subject.  This digression will reference many topics that are covered later in this manual, so you 
might wish to skip it for now if you are not an experienced programmer.  Type promotion is done 
by Eidos (1) when multiple values of different types are concatenated together to form a single 
vector, as done by the c() function, the sapply() function (see section 3.10), and the results from 
method calls (see section 2.8.6), (2) when values of different types are compared using the 

 12



comparative operators ==, !=, <, <=, >, and >= (see section 2.3.3), and (3) with the string 
concatenation operator +, which promotes its operands to string (see section 2.3.4).  The 
arithmetic operators +, -, *, /, %, and ^ (see section 2.3.1) also generally accept a mixture of 
integer and float operands, promoting integer to float as needed; they will not promote 
logical upward, however.  Conceptually, the arithmetic operators work with “numeric” type, 
which is either integer or float.  Many functions also effectively work with “numeric” type, by 
declaring their parameters to accept either integer or float, but this is not actually automatic type 
promotion so much as a policy choice to accept parameters of particular types, so the function 
signature (see section 2.7.4) of a given function should be checked to see what types that function 
allows.  Apart from these specific cases, automatic type promotion is not done in Eidos; it is not 
done for the operands of operators, or the parameters of functions, for example, except for the 
specific cases mentioned here.  When automatic type promotion does apply, it will promote types 
upward according to a strict hierarchy: logical is the lowest type on the hierarchy and can be 
promoted upward to integer, float, or string, (2) integer is next and can be promoted to float 
or string, (3) float can be promoted upward to string, and (4) string cannot be promoted at all 
since it is the highest type in the hierarchy.  Type object (see section 2.8) does not participate in 
automatic type promotion at all; it is not promoted to any other type, and other types are never 
promoted to it.  It should also be noted that when Eidos expects a logical value, such as in if, 
while, and do–while statements (see sections 2.5 and 2.6) or with the logical operators &, |, and ! 
(see section 2.3.2), values of integer, float, and string type will be interpreted as either T or F 
according to specific rules (see section 2.3.2); this is not automatic type promotion, however, but 
rather type coercion applied by those statements and operators.  In any case, you can always 
explicitly convert Eidos values from one type to another using the as...() family of functions (see 
section 3.6).  Again, this digression brought in many future concepts, so don’t worry if it didn’t 
make sense; it just seemed best to summarize type conversion in Eidos in one place. 

2.2.4  Subsets: operator [] 
While we are on the topic of vectors, it makes sense to introduce the operator in Eidos that most 

explicitly operates on vectors: the [] operator.  This operator selects a subset of the vector upon 
which it operates; it is thus often called the subset operator.  It can work in one of two different 
ways, depending upon whether it is given an integer vector of indices, or is given a logical 
vector of selectors.  These two methods will be described below. 

First of all, a subset can be selected with an integer vector of indices.  These indices are zero-
based, like C but unlike R; the first value in a vector is thus at index 0, not index 1.  Here, for 
example, are a few subset operations, also using the methods of vector construction discussed in 
the previous sections: 

> 10:19 
 

10 11 12 13 14 15 16 17 18 19 
 

> (10:19)[5] 
 

15 
 

> (10:19)[c(2,3,5,3,3,9)] 
 

12 13 15 13 13 19 

Note that a given index can be used multiple times. 
Second, a subset can be selected with a logical vector of selectors.  In this case, the logical 

vector must be the same length as the vector being selected; each logical value indicates whether 
the corresponding vector element should be selected (T) or not (F).  For example: 

> (10:19)[c(T,T,F,F,F,T,F,F,F,T)] 
 

10 11 15 19 

 13



This may look a bit clumsy, shown as it is here with a logical vector constructed with c(); but 
it is, in fact, enormously powerful and useful when combined with the power of expressions, as 
explored in the next section. 

2.3  Expressions 

2.3.1  Arithmetic expressions: operator +, -, *, /, %, ^ 
These are the standard operators of arithmetic; + performs addition, - performs subtraction, * 

performs multiplication, / performs division, % performs a modulo operation (more on that below), 
and ^ performs exponentiation.  Not a great deal needs to be said about these operators, which 
behave according to the standard rules of mathematics.  They also follow the standard rules of 
mathematical “precedence”; exponentiation is the highest precedence, addition and subtraction 
are the lowest precedence, and the other three are in the middle, so 4^2+5*6^7 is grouped as 
(4^3)+(5*(6^7)), as expected if you remember your grade-school math. 

There are only a few minor twists to be discussed.  One is the meaning of the % operator, which 
many people have not previously encountered.  This computes the “modulo” from a division, 
which is the remainder left behind after division.  For example, 13%6 is 1, because after 13 is 
divided evenly by 6 (taking care of 12 of the 13), 1 is left as a remainder.  Probably the most 
common use of % is in determining whether a number is even or odd by looking at the result of a 
%2 operation; 5%2 is 1, indicating that 5 is odd, whereas 6%2 is 0, indicating that 6 is even. 

Another twist is that both the division and modulo operators in Eidos operate on float values – 
even if integer values are passed – and return float results.  (For those who care, division is 
performed internally using the C++ division operator /, and modulo is performed using the C++ 
fmod() function).  This policy was chosen because the definitions of integer division and modulo 
vary widely among programming languages and are contested and unclear (see Bantchev 2006, 
http://www.math.bas.bg/bantchev/articles/divmod.pdf).  If you are sure that you want integer 
division or modulo, and understand the issues involved, Eidos provides integerDiv() and 
integerMod() for this purpose (see section 3.1).  Besides side-stepping the vague definitions of the 
integer operator, this policy also avoids bugs involving the accidental use of integer division 
when float division was desired – a much more common occurrence than vice versa. 

A third twist is that + and - can both act as “unary” operators, meaning that they are happy to 
take just a single operand.  This is standard math notation, as in the expressions -6+3 or 7*-5; but it 
can sometimes look a bit strange, as in the expression 5--6 (more easily read as 5 - -6). 

A fourth twist is that the ^ operator is right-associative, whereas all other binary Eidos operators 
are left-associative.  For example, 2-3-4 is evaluated as (2-3)-4, not as 2-(3-4); this is left-
associativity.  However, 2^3^4 is evaluated as 2^(3^4), not (2^3)^4; this is right-associativity.  
Since this follows the standard associativity for these operators, in both mathematics and most 
other programming languages, the result should generally be intuitive, but if you have never 
explicitly thought about associativity before you might be taken by surprise.  See section 2.3.6 for 
further discussion of associativity, as well as operator precedence, a related topic. 

A fifth twist is that the arithmetic operators and functions in Eidos are guaranteed to handle 
overflows safely.  The float type is safe because it uses IEEE-standard arithmetic, including the use 
of INF to indicate infinities and the use of NAN to represent not-a-number results, as in most 
languages.  In Eidos, however, the integer type is also safe, unlike in C, C++, and many other 
languages.  All operations on integer values in Eidos either (1) will always produce float results, 
as the / and % operators do; (2) will produce float results when needed to avoid overflow, as the 
product() and sum() functions do; or (3) will raise an error condition on an overflow, as the Eidos 
operators +, -, and * do, as well as the abs() and asInteger() functions.  This means that the 
integer type in Eidos can be used without fear that overflows might cause results to be incorrect. 

 14

http://www.math.bas.bg/bantchev/articles/divmod.pdf


The final twist is really a reminder: everything is a vector.  These operators are designed to do 
something smart, when possible, with vectors of any length, not just with single-valued vectors as 
shown above.  Here are a few examples, which will give you a sense of how it works: 

> (1:10)+10 
 

11 12 13 14 15 16 17 18 19 20 
 

> (1:10)*5 
 

5 10 15 20 25 30 35 40 45 50 
 

> (1:10)*(10:1) 
 

10 18 24 28 30 30 28 24 18 10 
 

> (1:10)%2 
 

1 0 1 0 1 0 1 0 1 0 

In general, the operands of these arithmetic operators must either be the same length (in which 
case the elements in the operand vectors are paired off and the operation is performed between 
each pair), or one or the other vector must be of length 1 (in which case the operation is performed 
using that single value, paired with each value in the other operand vector).  The examples above 
will be easier to understand than the previous sentence was. 

2.3.2  Logical expressions: operator |, &, ! 
The |, &, and ! operators act upon logical values.  If they are given operands of other types, 

those operands will be “coerced” to logical values following the rule mentioned above: zero is F, 
non-zero is T (and for string operands, a string that is zero characters long – the empty string, "" 
– is considered F, while all other string values are considered T). 

As to what they do: | is the “or” operation, & is the “and” operation, and ! is the “not” 
operation.  As in common parlance, “or” is T if either of its operands is T, whereas “and” is T only 
if both of its operands are T.  The “not” operator is unary (it takes only one operand), and it negates 
its operand; T becomes F, F becomes T.  As with the arithmetic operators, these operators work 
with vector operands, too – either matching up values pairwise between the two operands, or 
applying a single value across a multivalued operand.  Some examples: 

> T & F 
 

F 
 

> T | F 
 

T 
 

> c(T, F) & F 
 

F F 
 

> c(T, F) | F 
 

T F 
 

> c(T, T, F, F) & c(T, F, T, F) 
 

T F F F 
 

> c(T, T, F, F) | c(T, F, T, F) 
 

T T T F 

Those familiar with programming might wish to know that the | and & operators do not “short-
circuit” – they can’t, because they are vector operators. If the & operator first sees an operand that 
evaluates to F, for example, it knows that it will produce F value(s) as a result; but it does not know 
what size result vector to make. If a later operand is a multivalued vector, the & operator will 
produce a result vector of matching length; if all later operands are also length 1, however, & will 
produce a result vector of length 1.  To know this for sure (and to make sure that there are no 
illegal length mismatches between later operands), it must evaluate all of its operands; it cannot 
short-circuit.  Similarly for the | operator. 

 15



These semantics match those in R, for its | and & operators, but they might seem a little strange 
to those used to C and other scalar-based languages.  For those used to R, on the other hand, it 
should be noted here that Eidos does not support the && and || operators of R, for reasons of 
simplicity; it is safer to use the any() or all() functions described in section 3.5 to simplify 
multivalued logical vectors before using & or |.  If this is gibberish to you, it is not important; the 
point here is only to prevent confusion among users accustomed to R. 

2.3.3  Comparative expressions: operator ==, !=, <, <=, >, >= 
These operators compare their left and right operand.  The operators test for equality (==), 

inequality (!=), less-than (<), less-than-or-equality (<=), greater-than (>), and greater-than-or-equality 
(>=) relationships.  As seen above with the arithmetic and logical operators, this can work in two 
different ways: if the operands are the same length, their elements are paired up and the 
comparison is done between each pair, whereas if the operands are not the same length then one 
operand must be a singleton (i.e., of length 1), and its value is compared against all of the values of 
the other operand.  Regardless of the types of the operands, these operators all produce a logical 
result vector.  If the operands are of different types, promotion will be used to coerce them to be 
the same type (i.e. logical will be coerced to integer, integer to float, and float to string, as 
previously discussed in the context of the c() function in section 2.2.3). 

This is all pretty straightforward, so a few examples should suffice to make it clear: 

> 5 == 5 
 

T 
 

> 5 == 6 
 

F 
 

> 5 == "5" 
 

T 
 

> 1:5 == 4 
 

F F F T F 
 

> 1:5 == 5:1 
 

F F T F F 

Note that this is often not what you want!  You might not want the automatic type promotion 
that makes 5=="5" evaluate as T, or the vectorized comparison that makes 1:5==4 evaluate as 
something other than simply F.  You might really want to ask: are two values identical?  With that 
as prelude, see the discussion at section 2.5.1 for an alternative to operator == and operator != that 
is a better fit in many situations. 

2.3.4  String concatenation: operator + 
The + operator was previously discussed as an arithmetic operator in section 2.3.1, but it can 

also act as a concatenation operator for string operands. Concatenation is pasting together; the + 
operator simply pastes its string operands together, end to end: 

> "foo" + "bar" 
 

"foobar" 

In fact, this works with non-string operands too, as long as a string operand is adjacent; the 
interpretation of + as a concatenation operator is preferred by Eidos, and wins out over its 
arithmetic interpretation, as long as a string operand is present to suggest doing so. The other 
non-string operands will be coerced to string: 

> 3 + " + " + 7 + " equals " + 10 
 

"3 + 7 equals 10" 

 16



However, this does not work retroactively; if Eidos has already done arithmetic addition on 
some operands, it will not go back and perform concatenation instead: 

> 3 + 7 + " equals " + 10 
 

"10 equals 10" 

To force concatenation, you can begin the expression with an empty string, "": 

> "" + 3 + 7 + " equals " + 10 
 

"37 equals 10" 

Which is not a true statement; but it is a correct concatenation operation! 
The concatenation operator also works with vectors, as usual: 

> (99:97) + " bottles of beer on the wall..." 
 

"99 bottles of beer on the wall..." "98 bottles of beer on the wall..." 
"97 bottles of beer on the wall..." 

Beginning with Eidos 2.2, string concatenation involving NULL concatenates the string value 
"NULL", just as if NULL were a singleton string vector containing that value: 

> "The result is " + NULL + "!" 
 

"The result is NULL!" 

2.3.5  The ternary conditional: operator ?else 
This operator is an advanced topic that assumes an understanding of many concepts not yet 

discussed; this section should therefore probably be skipped by beginning users of Eidos. 
Eidos, like many languages, has an if statement that can be used to specify conditional 

execution of statements (see section 2.5.1), and an if-else construct can be used to provide an 
alternative code path (section 2.5.2).  Sometimes, however, one wishes to have conditional 
execution of an expression, rather than an entire statement.  The if-else construct is particularly 
inconvenient with assignments involving complex lvalues, such as: 

if (condition) 
 x[index].property = a; 
else 
 x[index].property = b; 

It is desirable to provide a way for the user to specify that the choice of rvalue, a or b, should 
depend upon condition without having to duplicate the lvalue and the assignment.  The R 
language provides this functionality by making if-else statements result in an rvalue, like an 
expression.  The C language, on the other hand, provides a ternary conditional operator, ?:, that 
can be used in expressions to much the same effect.  Eidos straddles the gap with a ternary 
conditional operator, ?else, that uses the ? initiator of C, but the else token as a continuation as in 
R.  In the syntax of Eidos, the above conditional assignment can be rewritten as: 

x[index].property = condition ? a else b; 

This will evaluate condition and result in a if condition is T, or b if condition is F.  That result 
is then assigned into the lvalue.  Note that, as in C, the precedence of the ternary conditional 
operator is very low, but higher than operator =, so that parentheses are often not needed to group 
statements of this type (see section 2.3.6).  The else clause of the ternary conditional is required; 
there is no equivalent of an if statement without an else, since an rvalue must be produced. 

 17



Just as with if-else statements, only the selected subexpression, as determined by the 
condition, is evaluated; the other subexpression will not be evaluated, so any side effects it might 
have will not occur.  For example, with the statement: 

x = condition ? f1() else f2(); 

here f1() will be called if condition is T, f2() if condition is F; only the subexpression selected 
by the condition is evaluated, and so it is never the case that both f1() and f2() are called. 

Ternary conditionals may be nested.  Because the operator is right-associative (see section 
2.3.6), an expression such as: 

z = (a == b ? a else b ? c else d); 

is grouped as: 

z = (a == b ? a else (b ? c else d)); 

rather than 

z = ((a == b ? a else b) ? c else d); 

This is generally desirable, since it provides a flow similar to chaining of if-else if-else 
statements.  In any case, parentheses may be used to change the order to evaluation as usual. 

2.3.6  Nested expressions: precedence and the use of () for grouping 
All of the discussion above involved simple expressions that allowed the standard precedence 

rules of mathematics to determine the order of operations; 1+2*3 is evaluated as 1+(2*3) rather 
than (1+2)*3 because the * operator is higher precedence than the + operator.  For the record, here 
is the full precedence hierarchy for operators in Eidos (including a few operators that have not yet 
been discussed), from highest to lowest precedence: 

[], (), . subscript, function call, and member access 
^ exponentiation (right-associative) 
+, -, ! unary plus, unary minus, logical (Boolean) negation (right-associative) 
: sequence construction 
*, /, % multiplication, division, and modulo 
+, - addition and subtraction 
<, >, <=, >= less-than, greater-than, less-than-or-equality, greater-than-or-equality 
==, != equality and inequality 
& logical (Boolean) and 
| logical (Boolean) or 
?else ternary conditional (right-associative) 
= assignment 

Operators at the same precedence level are generally evaluated in the order in which they are 
encountered.  Put more technically, Eidos operators are generally left-associative; 3*5%2 evaluates 
as (3*5)%2, not as 3*(5%2).  The only binary operator in Eidos that is an exception is the ^ 
operator, which (following standard convention) is right-associative; 2^3^4 is evaluated as 2^(3^4), 
not (2^3)^4 (see section 2.3.1).  The unary +, unary -, and ! operators are also technically right-
associative; this just implies that the operators must occur to the left of their operand (-x, not x-).  
The ternary conditional operation is also right-associative, as discussed in section 2.3.5. 

In any case, parentheses can be used to modify the order of operations, just as in math: 

> 1+2*3 
 

 18



7 
 

> (1+2)*3 
 

9 
 

> ((1+2)*3)^4 
 

6561 

Note that this use of parentheses is distinct from the () operator, involved in making function 
calls and discussed in section 2.7 (and which we saw briefly in section 2.2.3 with c()). 

Finally, note that Eidos 2.4 and earlier (SLiM 3.4 and earlier) had an operator precedence bug: 
exponentiation was given a lower precedence than unary minus and its siblings, and so the 
expression -2^2 would evaluate to 4, as (-2)^2, rather than -4, as -(2^2).  This violated standard 
mathematical precedence rules, and was fixed in Eidos 2.5 (SLiM 3.5). 

2.4  Variables 

2.4.1  Assignment: operator = 
Thus far, we have only used expressions in an immediate sense: evaluating them and seeing 

their result print in Eidos’s console.  But the results of expressions can also be saved in variables.  
As in many languages, this is done with the = operator, often called the assignment operator.  
Here’s an example of the use of a variable: 

> x = 2 ^ 5 
 

> x 
 

32 
 

> x + 20 
 

52 
 

> x 
 

32 
 

> x = x + 20 
 

> x 
 

52 
 

> x == 52 
 

T 

Note that the expression x + 20 did not change the value of x; a new assignment, x = x + 20, 
was necessary to achieve that. 

As the example above illustrates, the assignment operator, =, is different from the equality 
comparison operator, ==.  In many languages, confusing the two can cause bugs that are hard to 
find; in C, for example, it is legal to write: 

if (x=y) ... 

In C, this would assign the value of y to x, and then the expression x=y would evaluate to the 
value that was assigned, and that value would be tested by the if statement.  This can be useful as 
a way of writing extremely compact code; but it is also a very common source of bugs, especially 
for inexperienced programmers.  In Eidos using assignment in this way is simply illegal; assignment 
is allowed only in the context of a statement like x=y; to prevent these issues.  (This point is mostly 
of interest to experienced programmers, so if it is unclear, don’t worry.) 

Variable names are fairly unrestricted.  They may begin with a letter (uppercase or lowercase) or 
an underscore, and subsequently may contain all of those characters, and numerical digits as well.  
So x_23, fooBar, and MyVariable23 are all legal variable names (although not good ones – good 
variable names explain what the variable represents, such as selection_coeff).  However, 4by4 

 19



would not be a legal variable name, since it begins with a digit.  Beginning in Eidos 2.6 (SLiM 3.6), 
Unicode characters beyond 7-bit ASCII may also be used; this means that you can use accented 
characters, Greek characters, Chinese characters, and even emoji in your variable names, so 
génome_sélectionné, 选择基因组, and 🥰 genome would all be legal variable names.  Please keep in 
mind that this might make your code less readable to others. 

Functions will be discussed in depth in section 2.7 and chapters 3 and 4, but here’s a bit of 
foreshadowing: you can use the ls() function to list (thus the name of the function) all the 
variables that have been defined: 

> ls() 
 

E => (float) 2.71828 
F => (logical) F 
INF => (float) INF 
NAN => (float) NAN 
NULL => (NULL) NULL 
PI => (float) 3.14159 
T => (logical) T 
x <-> (float) 52 

(You might see some other variables listed as well, depending on your version of Eidos and the 
context in which you execute the statement.)  Here x was defined by the code we just ran above; 
the rest of the variables listed are constants that are predefined by Eidos, as discussed in section 
2.1.  Note that variables you have defined are shown with a <-> arrow; that indicates that they may 
be changed.  Constants are shown with a => arrow, simply indicating that they are constant.  
(Some constants are predefined in Eidos, but you can also define your own constants using the 
defineConstant() function, as will be seen in section 3.10.) 

In the listing above, the type of each variable is also given.  You might notice that there is a 
constant, NULL, of a type, also called NULL, that we have not yet discussed; that topic will be taken 
up in section 2.7.2. 

2.4.2  Everything is a vector (a reminder) 
Since it is so central to Eidos, it is worth a reminder here that every value in Eidos is a vector.  

Variables therefore contain vectors, too; they might have just a single value in them (or no values 
at all!), but they are vectors nonetheless.  You can find out the number of values in a vector using 
the size() function (or length(), which is synonymous, for R users) – this is jumping ahead a bit, 
again, but it is simple enough: 

> x = 17:391 
 

> size(x) 
 

375 

2.5  Conditionals 

2.5.1  The if statement and testing for equality 
As in many languages, conditional execution is provided by the if statement.  This statement is 

supplied with a logical condition; if the condition is T, the rest of the if statement is executed, 
whereas if the condition is F, the rest of the if statement is ignored.  An example: 

> if (2^2^2^2^2 > 10000) "exponentiation is da bomb!" 
 

"exponentiation is da bomb!" 

The only twist here, really, is that the condition must evaluate to a singleton, i.e. a vector of 
size() == 1.  The if statement, in other words, is essentially a scalar operator, not a vector 

 20



operator.  If you have a multivalued logical vector, you can use the any() or all() functions to 
simplify it to a single logical value; see section 3.5.  Alternatively, the ifelse() function provides 
a vector conditional operation, similar to that in R; see section 3.5. 

As an example, suppose you have a variable x which ought to be equal to 3, and a variable y 
which ought to contain two values, 7 and 8.  You might expect to be able to write: 

> if (x == 3 & y == c(7,8)) "yes!" 
 

ERROR (EidosInterpreter::Evaluate_If): condition for if statement has 
size() != 1. 

This is the first time we’ve seen a Eidos error in this manual; notice they print in red in 
EidosScribe.  Their wording can be a bit arcane; apologies in advance for that.  In this case, the 
error informs you that the size of the condition is not equal to 1 (and that that is a problem).  The 
expression y == c(7,8) produces a logical vector with two values, the result of testing the first 
and second values respectively.  The & operator thus produces a two-valued logical vector as its 
result, and if is not happy about that.  To resolve this, you could use the all() function, as in: 

if (x == 3 & all(y == c(7,8))) "yes!" 

That makes it clear that you require all of the results of the y == c(7,8) comparison to be true, 
not just any of those results (for which you would use any()).  Without that clarification, Eidos 
doesn’t know what to do.  (R has the same difficulty; it handles it by issuing a warning (“the 
condition has length > 1 and only the first element will be used”) and testing only the first element 
of the logical condition vector – a behavior that is probably almost never what one wants.) 

You might wonder why Eidos and R don’t just take the obvious route of requiring all values to 
be true by default.  The difficulty is that the semantics of the & operator do not cooperate.  Suppose 
x is not a singleton, but instead has three values; your if statement would then become: 

if (x == c(3,4,5) & y == c(7,8)) "yes!" 

After the == operators have been evaluated, this boils down to a use of the & operator on two 
logical vectors, which might look like: 

c(T,T,T) & c(T,T) 

And that is not legal, because the operands to operator & differ in size and neither is a singleton; 
Eidos will give you an error (“ERROR (EidosInterpreter::Evaluate_And): operands to the '&' 
operator are not compatible in size()”).  There is no good way to resolve that without 
breaking the semantics of the & operator in ways that would have deep and undesirable 
consequences in other areas.  So it really is necessary to use all(), as in: 

if (all(x == c(3,4,5)) & all(y == c(7,8))) "yes!" 

However, there is a better solution!  What this all points out, really, is that operator == is not a 
very good way to test whether one value is identical to another value, because it does an 
elementwise equality comparison and returns a vector with one logical value per element (see 
section 2.3.3).  Eidos and R both provide a better way to test whether two values are identical: the 
identical() function.  Since we haven’t covered functions yet, this jumps ahead a bit, but its 
usage here is very simple.  You could write the if statement above as: 

if (identical(x, c(3,4,5)) & identical(y, c(7,8))) "yes!" 

That will do precisely what you want.  As an added bonus, it will also test that x and y have the 
correct type, whereas operator == will use automatic type promotion in its test; 7=="7" is T, but 

 21



identical(7, "7") is F.  If you find yourself using operator == or operator != in Eidos, you should 
always ask yourself, “Do I really want to perform an elementwise comparison with type 
promotion?”, and if the answer is not a resounding T, consider using identical() instead. 

It is also worth noting that the condition for if does not need to be a logical value; a value of a 
different type will be converted to logical by coercion if possible (see section 2.3.2). 

2.5.2  The if–else statement 
Often you want to perform an alternative action when the condition of an if statement is F; the 

if–else statement allows this.  It is simplest to just show this with an example: 

> if (2/2/2/2/2 > 10000) "division is da bomb!"; else "not so much." 
 

"not so much." 

Super simple, right? 

2.5.3  A digression: the semicolon, ; 
You might have noticed a subtle twist in the last example: the semicolon ; at the end of the first 

part of the statement.  A bit of subterfuge has gotten swept under the rug thus far, but it’s time to 
come clean.  Every statement in Eidos must end with a semicolon (except compound statements; 
see section 2.5.4).  However, when you’re working interactively in EidosScribe, EidosScribe will 
add a trailing semicolon to your statements if necessary, just to make your life simpler.  So when 
you type: 

> 1+1==2 

what is really being evaluated behind the scenes is: 

> 1+1==2; 

When you’re not working interactively, semicolons are required, and if you forget, you will get 
an error, like this: 

> 1+1==2 
 

ERROR (Parse): unexpected token 'EOF' in statement; expected ';' 

EOF stands for End Of File; it’s a standard way of referring to the end of an input buffer, in this 
case the line of input provided by the user for execution. 

So now the reason for that semicolon’s existence, in the example back in section 2.5.2, is 
obvious: it is required at the end of the if statement, as usual, but EidosScribe is not smart enough 
to add it for us automatically in this case, because the if statement is followed by an else clause. 

The simplest and shortest possible statement in Eidos is the “null statement”, which consists of 
nothing but a semicolon: 

; 

This is not terribly useful, since it does nothing. 

2.5.4  Compound statements with { } 
The other thing you might wonder about, regarding if statements, is: what if I want to perform 

more than one action in response to the condition being T or F?  This, then, is an opportune 
moment to introduce the concept of compound statements.  A compound statement is a series of 
statements (zero or more) enclosed by braces.  An example is worth a thousand words: 

> if (1+1==2) 
{ 

 22



   x = 1; 
   x = x + 1; 
   print(x); 
} 
else 
{ 
   print("whoah, I'm confused"); 
} 
 

2 

Note that the input here is spread across multiple lines for clarity; all of this could be typed on a 
single line instead.  If entered as multiple lines, it cannot be entered in EidosScribe’s interactive 
mode because the if statement would stand on its own and be evaluated as soon as it was 
completed; instead, the full text would need to be entered in the script area on the left, selected, 
and executed (see chapter 5 for more discussion of using EidosScribe).  All of the blue lines are 
user input, whereas the final line in black, 2, shows the output of the execution of the whole if–
else statement; the if clause is executed, the calculations involving x are performed, and the final 
statement x; produces a result which is printed to the console as usual. 

We are using the print() function here to print either the value of x or the string "whoah, I'm 
confused".  We haven’t needed to use print() before, because when a single statement is 
executed in the Eidos interpreter the value of that statement is automatically printed.  Compound 
statements, however, do not evaluate to a value (they evaluate to void, to be precise; see section 
2.5.4), and so we need to explicitly call print() here.  (Note that prior to version 2 of Eidos, 
compound statements evaluated to the value of the last statement they executed, as in R; that 
policy was changed in Eidos version 2 because it was found to be problematic in certain cases, 
due to the stronger type-checking in Eidos compared to R.)  This is the first time we have seen the 
print() function; its meaning here is rather obvious, but it is covered in more detail in section 3.5. 

You can use a compound statement in any context in which a single statement would be 
allowed.  For example, compound statements are very commonly used with the looping constructs 
discussed in the next section. 

2.6  Loops 
Loops are used to repeat a statement (or a compound statement) more than once.  Depending 

upon the task at hand, the best tool for the job might be a while loop, a do–while loop, or a for 
loop, as described in the following sections. 

2.6.1  The while statement 
A while loop repeats a statement as long as a given condition is true.  The condition is tested 

before the first time that the statement is executed, so the statement will be executed zero or more 
times.  Here is a code snippet to compute the first twenty numbers of the Fibonacci sequence: 

> fib = c(1, 1); 
while (size(fib) < 20) 
{ 
   next_fib = fib[size(fib) - 1] + fib[size(fib) - 2]; 
   fib = c(fib, next_fib); 
} 
fib; 
 

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 

This snippet brings together many of the things we’ve seen in past sections, such as constructing 
vectors with the concatenation function c() (section 2.2.3), defining variables with the assignment 
operator = (section 2.4.1), getting the size() of a vector (section 2.4.2), and accessing values 

 23



within a vector using the subset operator [] (section 2.2.4).  Its use of a while loop is optimal, 
because it ensures that if the fib vector is already long enough to satisfy the length condition 
size(fib) < 20, no further values of fib will be computed.  You could use this while loop to 
lengthen the fib vector on demand within a larger block of code that used the fib vector 
repeatedly. 

2.6.2  The do–while statement 
A do–while loop also repeats a statement as long as a given condition is true.  However, in this 

case the condition is tested at the end of the loop, and thus the loop statement is always executed 
at least once.  Here is a code snippet to compute a factorial: 

> counter = 5; 
factorial = 1; 
do 
{ 
   factorial = factorial * counter; 
   counter = counter - 1; 
} 
while (counter > 0); 
"The factorial of 5 is " + factorial; 
 

"The factorial of 5 is 120" 

This example brings in string concatenation using the + operator (section 2.3.4) in order to 
generate its output line.  Note that this example could be rewritten using a while loop instead, but 
it might be a bit less intuitive in its operation since it would no longer embody the formal 
definition of the factorial as explicitly.  Note also that computing a factorial could be done much 
more trivially (and efficiently) using the sequence operator : and the product() function (see 
section 3.1), but the code here is useful for the purpose of illustration. 

2.6.3  The for statement 
The third type of loop, the for loop, is used to loop through all of the elements in a vector.  For 

each value in the given vector, a given variable is set to the value, and a given statement is then 
executed.  For example, the following code computes squares by setting element to each value of 
my_sequence, one by one, and then executing the print() function for each value: 

> my_sequence = 1:4; 
for (element in my_sequence) 
   print("The square of " + element + " is " + element^2); 
 

"The square of 1 is 1" 
"The square of 2 is 4" 
"The square of 3 is 9" 
"The square of 4 is 16" 

Notice how operator + is used to construct the output. 
This looping construct is called by various names in other languages, such as the “for each” 

statement (PHP), the “range-based for” (C++), “fast enumeration” (Objective-C), and so forth.  It is 
different from the traditional for loop of C and related languages, which entails an initializer 
expression, a condition expression, and an increment/decrement expression.  That type of for loop 
does not exist in Eidos (following R); the iterator for of R and Eidos is a more natural and efficient 
choice for vector-based languages. 

2.6.4  The next statement 
Sometimes you might wish to cut short the execution of a given iteration of a loop, skipping the 

rest of the work that would normally be done and proceeding directly to the next iteration.  This is 

 24



the function of the next statement.  For illustration, here is a trivial modification of the previous 
example, changed to print only squares that are divisible by 5 – and to print their cubes as well: 

> for (element in 1:20) 
{ 
   square = element ^ 2; 
   if (square % 5 != 0) 
      next; 
   cube = element ^ 3; 
   print(element + " squared is " + square + ", cubed is " + cube); 
} 
 

"5 squared is 25, cubed is 125" 
"10 squared is 100, cubed is 1000" 
"15 squared is 225, cubed is 3375" 
"20 squared is 400, cubed is 8000" 

Notice how the vector used by the for loop is specified directly, using the sequence 1:20; this is 
a very common pattern.  This example also uses the modulo operator % (section 2.3.1) to determine 
divisibility. 

The main point, however, is that the next statement causes the loop to skip most of its work 
whenever square is not divisible by 5.  The next statement can be used within while and do–while 
loops as well, and does exactly the same thing in those contexts. 

2.6.5  The break statement 
The final topic to cover regarding loops is the break statement.  Often it is necessary to stop the 

execution of a loop altogether, not just to cut short the current iteration of the loop as next does.  
To achieve this – to break out of a loop completely – use the break statement.  For example, here is 
a very primitive way of finding prime numbers in Eidos: 

> for (number in 2:20) 
{ 
   prime = T; 
   for (divisor in 2:number^0.5) 
      if (number % divisor == 0) 
      { 
         prime = F; 
         break; 
      } 
   if (prime) 
      print(number + " is prime!"); 
} 
 

"3 is prime!" 
"5 is prime!" 
"7 is prime!" 
"11 is prime!" 
"13 is prime!" 
"17 is prime!" 
"19 is prime!" 

There are a few things to note here.  First of all, this example is more structurally complex than 
previous examples; we have an if statement with a compound statement, nested within a for 
statement, which is itself nested within the compound statement of another for statement.  If it is 
not obvious what is going on here, take a little time to ponder it.  Second, notice how the ^ 
operator (section 2.3.1) is used to calculate a square root; the : and % operators also play major 
roles, but we have already revisited them in previous loop examples.  A logical “flag” variable, 
prime, is used to keep track of whether we have found a divisor; such flag variables are a very 
common and useful programming paradigm. 

 25



Most importantly, however, note how the break statement stops the execution of the inner for 
loop as soon as a divisor is found.  This makes the loop much more efficient; on my machine, 
computing the primes up to 1,000,000 takes about 11.6 seconds with the break statement, versus 
90.6 seconds without it – quite a difference!  Skipping unnecessary work is good.  Not that this 
code is a paragon of speed anyway; there are, of course, much faster ways to search for primes. 

What’s that you say? What’s a faster way to search for primes? OK, since it also illustrates the 
use of break, but this time in a do–while loop, here’s a faster way to search for primes: 

// the Sieve of Eratosthenes in Eidos! 
last = 1000000; 
x = 2:last; 
lim = last^0.5; 
do { 
   v = x[0]; 
   if (v > lim) 
      break; 
   print(v + " is prime!"); 
   x = x[x % v != 0]; 
} while (T); 
for (v in x) 
   print(v + " is prime!"); 

This Eidos algorithm takes about 0.47 seconds on my machine. It’s based on a famous algorithm 
called the Sieve of Eratosthenes that was discovered more than 20 centuries ago.  The first line of 
code is a comment that says precisely that, in fact.  Comments in Eidos start with // and consume 
the remainder of the line; they do nothing except annotate your code for readability. 

There are a few things to note here. One is that the do–while loop has a condition of T; it will 
thus loop forever unless it is terminated by a break statement. This is a common paradigm called 
an infinite loop, used when you want to terminate a loop based on a condition test in the middle of 
a loop, not at the beginning (as a while loop would do) or at the end (as a do–while loop would 
do). Inside the loop, the most recently found prime, v, is compared against a threshold value, lim; 
when that threshold is reached, all of the values that still remain in the vector x are guaranteed to 
be prime, so the loop is exited via break, and everything left in x is printed. 

Another thing to note is that while Eidos is slow compared to compiled languages, it is still 
fairly quick.  Timing tests indicate that it is often substantially faster than R, and often not markedly 
slower than Lua (which is nothing to sneeze at).  As seen above, it can find every prime up to 
1,000,000, and print them out as well, in much less than a second!  It can do this, however, by 
virtue of using a good algorithm; using a less efficient algorithm to perform the same task took 11.6 
seconds or even 90.6 seconds, as seen above. If your Eidos code is performing poorly, the first step 
should be to look at the big picture and think about whether there is a more efficient algorithm you 
could use to solve your problem. 

2.6.6  The return statement 
While we are on the subject of control flow, we can cover one more statement type: the return 

statement.  This doesn’t belong under the topic of loops, exactly, but we will nevertheless treat it 
here.  The return statement returns a value from a block of code, as in other languages such as C 
and R.  In one common case, when defining a user-defined function (see chapter 4), return is used 
to stop execution of the function and return a given value to the caller; that will be explored 
further in chapter 4 when we look at user-defined functions.  Otherwise, a return is useful mostly 
when the Context within which you’re using Eidos uses the returned value.  When using Eidos in 
SLiM, for example, SLiM uses the value returned by Eidos scripts such as mutationEffect() 
callbacks and mateChoice() callbacks, making return very useful in that Context (see SLiM’s 

 26



manual for details).  Apart from such Context-dependent uses, return is mainly useful as a way to 
break out of nested loops regardless of the depth of nesting, as illustrated below. 

The return statement is very simple: the keyword return, and then, optionally, an expression.  
When the return statement is executed, the expression is evaluated and its value is immediately 
returned as the value of the largest enclosing statement.  The return statement therefore breaks out 
of all conditionals, loops, and compound statements, regardless of the depth of nesting.  For 
example, one could write a (very dumb) search for factors of a number like this: 

for (i in 1:10) 
   for (j in 1:10) 
      if (i*j == 21) // the magic numbers? 
         return 21 + " is " + i + " * " + j; 

As soon as this code finds a combination of i and j that produce 21 when multiplied (as noted 
by the comment on the if statement), the return statement breaks out of both loops and returns a 
string describing the hit.  A break statement, on the other hand, would only break out of the 
innermost loop; the outer loop, over i, would continue to execute.  (A break statement also can’t 
be given a value to return, so it would be much less convenient to use here for that reason as well.) 

If the expression for the return statement is omitted, then for all practical purposes no value is 
returned.  (Technically, the return is a special pseudo-value called void, representing the absence 
of any return value; void will be discussed in more detail in section 2.7.3.) 

2.7  Functions 

2.7.1  Calling functions: operator () 
Functions are so useful that we have already used them in several examples.  It is now time to 

discuss them more formally.  A function is simply a block of code which has been given a name.  
Using that name, you can then cause the execution of that block of code whenever you wish.  That 
is the first major purpose of functions: the reuseability of a useful chunk of code.  A function can 
be supplied with the particular variables upon which it should act, called the function’s 
“parameters” or “arguments”; you can execute a function with the sequence 5:15 as an argument 
in one place, and with the string "foo" as an argument in another.  That is the second major 
purpose of functions: the generalization of a useful chunk of code to easily act on different inputs. 

In Eidos, you may define your own functions (see chapter 4), or you may execute a lambda (i.e., 
a snippet of code represented as a string value) directly in the Eidos interpreter (see 
executeLambda(), section 3.10).  However, a fairly large set of built-in functions are supplied for 
your use, and the hope is that they will suffice for most purposes.  The built-in functions are 
covered in detail in section 3.  For now, there are just a few generalities that should be mentioned. 

First of all, functions are called using the () operator; in section 2.4.1, for example, we called 
the function named “ls” simply by writing ls().  The ls() function is an example of a function that 
can be called with no arguments; it will then print all of the constants and variables defined in the 
global namespace, as seen in section 2.4.1. 

Second, function arguments go between the parentheses of the () operator, separated by 
commas.  In section 2.4.2, for example, we used the size() function to get the size – the number 
of elements – of a vector named x, by passing x as an argument to size().  That was written as 
size(x).  The size() function requires exactly one argument, coincidentally also named x; writing 
size() without an argument will thus cause an error: 

> size() 
 

ERROR (EidosInterpreter::_ProcessArgumentList): missing required 
argument x. 

 27



Third, some functions can take a variable number of arguments.  For example, in section 2.2.3 
we saw the c() function, which will take any number of arguments and stick them all together to 
produce a single vector as its result.  Most functions expect an exact number of arguments; many 
functions, in fact, are even fussier than that, requiring each parameter to be of a particular type, a 
particular size, or both.  But some, such as c(), are more flexible.  In chapter 3 the argument 
requirements for every built-in function will be specified. 

Fourth, many functions provide a return value.  In other words, a function call like c(5,6) can 
evaluate to a particular value, just as an expression like 5+6 evaluates to a particular value.  The 
result from a function call can be used in an expression or assigned to a variable, as you might 
expect.  Here is an example: 

> x = c(1, 3, 5, 7, 9) + 0.5 
 

> x 
 

1.5 3.5 5.5 7.5 9.5 
 

> size(x) 
 

5 

The c() function produces a vector; that vector is then added to 0.5 with the + operator, and the 
result of that is assigned to x with the = operator.  The number of elements in x is then counted 
with the size() function, which again produces a return value: 5.  The return type for all of the 
built-in functions will be specified in chapter 3. 

2.7.2  The NULL type 
In section 2.4.1, you saw a bit of foreshadowing regarding another variable type in Eidos: NULL.  

The time has come to delve into that topic a little more, because NULL is important in using 
functions.  This section will be fairly esoteric, however, and beginning Eidos users may wish to skip 
it until later.  That said… NULL has two uses, in fact: as a return value, and as a function argument 
value. 

As a return value, NULL is often used to indicate that a function happened to have nothing useful 
to return, or perhaps that a non-fatal error was encountered that prevented a value from being 
returned; in this context, NULL is sort of a shrug of the shoulders.  Often such a NULL return is a 
result of passing NULL in as an argument; garbage in, garbage out, as they say.  A trivial example: 

> max(NULL) 
 

NULL 

The max() function returns the maximum element within the vector it is passed, but given NULL, 
it simply returns NULL.  More interestingly, the readFile() function will return NULL if an error 
occurs that prevents the file-read operation from completing.  The calling code could then detect 
that NULL return and act accordingly – it might try to read from a different path, print an error 
message, or terminate execution with stop(), or it might just ignore the problem, if reading the file 
was optional anyway (such as an optional configuration file to modify the default behavior of a 
script). 

The other use of NULL, as mentioned above, is as an argument to a function. Passing NULL is 
occasionally a way of signaling that you don’t want to supply a value for an argument, or that you 
want a default behavior from the function rather than telling it more specifically what to do. None 
of the functions you have seen thus far use NULL in this way, but you will see examples of it in 
section 2.7.5 and chapter 3. 

NULL cannot be an element of a vector of some other type; it cannot be used to mark missing or 
unknown values, for example.  Instead, NULL is its own type of vector in Eidos, always of zero 
length.  (There is also no NA value in Eidos like the one in R, while we’re on the topic of marking 

 28



missing values.  Not having to worry about missing values makes Eidos substantially simpler and 
faster, and Eidos – unlike R – is not designed to be used for doing statistical analysis, so marking 
missing values is not expected to be important.  Eidos does support NAN – Not A Number – values 
in float vectors, however, which could conceivably be used to mark missing values if necessary.) 

The basic philosophy of how Eidos handles NULL values in expressions and computations is that 
NULL in such situations represents a non-fatal error or an unknown value.  If using the NULL value in 
some meaningful way could lead to potentially misleading or incorrect results, Eidos will generate 
a fatal error.  The idea is to give Eidos code an opportunity to detect a NULL, and thus to catch and 
handle the non-fatal error; but if the code does not handle the NULL, using the NULL in further 
operations should result in a fatal error before the functioning of the code is seriously 
compromised.  NULL values are thus a sort of third rail; there’s a good reason they exist, but you 
have to be very careful around them.  They are a bit like zero-valued pointers in C (NULL), C++ 
(nullptr), Objective-C (nil), and similar languages; they are widely used, but if you ever use one 
the wrong way it is an immediate and fatal error. 

Documenting exactly how Eidos handles NULL in every conceivable situation would be difficult.  
If you need to know what happens in a particular case, you should try it out in EidosScribe; as 
Socrates liked to say, “there’s nothing like asking”.  A few broad guidelines can be stated, though 
(making reference to some topics that have not yet been covered, so don’t worry if some terms 
here are unfamiliar): 

• Functions and methods may return NULL to indicate a non-fatal exceptional condition 
even if their call signature does not state NULL as a potential return type; call signatures 
indicate only the return type under normal, non-exceptional circumstances.  If an 
exceptional return of NULL is a possibility for a given function or method, that should be 
mentioned in its documentation.  Functions and methods may also be explicitly declared 
as possibly returning NULL; this indicates that in those cases NULL is a standard, normal 
return value rather than an indication of an exceptional condition (again, the 
documentation for the function or method should provide further detail). 

• Method calls on object vectors that contain multiple elements might result in NULL being 
returned by some elements and non-NULL values being returned by other elements.  In this 
case, the NULL returns will be silently dropped from the aggregated return value from the 
method call.  This is probably the most dangerous aspect of the way Eidos handles NULL.  
If the method returns one value per element, you can check for this condition by 
comparing the size() of the returned value to the size() of the object upon which the 
method was called.  If you need to detect and respond to NULL returns from each element 
in an object, you should iterate over the elements of the object with a for loop and call 
the method on each element individually.  Because of this, it is probably wise for Context 
designers to design methods so that they return NULL only in cases where dropping the 
NULL values is likely to be harmless. 

• NULL may not be passed as a parameter value to a function or method unless that is 
specifically allowed by the call signature of the function/method.  Eidos designates this as 
a fatal error in order to limit the unpredictable consequences of propagating NULL values 
forward. 

• NULL may never be the value of a property of an object.  Assigning NULL into a property is 
always illegal, and a property will never give NULL as its value, even to indicate an 
exceptional condition.  Since properties are intended to represent lightweight attributes, 

 29



they should not be generating exceptional conditions anyway, unless it is literally illegal to 
access them in some circumstance. 

• NULL may not be used with any of the arithmetic operators (+, -, *, /, %, ^), nor with any of 
the logical operators (&, |, !), nor with the range operator (:), nor may it be used as the 
condition in an if, while, or do loop, nor may it be used as the value over which a for 
loop iterates.  In all these cases, using NULL is a fatal error.  Beginning in Eidos 2.2, it may, 
however, be used with the string concatenation operator (+), where it is treated exactly as 
if it were a singleton string vector containing the string element "NULL" since that 
behavior is useful for output. 

• NULL may not be used with the comparison operators (==, !=, <, >, <=, >=).  To test whether 
a given value is NULL, therefore, you cannot use the equality operator, ==; the comparison 
x == NULL will always cause a fatal error.  Instead, you must use the isNULL() function. 

• It is legal to subscript NULL; NULL[...] always produces NULL.  NULL may not be used as a 
subscript, however; x[NULL] is always an error (except NULL[NULL], which produces NULL). 

• You may assign NULL into a variable (x = NULL) and you may return NULL from your code 
(return NULL).  Passing NULL values around in your own code is harmless; it is the attempt 
to actually use a NULL value that is often fatal. 

• NULL can be passed to print() (it prints as “NULL”) and to cat() (it emits nothing). 

• NULL may be assembled into a vector with other values using c(), but the NULL values will 
be dropped from the returned vector.  For example, the result of c(7, NULL, 8) is a vector 
containing only 7 and 8; the NULL is silently dropped.  This is the same behavior described 
above for assembling the results of vectorized method calls into a single result vector. 

• NULL cannot be turned into a value of another type by automatic type promotion.  If you 
attempt to explicitly coerce NULL to another type using the as...() family of functions, it 
is dropped since NULL is zero-length, resulting in a zero-length vector.  For example, the 
result of asInteger(NULL) is integer(0), Eidos’s way of printing a zero-length vector of 
type integer.  Beginning in Eidos 2.2, an exception to this rule is asString(NULL), which 
returns the string "NULL" since that behavior is useful for output. 

These policies are somewhat stricter than the policies regarding NULL in R.  This reflects several 
factors.  First, R generally takes quite a permissive attitude toward runtime errors, and is famous 
(some would say infamous) for bending over backwards to find a possible interpretation for 
questionable code rather than generating an error.  Eidos is much stricter, in order to minimize the 
risk of code invisibly producing an incorrect result; maximal robustness, rather than maximal 
flexibility, is the primary design goal of Eidos.  Second, Eidos does not have the NA value of R, 
representing a missing value, so many cases in which R would produce an NA have to produce a 
NULL in Eidos.  This means that the policies in Eidos regarding NULL have to be correspondingly 
stricter, because NULL is more common than in R, and might represent cases that the user would 
expect, from experience with R, to be handled in an intelligent manner as a missing value; the risk 
of undetected failure is therefore high, and a strict policy is needed to minimize that risk. 

2.7.3  The void type 
In sections 2.5.4 and 2.6.6, we saw hints of another obscure Eidos type: void.  Continuing on in 

the vein of the previous section’s discussion of NULL, let’s now get all our cards on the table by 

 30



discussing void as well.  This section, like the previous one, will be quite esoteric, and beginning 
Eidos users may wish to skip it. 

The void type is much simpler than NULL; arguably it isn’t really even a type, in fact, since there 
isn’t really a “value” to have a type in the first place.  Instead, void is used as a way of declaring 
that no value exists.  We will see that many functions return void, which indicates that they do not 
return a value at all.  Many language constructs also evaluate to void, such as compound 
statements, while and do-while and for loops, and so forth; all that this really means is that these 
constructs do not generate a value.  (An exception is if statements, which can evaluate to a non-
void value; we actually saw this in section 2.5.1, where we did not need to call print() for the 
result of the if statement to be printed in the console.) 

For example, the print() function returns void.  If we call it, it prints what it is told to print, but 
nothing else is emitted to the console besides that, because it provides no return value: 

> print("foo") 
 

"foo" 

Here "foo" is not the return value from print(); it is merely output that print() sent to the 
console.  There is no return value from print() for the Eidos interpreter to print; its return is void. 

Indeed, if we attempt to assign the result of print() into a variable, we get an error: 

> x = print("foo") 
 

"foo" 
 

ERROR (EidosInterpreter::_AssignRValueToLValue): void may never be 
assigned. 

A variable may never have a value of void, because void is not really a value; so trying to assign 
void into x results in an error.  Similarly, void cannot be passed as an argument to any function, 
and cannot be manipulated by any operator.  You can’t even test whether a returned value is void, 
in fact; that is also an error.  This makes void sound more dangerous than it is, though.  In fact, the 
rule for dealing with it is quite simple: if a function or method is declared as returning void, just 
don’t attempt to use that return value for any purpose whatsoever.  If you follow that rule, you will 
be fine. 

You may be wondering what the point of all this really is.  The point is type-safety.  If a function 
is declared as having a return type of void, it is an error for it to return anything other than void; 
conversely, if a function is declared as having some non-void return type, it is an error for it to 
return void.  This allows Eidos to easily catch certain common errors, such as forgetting to include 
a return statement where one was needed.  It also catches errors that result from a belief that a 
function returns a value when it actually doesn’t; the attempt to use the void return will trigger an 
error.  In general, it allows Eidos to catch bugs at runtime – a good thing. 

2.7.4  The functionSignature() function, and introducing function signatures 
Chapter 3 will cover every built-in function in detail.  Before we get to that, however, it is worth 

exploring Eidos’s support for a language feature called introspection: it has ways for you to 
examine the internals of the language itself.  Of particular note here is a function called 
functionSignature().  Calling this function results in quite a bit of output, beginning like this 
(with a vertical ellipsis to indicate that only some of the output is shown here): 

> functionSignature() 
 

(numeric)abs(numeric x) 
(float)acos(numeric x) 
(logical$)all(logical x) 
(logical$)any(logical x) 
	 ⋮ 

 31



Each line shows the function signature of a different built-in (or user-defined) function.  The first 
line, for example, shows the signature of abs(), the absolute value function: 

(numeric)abs(numeric x) 

This signature indicates that abs() takes a numeric argument (meaning either an integer or a 
float), and it also returns a numeric value.  In fact, if you pass it an integer it will return an 
integer back, and if you pass it a float it will return a float back; but the function signature is 
not specific enough to show that. 

The next function, acos(), takes a numeric value but always returns a float: 

(float)acos(numeric x) 

This is the arc cosine function.  The signature for acos() is the function signature of most of the 
math functions in Eidos, in fact.  These math functions will take an integer as an argument for 
convenience, but their return value is float because the mathematical operation they perform can 
produce a float even from integer input; acos(0) is approximately 1.5708, for example. 

The next signature is for the all() function, which was discussed a little in section 2.5.1: 

(logical$)all(logical x) 

This signature indicates that all() takes a logical vector and returns a logical vector, but the $ 
symbol in the logical$ return value guarantees that all()’s return value will be a singleton – a 
vector containing exactly one value.  This makes sense, since all() determines whether or not all 
of the values in the vector passed in are T; if all of them are, it returns T, otherwise it returns F.  It is 
thus one way of summarizing a multivalued vector down to a singleton – as is the next function, 
any(). 

Let’s look at a few other interesting signatures to see some of the other notation conventions that 
they use.  The signature for the function c() looks like: 

(*)c(...) 

The ellipsis (...) indicates that c() takes any number of arguments, while the asterisk (*) 
indicates that c() can return any type.  In fact, the type that c() returns will depend on what types 
of arguments you pass to it, because it concatenates its arguments together with type promotion, as 
we saw in section 2.2.3. 

Next let’s look at the signature for the ls() function, which we saw in section 2.4.1: 

(void)ls(void) 

The notation void here indicates the lack of a value, as discussed in detail in section 2.7.3; in 
other words, ls() takes no parameters, and it returns no value. 

The signature for the asFloat() function has a symbol we haven’t seen yet: 

(float)asFloat(+ x) 

The + symbol here, shown as the type for the parameter named x, indicates that x may be any 
type of vector except an object vector (we will cover the object type in section 2.8).  So the * 
symbol that we saw as the return type of c() indicates any type; the + symbol indicates any type 
except object.  The asFloat() function converts the parameter it is passed to be of type float; but 
while logical, integer, and string vectors (and even NULL) can all be converted to float, object 
vectors cannot. 

Finally, let’s look at the signature for sum(): 

 32



(numeric$)sum(lif x) 

The parameter x here has the curious type designation lif.  This represents the fact that x may 
be any of three types: logical (l), integer (i), or float (f).  Similarly, type NULL can be 
abbreviated as N, string as S, and object as o (and void as v, in fact, but that is almost never seen).  
The numeric type designation seen previously is just a convenient euphemism for if (which would 
otherwise be a bit confusing since it is also the word “if”), whereas + represents Nlifs and * 
represents Nlifso. 

If you look through the output of functionSignature(), you will see some function signatures 
using other notation that we have not yet discussed.  That will be the topic of the next section. 

2.7.5  Optional arguments and default values 
In the output from functionSignature() that we started examining in the previous section, look 

and the function signature for functionSignature() itself: 

(void)functionSignature([Ns$ functionName = NULL]) 

First of all, functionSignature() takes one parameter, named functionName, of type Ns$, which 
the previous section explained means that functionName must either be NULL or a singleton string 
vector.  However, we called it before without any parameter, simply by calling 
functionSignature().  Doesn’t that contradict functionSignature()’s signature?  The answer is 
no, and the reason is that the functionName parameter is enclosed in brackets, [] (not to be 
confused with the use of brackets as the subset operator, as discussed in section 2.2.4).  These 
brackets indicate that functionName is an optional argument; it may be omitted by the caller.  If it is 
omitted, furthermore, the value after the = indicates the default value for the argument – NULL, in 
this case.  So calling functionSignature() is precisely identical in meaning to calling 
functionSignature(NULL); one is just a shorthand for the other. 

So what happens if we override functionSignature()’s default value, and pass it a string for 
functionName?  Calling functionSignature("runif"), for example, gives us this: 

(float)runif(integer$ n, [numeric min = 0], [numeric max = 1]) 

So we can print the signature for a single function of our choice, rather than the full list that 
functionSignature() prints by default.  The runif() function shown here draws n values from a 
uniform distribution (where n is a singleton integer) and returns them as a float vector; that’s the 
first half of the signature.  The second half indicates that runif() can also take two optional 
arguments, min and max, which are both numeric; min has a default value of 0, max has a default 
value of 1.  So runif(5) will return 5 draws from the uniform distribution spanning 0 to 1, using 
the default values of min and max.  But runif(5, -1) will draw from the distribution spanning -1 to 
1 (using the default value for max, but specifying a value for min), and runif(5, 10.5, 100) will 
draw from the distribution spanning 10.5 to 100, overriding both default values. 

2.7.6  Function signatures summarized 
The previous two sections introduced function signatures to illustrate how Eidos represents 

functions, and to explain the various constraints and guarantees they embody when you use them.  
In summary, a function signature states the arguments and the return type of a function, following a 
template like: 

(return_type)function_name(argument_list) 

The return type and the argument list use various symbols: 

void no return value, or (for the argument list) no arguments 

 33



integer an integer (see section 2.1.1) 
float a float (see section 2.1.2) 
logical a logical (see section 2.1.3) 
string a string (see section 2.1.4) 
object an object (see section 2.8), optionally with a class specifier (see section 4.3) 
numeric either an integer or float 
+ any type except object (but not void) 
* any type, including object (but not void) 
$ follows a type to indicate a singleton – a vector containing exactly one value 
[] encloses an optional argument – an argument which may be omitted 
= precedes a default value for an optional argument 
... indicates that any number of arguments may be supplied, from zero on up 

Occasionally, a function will allow an argument or a return value to be of more than one type.  
For example, in SLiM it is common for functions to take an argument that is either an integer 
(identifying a SLiM object by ID) or an object (passing the object directly).  In such cases, as 
explained in section 2.7.4, Eidos represents the type using single letters to designate each 
supported type: 

v void 
N NULL type 
l logical type 
i integer type 
f float type 
s string type 
o object type, optionally followed by a class specifier (see section 4.3) 

If you write your own user-defined functions, you will write a function signature to declare the 
function (see chapter 4); otherwise, it’s just useful to understand them so that you can use 
functionSignature() to remind yourself about the built-in functions you’re using.  When you put 
the insertion point inside a function call in EidosScribe or SLiMgui (SLiM’s graphical modeling 
environment), the function signature will be shown in the status bar at the bottom of the window, 
which is a useful way to quickly remind yourself about the function’s call syntax.  Signatures will 
also come up in the context of methods – discussed in section 2.8, in which the object type is 
introduced. 

2.7.7  Named arguments in function calls 
We have mentioned the names of function arguments in passing; for example, the names of the 

arguments to runif() are n, min, and max, as seen in runif()’s signature: 

(float)runif(integer$ n, [numeric min = 0], [numeric max = 1]) 

These argument names can actually be used when calling functions.  For example, calling 
runif(5, 3, 7) is rather cryptic; unless you remember the arguments that runif() takes, you 
might need to go back and look at runif()’s signature, or at its documentation, to remember what 
meaning it will ascribe to the 5, the 3, and the 7.  But instead, if you wish, you can call: 

runif(n=5, min=3, max=7); 

The meaning of that call is much clearer.  That is therefore the first use of named arguments: to 
make the meaning of a call more explicit by labeling its arguments. 

 34



A second use of named arguments is to skip over intervening optional arguments that you don’t 
want to bother specifying.  Suppose, for example, that you want to get five draws from a uniform 
distribution spanning 0 to 10.  You could call runif(5, 0, 10), but isn’t it tedious having to specify 
the min of 0 even though that is min’s default already?  Well, perhaps not that tedious; but there are 
calls with more parameters than that, where specifying a value for the very last parameter would 
require you to give values for all of the intervening optional parameters as well, and at a certain 
point that really does get tedious.  Instead, you can simply call runif(5, max=10).  The first 
parameter, 5, is matched up with the first argument in the signature, n, as usual.  But then the 
second parameter is named, max=10, and that tells Eidos to scan forward looking for max, using 
default values for everything in between. 

You can use names for both required and optional arguments.  However, once you use a named 
argument in a call, all the rest of the arguments for that call must also be named; you cannot call 
runif(n=5, 3, 7), for example.  Required arguments cannot be skipped over; you cannot call 
runif(max=10) since the argument n is not optional (and thus has no default value).  And finally, 
you must give arguments in the same order that they are shown in the signature; you cannot call 
runif(min=3, max=7, n=5) since the argument n is out of order. 

The use of named arguments slows down the function dispatch code inside Eidos just a little bit, 
so using named arguments is not recommended inside very tight loops calling out to very fast 
functions, where the function dispatch overhead itself is a major part of the total runtime of the 
code.  This difference is small, however, and will be noticed only in the most extreme scenarios. 

2.8  Objects 

2.8.1  The object type 
In addition to logical, integer, float, string, and NULL, there is one more type in Eidos left to 

discuss: object.  A variable of type object is a vector that contains elements; it is a container, a 
bag of stuff.  In this way, it is similar to Eidos’s other types; a float vector in Eidos contains 
floating-point elements, whereas an object vector contains object-elements (often just called 
“objects”; whether one is referring to a single object-element or a vector of type object is 
generally clear from context).  An object vector can also embody behavior: it has operations that it 
can perform using the elements it contains, which all belong to a class that defines the available 
behaviors.  The object type in Eidos is thus similar to objects in other languages such as Java, C++, 
or R – except much more limited.  In Eidos you cannot define your own object classes; you work 
only with the predefined object classes supplied by SLiM or whatever other Context you might be 
using Eidos within.  These predefined object classes generally define Context-dependent object-
elements related to the task performed by the Context; in SLiM, the classes are things such as 
mutations, genomic elements, and mutation types (described in SLiM’s documentation).  Eidos 
itself also supplies a few built-in object classes, notably Dictionary and Image. 

The behaviors of objects in Eidos manifest in two ways: objects can have properties (also called 
instance variables or member variables, in other languages) that can be read from and written to, 
and they can have methods (also called member functions, in other languages).  The behavior of 
an object vector in Eidos is determined by the class of element the object contains; an Eidos 
object will always contain only one class of element (just as a float cannot contain string-
elements, for example). 

Instances of particular object classes – particular kinds of objects – are obtained via built-in 
functions and/or global constants and variables.  For example, in SLiM there is a global constant 
called sim that represents the simulated species as an instance of the Species class.  In the interests 
of keeping free of the assumption that Eidos is being used with SLiM, we will discuss objects here 

 35



using a hypothetical example: a house object class.  This idea will be fleshed out in the next 
section, on element access. 

2.8.2  Element access: operator [] and sharing semantics 
If an object is a vector of elements, how do you access those elements from Eidos?  The answer 

is obvious, really: using the [] operator, just as you can access the float-elements in a float 
vector, or the string-elements in a string vector (section 2.2.4).  Remember that [] used on a 
float vector does not give you a raw floating-point value; the individual elements inside Eidos 
types are never directly accessible.  Instead, everything in Eidos is a vector (section 2.2.1), and 
even single values are always wrapped inside a vector.  The same is true for object vectors and 
their underlying elements; you cannot get an object-element on its own. 

So this subsection is not really saying anything new; it is just saying that the object type works 
very much like the other built-in types.  Don’t get confused by that.  As an example, let’s develop 
the idea introduced above (section 2.8.1) of a house object class.  The object is a vector that 
contains elements; each element would be a house, in this example, so you could think of the 
whole vector as representing a neighborhood (or any other list of houses).  If you had a house 
object variable called neigh (for “neighborhood”), it might contain ten houses comprising some 
neighborhood; myHome = neigh[0] would assign a new house object, containing just the first 
house from neigh, into a new variable named myHome. 

Those of you with programming experience might have just asked yourselves the question: what 
exactly is meant by the claim that myHome contains “just the first house from neigh”?  There are two 
possibilities.  One is that an element is only ever contained by one particular object, so when that 
element is put into a new object, it gets copied.  This is called “copy semantics” – and it is not how 
Eidos works.  The other possibility is that an element can be contained by more than one object, 
and never gets copied unless a copy is explicitly requested somehow.  This is called “sharing 
semantics” – and it is how objects in Eidos work.  Skip this comment if it confuses you, but: if you 
are familiar with the concept of “pointers” from languages such as C, you could think of Eidos 
object variables as using pointers to refer to the object-elements they contain – and that is, in 
fact, how Eidos is implemented internally. 

It might be worth mentioning the reason for this policy choice, since it is somewhat unusual (at 
least without the explicit use of pointers, as in C and Objective-C, or references, as in C++).  The 
reason is that Eidos is not usually about creating new objects, new classes, etc.; it is about 
manipulating the existing objects defined by the Context within which Eidos is being used.  In 
SLiM, for example, the SLiM simulation defines the genomes, mutations, genomic element types, 
etc., that Eidos manipulates.  If Eidos made copies of those objects as a side effect of operations 
like subscripting and assignment into variables, the newly created objects would not be 
recognized by the simulation, and changing or manipulating them would make no difference to 
the simulation – a bizarre and pointless outcome.  Instead, it makes sense for Eidos to always act 
on the objects that presently exist within its Context; thus, always following sharing semantics is 
the logical policy.  When you wish to create a new object-element, such as a new mutation in 
SLiM, you generally do so by sending a request, via a function call or method call, to the Context.  
For the built-in Eidos classes Image and Dictionary, there are also global functions, Image() and 
Dictionary(), that can be made to create a new object. 

For those with some programming experience: memory management in Eidos is automatic.  
There is no new operator in Eidos as there is in C++, no malloc() as in C, no +alloc as in 
Objective-C.  Similarly, there is no delete operator, no free(), no -dealloc; just as you never 
allocate a new object-element directly (although you might request that one be constructed), you 
also never deallocate one.  Deciding when to dispose of an object-element is not your problem, it 
is Eidos’s problem – or often, for Context-defined objects, the Context’s problem.  In SLiM, for 

 36



example, a mutation might be deallocated when it is no longer referenced by any genome in the 
simulation, and no variable refers to it any more.  With the Eidos built-in classes, on the other 
hand, they are automatically “ref-counted”, so that they are kept as long as they are used.  By 
design, it is impossible for an object in Eidos to ever be “stale” – to refer to an object-element that 
has been disposed of.  If a variable refers to an object-element, that object-element is guaranteed 
to exist. 

So, returning from philosophy to practicality: neigh[0] produces a new house object, a vector 
containing exactly one house.  That house is the same house as the one in neigh.  This means that 
if something is done to change the house in myHome, the corresponding house in neigh will also 
change – because they are, in fact, the same house.  This may seem like a strange thing to 
emphasize, but it is in fact crucial, as will be seen in the next section. 

2.8.3  Properties: operator . 
What can you do with an object?  In section 2.8.1 it was stated that objects encapsulate 

behaviors as well as elements.  One type of behavior is called a property.  A property is a simple 
attribute of each element in an object.  For example, following the house object example above, 
one property of a house might be its address.  That would be an example of a read-only property 
(sometimes called a “member constant”, in other languages); you can ask a house what its address 
is, but you can’t easily change the address of a house.  Properties can be read using the member-
access operator, written as . (a period).  The name of a particular property can be used with . to 
get that property’s value.  For example, we could (hypothetically) access the addresses of the 
houses in neigh: 

> neigh.address 
 

"100 Main St." "101 Main St." "102 Main St." ... 

Notice that since neigh is a vector containing several house elements, the result is a vector 
containing several string elements; operations on object are vectorized just as they are for all 
other types in Eidos (see sections 2.2.1 and 2.4.2). 

Houses might also have a color property, the color they are painted.  Since houses can be 
repainted in a new color, this would be a read-write property (sometimes called a “member 
variable”, in other languages).  You can use the member-access operator to both read and write 
properties.  For example, using our variable myHome that contains just one house (see section 2.8.2), 
we could do: 

> myHome.color 
 

"red" 
 

> myHome.color = "blue" 
 

> myHome.color 
 

"blue" 

We’ve just repainted our house – and the corresponding house in neigh will now also be blue, 
since they are the same house!  This is exactly the behavior that is needed for controlling an 
external simulation.  In your scripts, you may want to play around with object vectors that contain 
mutations, for example; you want to be able to take subsets of those vectors, set properties on the 
mutations (e.g., change their selection coefficients), and so forth – operating the whole time on the 
actual mutations in your simulation, not on copies that would fail to affect your simulation run.  
This is the reason that sharing semantics were chosen as a foundation of Eidos: you will almost 
always want to be referring to objects that already exist in your simulation, and that you want to 
collect and manipulate in situ. 

 37



2.8.4  Multiplexed assignment through properties: operator = revisited 
In the previous section, we saw that you can change a property of an element by assigning to a 

property using the . operator, but we did that only for a house object containing a single house 
element.  What happens if we have a house object with a bunch of house elements in it? 

The answer to that is “multiplexed assignment”.  To see what that means, let’s take a step back 
and ask the same question about simple integer vectors; when we saw the assignment operator, =, 
in section 2.4.1, this question got conveniently glossed over.  Suppose we have an integer vector: 

> x = 1:10 
 

> x 
 

1 2 3 4 5 6 7 8 9 10 

We saw in section 2.4.1 that we could replace the value of x by assignment, with a statement 
like x = "foo", but let’s try something more interesting instead: 

> x[3] = 100 
 

> x 
 

1 2 3 100 5 6 7 8 9 10 

That assignment replaced the element at index 3 with a new element, 100.  So the = operator 
can be used to replace individual elements, not just to redefine entire variables.  It can also be 
used to replace a larger subset of elements: 

> x[x % 2 == 0] = 0 
 

> x 
 

1 0 3 0 5 0 7 0 9 0 

This is “multiplexed assignment”: a single value, 0, has been assigned into multiple elements (in 
this case, elements that currently contain an even value, as determined by the logical vector 
produced by x % 2 == 0). 

Assignment can also be used to assign a different value to each element selected by the subset 
operator: 

> x[x == 0] = c(-1, -3, -5, -7, -9) 
 

> x 
 

1 -1 3 -3 5 -5 7 -7 9 -9 

So assignment can either assign the same value to each selected element, or it can assign 
corresponding values from the right-hand side to the left-hand side of the assignment.  If the 
number of values provided does not fit either of these cases, then it is an error: 

> x[x < 0] = c(3, 8) 
 

ERROR (_AssignRValueToLValue): assignment to a subscript requires an 
rvalue that is a singleton (multiplex assignment) or that has a .size() 
matching the .size of the lvalue. 

That error message refers to the “rvalue” and the “lvalue” of the assignment; the “rvalue” is the 
value on the right-hand side, and the “lvalue” is the value on the left-hand side. 

To return to our original question about assignments involving properties, the answer is that that 
works in exactly the same way.  Given our hypothetical house object named neigh that contains 
several house elements, with each house having a property named color, we could write: 

> neigh.color 
 

"blue" "red" "red" "red" "red" ... 
 

> neigh.color = “green” 
 

 38



> neigh.color 
 

"green" "green" "green" "green" "green" ... 
 

> neigh.color = c("red", "blue", "white", "purple", "celadon", ...) 
 

> neigh.color 
 

"red" "blue" "white" "purple" "celadon" ... 

Furthermore, the [] operator can be mixed into this as well: 

> neigh.color[2:3] = "turquoise" 
 

> neigh.color 
 

"red" "blue" "turquoise" "turquoise" "celadon" ... 
 

> neigh[c(1, 3)].color = "mustard" 
 

> neigh 
 

"red" "mustard" "turquoise" "mustard" "celadon" ... 

Note that neigh.color[indices] is essentially the same as neigh[indices].color.  They are 
conceptually distinct; the first form selects particular indices from a vector of color properties 
derived from all of the elements of x, while the second form selects particular elements from x and 
then gets the color property of the selected elements.  In practice, however, the same values are 
referred to, and so they are formally equivalent.  (This formal equivalence is guaranteed by Eidos, 
in fact, as a consequence of sharing semantics, combined with a guarantee that read-write 
properties – although not read-only properties – must have exactly one value per element.  This 
means that there is a one-to-one correspondence between read-write properties and their values, 
and so it makes no difference in which order . and [] are performed.) 

All of this machinery (modeled on how assignment works in R, incidentally) results in a lot of 
power contained within the assignment operator.  For example, we could institute a neighborhood 
code that all houses must be beige – except that the guy with the celadon house refuses to repaint 
(because if you had a celadon house, why would you repaint it beige!): 

> neigh[neigh.color != "celadon"].color = "beige" 
 

> neigh 
 

"beige" "beige" "beige" "beige" "celadon" ... 

In the Context of a SLiM simulation, this could be useful for changing the selection coefficient 
of all neutral mutations to be slightly deleterious, for example, while leaving all other mutations 
untouched; that operation could be achieved in a single line, with no for loops and no if 
statements, using an operation very similar to the above example. 

2.8.5  Comparison with object: operator ==, !=, <, <=, >, >= revisited 
In this discussion of the object type we’ve revisited various operators, such as [] and =, and 

seen how they work with object operands.  There is one more category of operators that we need 
to revisit: the comparative operators ==, !=, <, <=, >, and >= (all previously seen in section 2.3.3).  
What does it mean to test whether a mutation object, for example, is less than or greater than a 
genomic element object?  What, in general, does it mean to compare object values to each other, 
and to other types? 

Eidos’s answer to this question is: not much.  Using the relative comparative operators <, <=, >, 
and >= with an object operand is simply illegal; no meaning is attached to such comparisons at 
all: 

> neigh[2] < neigh[4] 
 

ERROR (Evaluate_Lt): the '<' operator cannot be used with type object. 

 39



Using the equality operators == and != with a mixture of object and non-object operands is 
also illegal: 

> myHome == 5.5 
 

ERROR: operand type object cannot be converted to type float. 

You may, however, use the equality operators to compare one object to another object.  Two 
object-elements are equal if and only if they are exactly the same object-element – not different 
object-elements with exactly the same values: 

> myHome == neigh[0] 
 

T 
 

> myHome == neigh[1] 
 

F 

(That last comparison would be F even if neigh[1] had the same address and color as myHome, 
since they are different object-elements.)  Just as with other operand types (as described in section 
2.3.3), this comparison can compare object-elements one-to-one, one-to-many, or many-to-one.  
For example, we can find out which house in neigh is our home: 

> neigh == myHome 
 

T F F F F ... 

Each element in neigh is compared to myHome; only the first element of neigh is the same 
object-element as the object-element in myHome, so only the first logical value produced is T. 

2.8.6  Methods: operator . and the methodSignature() method 
Section 2.8.3 introduced one type of object behavior, properties.  Properties generally represent 

simple stored values; getting the value of a property might involve a little bit of computation 
behind the scenes, but conceptually a property is a trait or an attribute of the object itself, like the 
color of a house.  The other type of object behavior in Eidos is the method.  Methods are very 
much like functions; they are chunks of code that you can call to perform tasks.  However, each 
class of object has its own particular methods – unlike functions, which are defined globally.  
Methods are more heavyweight than properties; they might involve quite a lot of computation, 
they might create a completely new object as their result, and they might even modify the object 
upon which they are called.  Not all methods are heavyweight in this sort of way, however; 
anything that one might want an object to do, but that does not feel like a simple property of the 
object, can be a method.  Methods can also take arguments, just like functions, and they can 
return whole vectors as their result, unlike (read-write) properties, which must refer to singleton 
values so that multiplexed assignment can work (see section 2.8.3).  Methods are therefore much 
more powerful than properties. 

Eidos does not allow you to define your own methods.  There is a set of pre-defined methods for 
each object class, and the hope is that they will do everything that you need done (if not, please 
let us know).  This section will not go into any detail about the pre-defined methods for the object 
classes available; see chapter 5 and the SLiM manual for details on that.  Instead, here we will 
continue with the hypothetical house object class introduced above. 

Methods are called using the member-access operator, ., with a syntax that looks a lot like 
accessing a property, but combined with the function call operator, ().  For example, suppose our 
house element had a method named setZip().  This method would find the zip code from within 
the address of the house, and would change it to a new zip code passed to the method, while 
keeping the rest of the house’s address the same.  In code, we could do something like this: 

 40



> neigh[3].address 
 

"33 N. Wiltshire St., Cambridge, CA 32588" 
 

> neigh[3].setZip(14850) 
 

> neigh[3].address 
 

"33 N. Wiltshire St., Cambridge, CA 14850" 

Notice that the method is allowed to change address even though address is a read-only 
property; methods are allowed more latitude than properties are, and can change the state of an 
object in whatever ways are allowed by the underlying code in which they are implemented. 

Naturally, method calls are also vector operations, so we could change the zip code of our 
whole neighborhood in a single statement: 

> neigh.setZip(54321) 

Or if we had a getZip() method that extracted the current zip code from the address, we could 
change the zip codes only for houses with an old zip code that needed updating: 

> neigh[neigh.getZip() == 65432].setZip(23456) 

The possibilities are endless, obviously – limited only by the facilities provided by the Context 
within which Eidos is being used. 

In section 2.7.4 we encountered the functionSignature() function, which printed out all of the 
functions known to Eidos in the form of function signatures.  There is a parallel method, the 
methodSignature() method, for printing out all of the methods defined for a particular object in 
the form of method signatures.  For example, we could do a little introspection on our 
neighborhood object, neigh: 

> neigh.methodSignature() 
 

- (integer$)getZip(void) 
+ (void)methodSignature([string$]) 
+ (void)propertySignature([string$]) 
- (void)setZip(integer$) 
- (void)str(void) 

This output tells us that there are five methods defined on our house element (and thus on our 
neighborhood object): the getZip() and setZip() methods that we just discussed, the 
methodSignature() method that we are discussing now, and two more, propertySignature() and 
str(), that we will discuss momentarily. 

Notice that getZip() is declared as returning integer$, a singleton integer.  This might seem a 
bit surprising, since above we called neigh.getZip() to get a whole vector containing a zip code 
for each house in the neighborhood; that sure doesn’t look like a singleton!  The explanation is that 
when an Eidos method is declared as returning a singleton, that means that a single value will be 
returned per element.  The overall return value from the method call will therefore contain exactly 
the same number of elements as the target object upon which the method was called; there will 
be a one-to-one correspondence between the elements in the target and in the return value (unless 
the method returns NULL for some elements).  When a method is declared as not having a singleton 
return value, that means that each element in the target might return any number of values in 
response; all of the returned values from all of the elements in the target will be concatenated 
together to form the final return value.  In this case, there may not be a one-to-one correspondence 
between elements in the target and in the return.  The semantics here are identical to those for 
properties, as a matter of fact; the address and color properties of our hypothetical house object 
are singleton properties, meaning that the properties have exactly one value per element in the 
target object (not one value total per object vector). 

 41



There is an important difference between properties and methods in a related aspect of their 
treatment of singletons, however.  If you assign a multi-valued vector into a property, the 
assignment will be multiplexed out into the elements of the target object, as we saw in section 
2.8.4; a one-to-one correspondence between values in the target and in the vector assigned to the 
target is used.  If you pass a multi-valued vector to a method, however, no multiplexing occurs; 
each element in the target of the method call receives the full multi-valued vector as a parameter.  
When setZip() is declared above as taking integer$, therefore, that means that you may only 
pass a singleton to the method, and that singleton value will be used in the method call for each 
element in the target.  For example, if you call setZip(14850) on neigh, every house in neigh will 
be given the same zip code, 14850.  There is no way to use a single call to setZip() to assign a 
different zip code individually to each house in neigh, the way you could with multiplexed 
assignment if the zip code were a property; you may not pass a vector of zip codes to setZip(), 
and even if you could, each house in neigh would then receive a setZip() call with the entire 
vector of zip codes, and would not know which zip code it was supposed to adopt (which is why 
the method signature for setZip() does not allow that in the first place).  This is a fundamental 
difference between properties and methods that should be understood; properties use multiplexed 
assignment, whereas methods pass the full argument list to every element in the target. 

Another thing you might notice is that these method signatures begin with a leading + or -, 
unlike the function signatures we saw in section 2.7.4.  This notation is borrowed from Objective-
C; it denotes whether a method is a class method (with a +) or an instance method (with a -).  In 
some languages this is a very strong distinction, between a class – representing the abstract 
concept of a neighborhood, for example – and an instance – representing a specific neighborhood 
with particular houses in it.  In Eidos this distinction is less important, because classes are not very 
visible in Eidos; there is no way to get a class object, there is no visible inheritance hierarchy 
among classes, and so forth.  However, the difference does manifest with methods in one 
significant way: a class method is called just a single time, even when it is called on an object that 
contains several elements, because the method is being called on the class, which is shared by all 
the elements.  Since methodSignature() is a class method, this happened with the call above, in 
fact, but you may not have noticed!  If methodSignature() had been called on each element – 
each house inside neigh – then the list of method signatures would have been printed once for 
each element, as methodSignature() was called on each element.  Instead, methodSignature() 
was called just once, on the class.  In other words, methodSignature() does not ask elements 
“what methods do you respond to?”, but instead asks the class “what methods would all instances 
of you respond to?”  If that explanation is clear as mud, here’s another way to look at it: instance 
methods multicast out to every object element in the object they are sent to, whereas class 
methods “singlecast” to the class to allow it to handle the method on behalf of all of the object 
elements.  In other languages, this might be represented by a “static method” or a “static member 
function” that takes a vector (or an array) of objects as a parameter and performs some operation 
on the whole vector; in Eidos, the same syntax is used as for an instance method dispatch. 

Note that methodSignature() takes an optional singleton string argument; as with 
functionSignature(), this allows us to get the method signature for a specific method: 

> neigh.methodSignature("propertySignature") 
 

+ (void)propertySignature([string$]) 

So what is the propertySignature() method, then?  It is actually an object introspection 
method as well, like methodSignature(), but it shows us the properties that are defined by a given 
object class.  In a sense, it is very similar to the ls() function (see section 2.4.1); but the ls() 
function lists globally defined constants and variables, whereas the propertySignature() method 

 42



shows us the properties defined by an object.  For example, we could call it on our neighborhood 
vector, neigh: 

> neigh.propertySignature() 
 

address => (string$) 
color <-> (string$) 

This output tells us that two properties are defined for neigh (or for the neighborhood class, 
really, since propertySignature() is a class method).  One is a read-only property (as shown by 
the => arrow) named address; that property has type string and is a singleton, meaning that a 
given house element has exactly one address.  The other is a read-write property (as shown by the 
<-> arrow) named color; that property also has type string$, since a given house element has 
exactly one color.  All of this should be quite reminiscent of the ls() function we saw earlier. 

There was one more method shown above in the output from neigh.methodSignature(): the 
str() method.  Let’s try calling it on neigh to see what it does: 

> neigh.str() 
 

House: 
   address => (string$) "100 Main St." "101 Main St." ... (10 values) 
   color <-> (string$) "beige" "beige" ... (10 values) 

So it is similar to propertySignature(), but it shows us some additional information about the 
object: what class it is (House), how many values each property has (10, in this case), and what the 
first couple of values look like.  The name “str” is short for “structure”; the idea is that this method 
gives you a sense of the internal structure of an object. 

Incidentally, methodSignature(), propertySignature(), and str() are defined for all object 
classes in Eidos, because they are methods of Object, the base class of all objects in Eidos; they 
are in no way particular to the hypothetical neighborhood class we’ve been exploring.  They are 
formally documented in section 5.1.2. 

2.9  Matrices and arrays 

2.9.1  Defining matrices and arrays 
Thus far, our mantra has been “everything is a vector”.  We are not going to deviate from that 

now, but we’re going to add a new layer onto it: sometimes, a vector is also a matrix or an array.  
The way that matrices and arrays are handled in Eidos is very parallel to how they are handled in 
R; minor differences will be highlighted below, but experienced R users will find few surprises (but 
see the discussion of “dropping” in section 2.9.4, which is one major difference).  Note that 
matrices and arrays are an advanced topic; new users might wish to skip this whole section. 

Conceptually, a matrix is a vector with a two-dimensional structure imposed upon it, such as: 

 

The matrix above could be constructed in Eidos using the matrix() function: 

> x = matrix(1:6, nrow=2) 
 

> x 
 

     [,0] [,1] [,2] 
[0,]    1    3    5 
[1,]    2    4    6 

[1 3 5
2 4 6]

 43



We specify to matrix() that we want two rows, and it infers from the length of the data vector 
provided that three columns will thus be needed (one may specify the number of columns instead, 
or both, or neither).  It fills the values in the matrix by column, by default, so this produces the 
same vector as above; supplying byrow=T to matrix() would fill values by row instead. 

Note that x really is still a vector: 

> x[2] 
 

3 
 

> size(x) 
 

6 
 

> c(x) 
 

1 2 3 4 5 6 

The matrix-ness of it is just a veneer; normal subscripting with [] can still refer to the values in 
the vector, size() still returns the number of elements, and the c() function will strip away the 
matrix veneer to reveal the underlying vector.  In R, this veneer is made quite explicit in that a 
matrix is simply a vector that has had an attribute named $dim attached to it; in Eidos the internal 
design is much the same, but the dimension attribute is not directly accessible in code. 

Similarly, an array is a vector with a two-dimensional or greater structure imposed upon it, here 
is a depiction of a three-dimensional one, with two “planes” each of which is a 2 × 3 matrix: 

 

This array could be constructed in Eidos using the array() function: 

> y = array(1:12, c(2,3,2)) 
 

> y 
 

, , 0 
 
     [,0] [,1] [,2] 
[0,]    1    3    5 
[1,]    2    4    6 
 
, , 1 
 
     [,0] [,1] [,2] 
[0,]    7    9   11 
[1,]    8   10   12 

This function takes a data vector first, as matrix() did, and then takes a vector of dimension 
sizes.  The first entry in that vector is the number of rows; here, 2.  The second is the number of 
columns; here, 3.  Further entries give the size of further, higher-order dimensions; here we specify 
just one, of size 2, meaning that the array is a size 2 array of matrices, making three dimensions in 
all.  Any number of higher-order dimensions can be used, although it gets difficult to visualize. 

Again, this array is still really a vector at heart; the array-ness is just a veneer: 

> y[7] 
 

8 
 

> size(y) 
 

12 
 

> c(y) 
 

1 2 3 4 5 6 7 8 9 10 11 12 

[1 3 5
2 4 6], [7 9 11

8 10 12]

 44



Since arrays can be two-dimensional or greater, a matrix is really a special case of an array, but 
to be clear we will usually use “matrix” to refer specifically to the two-dimensional case, and 
“matrix or array” when we want to be more general. 

2.9.2  Matrix and array attributes 
As we saw in the previous section, matrices and arrays are just vectors with a dimension 

attribute.  When working with them, it is useful to be able to distinguish them from plain vectors, 
get their dimensions, and so forth.  Several functions are provided for this purpose. 

First of all, dim() can be used to get the dimensions of a matrix: 

> dim(x) 
 

2 3 

For vectors that are not matrices or arrays, dim() will return NULL, so it can also be used as a 
way to distinguish matrices and arrays from plain vectors. 

Second, the number of rows or columns of a matrix can be queried separately using the nrow() 
and ncol() functions: 

> nrow(x) 
 

2 
 

> ncol(x) 
 

3 

These functions also work with arrays, but the size of higher-order array dimensions is not 
accessible with nrow() and ncol(); dim() should be used for that: 

> nrow(y) 
 

2 
 

> ncol(y) 
 

3 
 

> dim(y) 
 

2 3 2 

As with dim(), nrow() and ncol() will return NULL for plain vectors.  R provides special 
functions named NROW() and NCOL() that work in the same way as nrow() and ncol(), but that 
additionally treat plain vectors as one-column matrices; Eidos does not provide these functions, 
but it would be trivial to define them as user-defined functions (see chapter 4). 

2.9.3  Using Eidos operators and built-in functions with matrices and arrays 
The fact that matrices and arrays are really just vectors is very important, because in many cases 

Eidos (like R) will treat them as vectors, simply ignoring their dimension attribute.  In other cases, 
however, the dimension attribute is important, and the behavior of Eidos is different with matrices 
and arrays than it would be with the corresponding plain vectors.  This section will attempt to 
clarify and summarize this behavior. 

First of all, Eidos has many binary operators that perform an operation on two operands that 
involves some sort of combination or comparison of the operands; examples would include the 
operators +, -, *, /, %, ^, &, |, ==, !=, <, <=, >, and >=.  The behavior of all of these with matrix or 
array operands is the same: if both operands are matrices/arrays, the operands must have exactly 
the same dimensions, and the operation is then performed elementwise on the operands, and 
results in a matrix of the same dimensions.  For example: 

> x = matrix(1:6, nrow=2) 
 

 45



> y = matrix(rep(1:2, 3), nrow=2) 
 

> x 
 

     [,0] [,1] [,2] 
[0,]    1    3    5 
[1,]    2    4    6 
 

> y 
 

     [,0] [,1] [,2] 
[0,]    1    1    1 
[1,]    2    2    2 
 

> x + y 
 

     [,0] [,1] [,2] 
[0,]    2    4    6 
[1,]    4    6    8 

Each element of x + y is the sum of the corresponding elements of x and y.  If x and y did not 
have the same dimensions, an error would result; they would be said to be “non-
conformable” (which does not mean “not the same size”, but rather, “of sizes that are 
incompatible with each other for the operation requested”). 

These binary operators can also handle one singleton operand and one non-singleton matrix or 
array operand.  In this case, the operation is performed between the singleton operand and every 
individual element of the matrix/array operand, generating a result that is a matrix/array with the 
same dimensionality as the non-singleton operand.  For example (using x as defined above): 

> x + 1 
 

     [,0] [,1] [,2] 
[0,]    2    4    6 
[1,]    3    5    7 

The result would be the same with 1 + x rather than x + 1. 
Second, there are unary operators that perform some transformation upon a single operand; 

examples include unary - and +, as well as the ! operator.  With matrix/array operands, these 
operators produce a result with the same dimensions as their operand.  For example: 

> z = matrix(c(T,F,T,F,F), nrow=1) 
 

> z 
 

     [,0] [,1] [,2] [,3] [,4] 
[0,]    T    F    T    F    F 
 

> !z 
 

     [,0] [,1] [,2] [,3] [,4] 
[0,]    F    T    F    T    T 

Here z is a “row matrix” (a matrix comprised of a single row), and the ! operator preserves that 
structure.  This example also illustrates that matrices and arrays in Eidos may be of any type; here 
we have a logical matrix. 

There are just a few operators left.  The range operator, :, does not allow matrices/arrays as 
operands at all; note that that is a much stricter policy than R.  The assignment operator, =, 
preserves the dimensions of the value, as we have already seen in the examples above. 

The . operator is a bit more complicated.  When used to call a method, it ignores the 
dimensions of the target object and always returns a plain vector.  This is necessary for consistency, 
because methods are allowed to return NULL to indicate a non-fatal error condition, which means 
the length of the result of a method call, even if declared to return singleton, is not necessarily the 
same as the length of the target object.  When used to access a non-singleton property, the . 

 46



operator will similarly ignore the target’s dimensions and return a plain vector, because again the 
length of the result may not match the length of the target.  When used to access a singleton 
property, however, the . operator will produce a result with the same dimensionality as the target 
object, just as the unary operators do, since it is possible to do so in that case (since the length of 
the result is guaranteed to equal the length of the target), and since that behavior is useful.  In the 
other cases, if you wish to re-impose a particular dimensionality on a vector you can always use 
matrix() or array() to do so. 

Finally, there is the subset operator, [], which we have left for last because it is the most 
complicated.  In fact, it is such a complex topic that we will push it out to the next subsection. 

Except for the deferral of operator [], that completes our discussion of the Eidos operators with 
matrices and arrays.  Next, there are also the built-in functions to be considered. 

First of all, there are functions which can be thought of as unary operators, in a sense; they 
perform some elementwise transformation upon a single operand, their one argument.  Such 
functions include mathematical operations like abs() and ceil() and cos() and sqrt(), as well as 
tests like isFinite(), type transformations like asFloat(), and string operations like nchar().  In 
general, these functions will accept a matrix or array operand, and they will return a result with the 
same dimensions; each element is transformed individually. 

Second, there are functions that in some way summarize their one argument down to a single 
value, such as mathematical operations like sum() and product(), logical operations like all() 
and any(), type tests like isFloat(), and summary statistics functions like min() and mean().  In 
general, these functions will ignore the dimensions of their operand, treat it as a plain vector, and 
return a plain vector result. 

Third, there are functions that are like binary operators, taking two operands and performing an 
operation that in some way combines or compares them.  The behavior of these is more case-by-
case.  The atan2() function has the same conformability requirements and behavior as the binary 
operators discussed above, and the same is basically true of pmax() and pmin().  The set logic 
functions like setUnion() and setDifference(), on the other hand, ignore dimensions and always 
return a plain vector result.  The identical() function accepts matrices and arrays, and will return 
T only if the dimensions of its arguments are exactly the same (in addition to all of the elements 
being the same, as usual). 

Fourth, there are many built-in functions that don’t fall into these categories and that simply 
ignore the dimensions of their arguments in all cases.  Examples include the distribution functions 
like dnorm() and runif() and sample(), functions that reorder or concatenate their argument like 
c() and rep() and sort(), and functions that subset or match their argument like match(), 
unique(), and which().  All of these functions ignore the dimensionality or their argument(s), treat 
them as plain vectors, and return the same result as they would return otherwise. 

Fifth, there are a few outliers that have some special behavior.  Some of these are functions 
specifically for working with matrices and arrays, such as cbind() and rbind() for combining 
matrices by column or row, matrixMult() for matrix multiplication, t() for matrix transposition, 
and apply() for iterating over the margins of matrices and arrays.  Others are simply unusual 
functions, like ifelse() and sapply().  Some higher-level output functions, such as str() and 
print(), treat matrices and arrays in a special way in order to produce more useful output, but 
lower-level output functions such as cat() and catn() ignore the dimension of their arguments. 

For any edge cases not discussed above, you might consult the reference documentation in 
chapter 3; however, the documentation on each function will not exhaustively discuss how 
matrices and arrays are treated, because that is just too tedious.  Instead, it will generally just call 
attention to unusual cases and exceptions from these rules.  If the reference documentation is 

 47



insufficient, you might try an experiment to answer your question – really that is often the best way 
to get an answer. 

Finally, there are the Eidos language keywords to be considered, such as if, for, while, and 
return.  The answer there is simple: they all just ignore the dimensions of their operands, not 
modifying those dimensions nor using them for any purpose. 

Broadly, these rules are very similar to those in R, although there are some exceptions.  As a 
rule, R is more forgiving than Eidos about such things, and tries to make sense out of mismatches 
by doing things like promoting vectors to matrices or repeating the values in a vector to fill out its 
length, in order to achieve conformability and make a given operation happen.  Eidos will, in 
many cases, produce an error instead, as a matter of design philosophy, since jumping through 
such hoops will often produce unexpected behavior that leads to bugs; an error message is often 
preferable in real-world usage, especially for relatively inexperienced programmers. 

2.9.4  Subsets of matrices and arrays using operator [] 
In the previous section we saw how Eidos treats matrix and array values with all of its operators, 

built-in functions, and language keywords, with one exception: subsetting with the [] operator.  
We will cover that topic now. 

First of all, subsetting can be done on a matrix or array by treating it as a plain vector, as we 
have seen above.  In that case, the elements of the matrix or array are addressed with a single zero-
based index that counts upward, in column order, through the dimension hierarchy, just as the 
values are laid out by array().  Subsetting with a logical vector also works with matrices and 
arrays.  The vector-based behavior of subsetting is thus unchanged with matrices and arrays. 

In addition, however, with matrices and arrays it is possible to subset by each dimension 
independently.  This is easier to illustrate than describe: 

> x = matrix(1:6, nrow=2) 
 

> x 
 

     [,0] [,1] [,2] 
[0,]    1    3    5 
[1,]    2    4    6 
 

> x[1,2] 
 

     [,0] 
[0,]    6 

Here the subset operator selects the value from row 1 and column 2 of x (keeping in mind that 
indices in Eidos are zero-based), which is 6.  The dimensionality of x is preserved by the subset 
operation, so since x is a matrix, this slice of x is a matrix as well, just with fewer rows and 
columns.  And perhaps this is obvious, but note that the way x was printed above made it easy to 
predict what x[1,2] would be; just read across the row labeled [1,] to the column labeled [,2].  
That is, of course, why matrices are printed in that manner. 

If a given dimension is omitted entirely, all indices in that dimension are selected: 

> x[0,] 
 

     [,0] [,1] [,2] 
[0,]    1    3    5 
 

> x[,1] 
 

     [,0] 
[0,]    3 
[1,]    4 

 48



Here we select row 0 of x across all columns, and then column 1 of x across all rows.  Again the 
results are matrices, preserving the rank (the number of dimensions) of x.  The indices selected for 
each dimension may be in any order, and may repeat; the subset operator will select whatever 
values are requested: 

> x[c(0,0), c(2,0)] 
 

     [,0] [,1] 
[0,]    5    1 
[1,]    5    1 

Here row 0 is selected twice, and columns 2 and 0 are selected, generating the result matrix 
shown, which repeats row 0 twice but only including the values from column 2 and 0 (in that 
order, as specified). 

The indices to select from a given dimension may also be specified with a logical vector, just 
as we could do with the simpler vector-based subsetting discussed in section 2.2.4.  For example: 

> x[1:0, c(T,F,T)] 
 

     [,0] [,1] 
[0,]    2    6 
[1,]    1    5 

This selects rows 1 and 0 (in that order) and columns 0 and 2, producing the result shown.  
When a logical vector is used to select indices for a given dimension, the length of the logical 
vector must be equal to the size of the dimension; each logical value is then taken as including 
(T) or excluding (F) the corresponding index of the dimension. 

So to summarize, indices for a given dimension may be selected in any of three ways: (1) by 
omitting the specification entirely, as x[0,] selects all columns within row 0, (2) by specifying 
integer indices (or float indices, which are rounded down) to select indices in the order 
specified, or (3) by specifying a logical vector that selects the indices corresponding to T values.  
Specifying NULL for a dimension is exactly the same as omitting any specifier for that dimension; 
x[0,NULL] is thus the same as x[0,]. 

All of this works in exactly the same way for higher-rank arrays.  There is no need to belabor 
that point, so let’s look at just one example with an array y: 

> y = array(1:12, c(2,3,2)) 
 

> y 
 

, , 0 
 
     [,0] [,1] [,2] 
[0,]    1    3    5 
[1,]    2    4    6 
 
, , 1 
 
     [,0] [,1] [,2] 
[0,]    7    9   11 
[1,]    8   10   12 
 
 

> y[1, c(F,T,T), ] 
 

, , 0 
 
     [,0] [,1] 
[0,]    4    6 
 
, , 1 
 

 49



     [,0] [,1] 
[0,]   10   12 

This shows all of the types of index selection described above: row 1 is elected using its index, 
columns 1 and 2 are selected with a logical vector, and both planes of the array are selected since 
the third specifier was omitted entirely.  This extends to any number of dimensions. 

Much of this is exactly as it is in R, but those who are familiar with R may have noticed one 
striking difference between the behavior of Eidos and that of R: R drops unneeded dimensions 
when subsetting, by default, whereas Eidos does not.  We saw this in many of the examples above, 
such as this example using the matrix x that we defined above: 

> x[1,2] 
 

     [,0] 
[0,]    6 

As mentioned above, Eidos preserves the dimensionality of x, returning a matrix from the subset 
operation even though the result is a singleton.  R provides that option as well, with an optional 
“drop” flag; in R that would be written as x[1,2,drop=F], and would produce the result above.  
Eidos has essentially the opposite policy: subsetting does not drop dimensions, and if you want to 
drop them you must call a function named drop() explicitly to do so.  For example: 

> drop(x[1,2]) 
 

6 

The value 6 is now “unwrapped” from the redundant dimensions it was enclosed in, and is 
returned as a plain vector.  Similarly: 

> drop(x[0,]) 
 

1 3 5 

Since there was only one row in the result, that redundant dimension is dropped and the result 
is again a plain vector.  Importantly, however, only dimensions of size 1 are dropped; others are 
preserved, so the result of drop() is not always a plain vector, it is just a matrix or array of the 
minimal dimensions needed to preserve the structure of the data.  (Of course, if you do want to 
remove all dimension structure completely, c() will do that as mentioned previously.)  The array-
based example above with y provides a good example of a more complex drop() operation: 

> drop(y[1, c(F,T,T), ]) 
 

     [,0] [,1] 
[0,]    4   10 
[1,]    6   12 

Compare this to the same example above without the drop() call to see what drop() has done 
here.  Since the result of the subset operation had only one row, that redundant dimension was 
dropped; but it had two columns and two planes, so those non-redundant dimensions were 
preserved.  Since the row dimension was removed, the columns become rows and the planes 
become columns – everybody slides down one! – producing the result above. 

As you can see, the behavior of drop() can be complex and counterintuitive.  It can also be 
unpredictable; calling drop() on the result of subsetting a three-dimensional array like y could 
result in a plain vector, a matrix, or an array, depending upon how many indices were selected 
from each dimension.  R’s behavior, of automatically dropping unless requested not to do so, 
therefore often results in unexpected and unpredictable behavior – if not outright bugs.  I have 
been bitten by that “feature” of R more than once, so when designing Eidos I decided that this 

 50



would be a rare case in which I would deliberately break with R’s precedent.  If you are used to R’s 
behavior, this shift may take a little adjustment. 

This completes our discussion of matrices and arrays.  Note, however, that there are several 
functions such as cbind(), rbind(), matrixMult(), and t() that we have not introduced here, but 
that are specifically designed for working with matrices; if you will be using matrices you may 
wish to consult their documentation in chapter 3.8. 

2.10  Comments 

2.10.1  Single-line comments with // 
Section 2.6.5 briefly introduced the concept of comments in Eidos.  For completeness, we 

ought to discuss them in a little more detail. 
Technically, comments are actually a type of whitespace; comments in Eidos code are 

completely ignored and have no effect whatsoever on the results of the execution of code, just like 
other kinds of whitespace in most respects.  Single-line comments begin with // and then may 
consist of any text whatsoever, up to the end of the current line of code.  A comment may occur by 
itself on a line, or it may follow other Eidos code.  So for example, you could write: 

1 + 1 == 2;    // this is true 

Comments are never required in Eidos, but using them to annotate your code is a very good 
idea, both so that you remember what your intentions were when you come back to the code later, 
and so that others who might need to understand or maintain your code have a helping hand. 

2.10.2  Block comments with /* */ 
It is possible to comment out whole blocks of script, instead of just single lines.  This can be 

useful for writing longer comments that describe a section of code in more detail.  In Eidos (as in C 
and C++), such block comments can be written with a beginning /* and a terminating */: 

/* 
   This computes the factorial x!, which is 
   the product of all values from 1 to x, for 
   any positive integer x. 
*/ 
x_factorial = product(1:x); 

A nice feature of Eidos is that block comments nest properly, making it possible to use them to 
comment out stretches of code that already contain block comments.  For example, if the code 
above was no longer needed, but you didn’t want to delete it entirely because you might need it 
again later, you could use a block comment to disable it: 

/* ******* NOT NEEDED ************ 
/* 
   This computes the factorial x!, which is 
   the product of all values from 1 to x, for 
   any positive integer x. 
*/ 
x_factorial = product(1:x); 
*/ 

The outer block comment is not terminated by the first */ because Eidos recognizes that that 
belongs to the inner block comment; the outer block comment continues until the second */ is 
encountered. 

 51



3.  Built-in functions 

The built-in functions presented here are intended to provide broad, general-purpose support 
for most common tasks.  If you find that you need a reasonably common function that has not 
been provided, such as a math function, please let us know.  You can also define your own 
functions (see chapter 4), which is an easy way to extend the base functionality of Eidos.  Finally, 
you might want to try out the executeLambda() function described in section 3.10, which provides 
a cheap substitute for user-defined functions. 

Functions are listed here by category (math, summary statistics, vector construction, value 
inspection/manipulation, value typing/coercion, matrix and array, filesystem access, color 
manipulation, and other miscellaneous functions).  Within each category functions are listed 
alphabetically.  For each function, the function signature is shown (see section 2.7.4), and then a 
brief description is given. 

It might be worth noting here that the basic philosophy of Eidos is that of a functional language: 
operations in Eidos (other than assignment) generally do not modify existing values, but instead 
generate new values.  If you wish a vector x to become sorted, you execute x = sort(x) instead of 
simply sort(x); the sort() function does not modify x, but rather produces a new value which 
must be assigned back into x if you want the new value to replace the old.  Eidos follows R in 
adopting this philosophy because it limits unexpected side effects.  The object-elements in Eidos 
violate this philosophy; when you set a property or call a method on an object-element, you are 
changing the object-element itself (for the reasons discussed in section 2.8.2).  The non-object 
built-in types and functions of Eidos, however, generally follow this philosophy. 

3.1  Math functions 
The math functions in Eidos are pattered closely upon those in C++, and are typically 

implemented by calling a C++ function of the same name, as described below when applicable. 

(numeric)abs(numeric x) 
Returns the absolute value of x.  If x is integer, the C++ function llabs() is used and an integer 
vector is returned; if x is float, the C++ function fabs() is used and a float vector is returned. 

(float)acos(numeric x) 
Returns the arc cosine of x using the C++ function acos(). 

(float)asin(numeric x) 
Returns the arc sine of x using the C++ function asin(). 

(float)atan(numeric x) 
Returns the arc tangent of x using the C++ function atan(). 

(float)atan2(numeric x, numeric y) 
Returns the arc tangent of y/x using the C++ function atan2(), which uses the signs of both x and y 
to determine the correct quadrant for the result. 

(float)ceil(float x) 
Returns the ceiling of x: the smallest integral value greater than or equal to x.  Note that the return 
value is float even though integral values are guaranteed, because values could be outside of the 
range representable by integer. 

(float)cos(numeric x) 
Returns the cosine of x using the C++ function cos(). 

 52



(numeric)cumProduct(numeric x) 
Returns the cumulative product of x: a vector of equal length as x, in which the element at index i is 
equal to the product of the elements of x across the range 0:i.  The return type will match the type of 
x.  If x is of type integer, but all of the values of the cumulative product vector cannot be 
represented in that type, an error condition will result. 

(numeric)cumSum(numeric x) 
Returns the cumulative sum of x: a vector of equal length as x, in which the element at index i is 
equal to the sum of the elements of x across the range 0:i.  The return type will match the type of x.  
If x is of type integer, but all of the values of the cumulative sum vector cannot be represented in 
that type, an error condition will result. 

(float)exp(numeric x) 
Returns the base-e exponential of x, ex,  using the C++ function exp().  This may be somewhat faster 
than E^x for large vectors. 

(float)floor(float x) 
Returns the floor of x: the largest integral value less than or equal to x.  Note that the return value is 
float even though integral values are guaranteed, because values could be outside of the range 
representable by integer. 

(integer)integerDiv(integer x, integer y) 
Returns the result of integer division of x by y.  The / operator in Eidos always produces a float 
result; if you want an integer result you may use this function instead.  If any value of y is 0, an error 
will result.  The parameters x and y must either be of equal length, or one of the two must be a 
singleton.  The precise behavior of integer division, in terms of how rounding and negative values 
are handled, may be platform dependent; it will be whatever the C++ behavior of integer division is 
on the given platform.  Eidos does not guarantee any particular behavior, so use this function with 
caution. 

(integer)integerMod(integer x, integer y) 
Returns the result of integer modulo of x by y.  The % operator in Eidos always produces a float 
result; if you want an integer result you may use this function instead.  If any value of y is 0, an error 
will result.  The parameters x and y must either be of equal length, or one of the two must be a 
singleton.  The precise behavior of integer modulo, in terms of how rounding and negative values 
are handled, may be platform dependent; it will be whatever the C++ behavior of integer modulo is 
on the given platform.  Eidos does not guarantee any particular behavior, so use this function with 
caution. 

(logical)isFinite(float x) 
Returns the finiteness of x: T if x is not INF or NAN, F if x is INF or NAN.  INF and NAN are defined only 
for type float, so x is required to be a float.  Note that isFinite() is not the opposite of 
isInfinite(), because NAN is considered to be neither finite nor infinite. 

(logical)isInfinite(float x) 
Returns the infiniteness of x: T if x is INF, F otherwise.  INF is defined only for type float, so x is 
required to be a float.  Note that isInfinite() is not the opposite of isFinite(), because NAN is 
considered to be neither finite nor infinite. 

(logical)isNAN(float x) 
Returns the undefinedness of x: T if x is not NAN, F if x is NAN.  NAN is defined only for type float, so x 
is required to be a float. 

(float)log(numeric x) 
Returns the base-e logarithm of x using the C++ function log(). 

 53



(float)log10(numeric x) 
Returns the base-10 logarithm of x using the C++ function log10(). 

(float)log2(numeric x) 
Returns the base-2 logarithm of x using the C++ function log2(). 

(numeric$)product(numeric x) 
Returns the product of x: the result of multiplying all of the elements of x together.  If x is float, the 
result will be float.  If x is integer, things are a bit more complex; the result will be integer if it 
can fit into the integer type without overflow issues (including during intermediate stages of the 
computation), otherwise it will be float. 

(float)round(float x) 
Returns the round of x: the integral value nearest to x, rounding half-way cases away from 0 (different 
from the rounding policy of R, which rounds halfway cases toward the nearest even number).  Note 
that the return value is float even though integral values are guaranteed, because values could be 
outside of the range representable by integer. 

(*)setDifference(* x, * y) 
Returns the set-theoretic (asymmetric) difference of x and y, denoted x ∖ y: a vector containing all 
elements that are in x but are not in y.  Duplicate elements will be stripped out, in the same manner 
as the unique() function.  The order of elements in the returned vector is arbitrary and should not be 
relied upon.  The returned vector will be of the same type as x and y, and x and y must be of the same 
type. 

The operation performed by this function can be represented graphically using a Venn diagram, where 
the left circle is x and the right circle is y: 

 

(*)setIntersection(* x, * y) 
Returns the set-theoretic intersection of x and y, denoted x ∩ y: a vector containing all elements that 
are in both x and y (but not in only x or y).  Duplicate elements will be stripped out, in the same 
manner as the unique() function.  The order of elements in the returned vector is arbitrary and should 
not be relied upon.  The returned vector will be of the same type as x and y, and x and y must be of 
the same type. 

The operation performed by this function can be represented graphically using a Venn diagram, where 
the left circle is x and the right circle is y: 

 

 54



(*)setSymmetricDifference(* x, * y) 
Returns the set-theoretic symmetric difference of x and y, denoted x ∆ y: a vector containing all 
elements that are in x or y, but not in both.  Duplicate elements will be stripped out, in the same 
manner as the unique() function.  The order of elements in the returned vector is arbitrary and should 
not be relied upon.  The returned vector will be of the same type as x and y, and x and y must be of 
the same type. 

The operation performed by this function can be represented graphically using a Venn diagram, where 
the left circle is x and the right circle is y: 

 

(*)setUnion(* x, * y) 
Returns the set-theoretic union of x and y, denoted x ∪ y: a vector containing all elements that are in 
x and/or y.  Duplicate elements will be stripped out, in the same manner as the unique() function.  
This function is therefore roughly equivalent to unique(c(x, y)), but this function will probably be 
faster.  The order of elements in the returned vector is arbitrary and should not be relied upon.  The 
returned vector will be of the same type as x and y, and x and y must be of the same type. 

The operation performed by this function can be represented graphically using a Venn diagram, where 
the left circle is x and the right circle is y: 

 

(float)sin(numeric x) 
Returns the sine of x using the C++ function sin(). 

(float)sqrt(numeric x) 
Returns the square root of x using the C++ function sqrt().  This may be somewhat faster than x^0.5 
for large vectors. 

(numeric$)sum(lif x) 
Returns the sum of x: the result of adding all of the elements of x together.  The unusual parameter 
type signature lif indicates that x can be logical, integer, or float.  If x is float, the result will 
be float.  If x is logical, the result will be integer (the number of T values in x, since the integer 
values of T and F are 1 and 0 respectively).  If x is integer, things are a bit more complex; in this 
case, the result will be integer if it can fit into the integer type without overflow issues (including 
during intermediate stages of the computation), otherwise it will be float.  Note that floating-point 
roundoff issues can cause this function to return inexact results when x is float type; this is rarely an 
issue, but see the sumExact() function for an alternative. 

 55



(float$)sumExact(float x) 
Returns the exact sum of x: the exact result of adding all of the elements of x together.  Unlike the 
sum() function, sumExact() accepts only type float, since the sum() function is already exact for 
other types.  When summing floating-point values – particularly values that vary across many orders of 
magnitude – the precision limits of floating-point numbers can lead to roundoff errors that cause the 
sum() function to return an inexact result.  This function does additional work to ensure that the final 
result is exact within the possible limits of the float type; some roundoff may still inevitably occur, in 
other words, but a more exact result could not be represented with a value of type float.  The 
disadvantage of using this function instead of sum() is that it is much slower – about 35 times slower, 
according to one test on macOS, but that will vary across operating systems and hardware.  This 
function is rarely truly needed, but apart from the performance consequences there is no disadvantage 
to using it. 

(float)tan(numeric x) 
Returns the tangent of x using the C++ function tan(). 

(float)trunc(float x) 
Returns the truncation of x: the integral value nearest to, but no larger in magnitude than, x.  Note 
that the return value is float even though integral values are guaranteed, because values could be 
outside of the range representable by integer. 

3.2  Statistics functions 

(float$)cor(numeric x, numeric y) 
Returns the sample Pearson’s correlation coefficient between x and y, usually denoted r.  The sizes of 
x and y must be identical.  If x and y have a size of 0 or 1, the return value will be NULL.  At present it 
is illegal to call cor() with a matrix or array argument, because the desired behavior in that case has 
not yet been implemented. 

(float$)cov(numeric x, numeric y) 
Returns the corrected sample covariance between x and y.  The sizes of x and y must be identical.  If 
x and y have a size of 0 or 1, the return value will be NULL.  At present it is illegal to call cov() with a 
matrix or array argument, because the desired behavior in that case has not yet been implemented. 

(+$)max(+ x, ...) 
Returns the maximum of x and the other arguments supplied: the single greatest value contained by 
all of them.  All of the arguments must be the same type as x, and the return type will match that of x.  
If all of the arguments have a size of 0, the return value will be NULL; note that this means that 
max(x, max(y)) may produce an error, if max(y) is NULL, in cases where max(x, y) does not. 

(float$)mean(lif x) 
Returns the arithmetic mean of x: the sum of x divided by the number of values in x.  If x has a size of 
0, the return value will be NULL.  The unusual parameter type signature lif indicates that x can be 
logical, integer, or float; if x is logical, it is coerced to integer internally (with F being 0 and 
T being 1, as always), allowing mean() to calculate the average truth value of a logical vector. 

(+$)min(+ x, ...) 
Returns the minimum of x and the other arguments supplied: the single smallest value contained by 
all of them.  All of the arguments must be the same type as x, and the return type will match that of x.  
If all of the arguments have a size of 0, the return value will be NULL; note that this means that 
min(x, min(y)) may produce an error, if min(y) is NULL, in cases where min(x, y) does not. 

 56



(+)pmax(+ x, + y) 
Returns the parallel maximum of x and y: the element-wise maximum for each corresponding pair of 
elements in x and y.  The type of x and y must match, and the returned value will have the same type.  
In one usage pattern the size of x and y match, in which case the returned value will have the same 
size.  In the other usage pattern either x and y is a singleton, in which case the returned value will 
match the size of the non-singleton argument, and pairs of elements for comparison will be formed 
between the singleton’s element and each of the elements in the non-singleton. 

(+)pmin(+ x, + y) 
Returns the parallel minimum of x and y: the element-wise minimum for each corresponding pair of 
elements in x and y.  The type of x and y must match, and the returned value will have the same type.  
In one usage pattern the size of x and y match, in which case the returned value will have the same 
size.  In the other usage pattern either x and y is a singleton, in which case the returned value will 
match the size of the non-singleton argument, and pairs of elements for comparison will be formed 
between the singleton’s element and each of the elements in the non-singleton. 

(float)quantile(numeric x, [Nf probs = NULL]) 
Returns sample quantiles of x for the given probabilities.  The smallest value in x corresponds to a 
probability of 0, and the largest value in x to a probability of 1.  The probs vector should be a vector 
of probabilities in [0, 1], or NULL, which is equivalent to c(0.0, 0.25, 0.5, 0.75, 1.0), 
requesting sample quartiles. 

The quantile function linearly interpolates between the points of the empirical cumulative distribution 
function.  In other words, if x is a vector of length n+1, then the quantiles with probs equal to (0, 1/n, 
2/n, ..., (n−1)/n, 1) are equal to the sorted values of x, and the quantile is a linear function of probs 
otherwise.  Note that there are many ways to compute quantiles; this algorithm corresponds to R’s 
default “type 7” algorithm. 

(numeric)range(numeric x, ...) 
Returns the range of x and the other arguments supplied: a vector of length 2 composed of the 
minimum and maximum values contained by all of them, at indices 0 and 1 respectively.  All of the 
arguments must be the same type as x, and the return type will match that of x.  If all of the arguments 
have a size of 0, the return value will be NULL; note that this means that range(x, range(y)) may 
produce an error, if range(y) is NULL, in cases where range(x, y) does not. 

(float$)sd(numeric x) 
Returns the corrected sample standard deviation of x.  If x has a size of 0 or 1, the return value will 
be NULL. 

(float$)ttest(float x, [Nf y = NULL], [Nf$ mu = NULL]) 
Returns the p-value resulting from running a t-test with the supplied data.  Two types of t-tests can be 
performed.  If x and y are supplied (i.e., y is non-NULL), a two-sample unpaired two-sided Welch’s t-
test is conducted using the samples in x and y, each of which must contain at least two elements.  The 
null hypothesis for this test is that the two samples are drawn from populations with the same mean.  
Other options, such as pooled-variance t-tests, paired t-tests, and one-sided t-tests, are not presently 
available.  If x and mu are supplied (i.e., mu is non-NULL), a one-sample t-test is conducted in which 
the null hypothesis is that the sample is drawn from a population with mean mu. 

Note that the results from this function are substantially different from those produced by R.  The Eidos 
ttest() function uses uncorrected sample statistics, which means they will be biased for small 
sample sizes, whereas R probably uses corrected, unbiased sample statistics.  This is an Eidos bug, and 
might be fixed if anyone complains.  If large sample sizes are used, however, the bias is likely to be 
small, and uncorrected statistics are simpler and faster to compute. 

 57



(float$)var(numeric x) 
Returns the corrected sample variance of x.  If x has a size of 0 or 1, the return value will be NULL.  
This is the square of the standard deviation calculated by sd().  At present it is illegal to call var() 
with a matrix or array argument, because the desired behavior in that case has not yet been 
implemented. 

3.3  Distribution drawing and density functions 
These functions for drawing from various distributions, and for calculating probability density 

function values for various distributions, are all based upon algorithms in the GNU Scientific 
Library (GSL).  The distributions supported are those which are presently expected to be useful for 
users of Eidos; adding further distributions to Eidos on request is trivial as long as they are 
supported by the GSL, so feel free to make requests. 

Draws are obtained using the standard Eidos random number generator, which might be shared 
with the Context; generating draws may therefore change the state of the Context.  (In SLiM, for 
example, generating draws will alter the future of your simulation, since the random number 
sequence used by SLiM will be changed as a side effect.) 

(float)dmvnorm(float x, numeric mu, numeric sigma) 
Returns a vector of probability densities for a k-dimensional multivariate normal distribution with a 
length k mean vector mu and a k × k variance-covariance matrix sigma.  The mu and sigma parameters 
are used for all densities.  The quantile values, x, should be supplied as a matrix with one row per 
vector of quantile values and k columns (one column per dimension); for convenience, a single 
quantile may be supplied as a vector rather than a matrix with just one row.  The number of 
dimensions k must be at least two; for k=1, use dnorm(). 

Cholesky decomposition of the variance-covariance matrix sigma is involved as an internal step, and 
this requires that sigma be positive-definite; if it is not, an error will result.  When more than one 
density is needed, it is much more efficient to call dmvnorm() once to generate all of the densities, 
since the Cholesky decomposition of sigma can then be done just once. 

(float)dbeta(float x, numeric alpha, numeric beta) 
Returns a vector of probability densities for a beta distribution at quantiles x with parameters alpha 
and beta.  The alpha and beta parameters may either be singletons, specifying a single value to be 
used for all of the draws, or they may be vectors of the same length as x, specifying a value for each 
density computation.  The probability density function is P(s | α,β) = [Γ(α+β)/Γ(α)Γ(β)]sα−1(1−s)β−1, 
where α is alpha and β is beta.  Both parameters must be greater than 0. 

(float)dexp(float x, [numeric mu = 1]) 
Returns a vector of probability densities for an exponential distribution at quantiles x with mean mu 
(i.e. rate 1/mu).  The mu parameter may either be a singleton, specifying a single value to be used for 
all of the draws, or they may be vectors of the same length as x, specifying a value for each density 
computation. 

(float)dgamma(float x, numeric mean, numeric shape) 
Returns a vector of probability densities for a gamma distribution at quantiles x with mean mean and 
shape parameter shape.  The mean and shape parameters may either be singletons, specifying a single 
value to be used for all of the draws, or they may be vectors of the same length as x, specifying a value 
for each density computation.  The probability density function is P(s | α,β) = [Γ(α)βα]−1sα−1exp(−s/β), 
where α is the shape parameter shape, and the mean of the distribution given by mean is equal to αβ. 

(float)dnorm(float x, [numeric mean = 0], [numeric sd = 1]) 
Returns a vector of probability densities for a normal distribution at quantiles x with mean mean and 
standard deviation sd.  The mean and sd parameters may either be singletons, specifying a single value 

 58



to be used for all of the densities, or they may be vectors of the same length as x, specifying a value 
for each density computation. 

(integer)findInterval(numeric x, numeric vec, [logical$ rightmostClosed = F], 
[logical$ allInside = F]) 

Returns a vector of interval indices for the values in x within a vector of non-decreasing breakpoints 
vec.  The returned integer vector contains, for each corresponding element of x, the index of the 
interval in vec within which that element of x is contained. 

More precisely, if i is the returned integer vector from findInterval(x, v), and N is length(v), 
then for each index j in x, it will be true that v[i[j]] ≤ x[j] < v[i[j]+1], treating v[-1] as -INF 
and v[N] as INF, assuming that the two flags rightmostClosed and allInside have their default 
value of F.  The effects of the flags will be discussed below.  Note that vec must be non-decreasing; in 
other words, it must be sorted in ascending order, although it may have duplicate values.  The returned 
vector will thus be equal in length to x, and each of its elements will be in the interval [-1, N-1]. 

The rightmostClosed flag, if T, alters the above behavior to treat the rightmost interval, vec[N-2] .. 
vec[N-1], as closed.  This means that if x[j]==vec[N-1] (i.e., equals max(vec)), the corresponding 
result i[j] will be N-2 as for all other values in the last interval. 

The allInside flag, if T, alters the above behavior to coerce returned indices into 0 .. N-2.  In other 
words, -1 is mapped to 0, and N-1 is mapped to N-2. 

(float)pnorm(float q, [numeric mean = 0], [numeric sd = 1]) 
Returns a vector of cumulative distribution function values for a normal distribution at quantiles q 
with mean mean and standard deviation sd.  The mean and sd parameters may either be singletons, 
specifying a single value to be used for all of the quantiles, or they may be vectors of the same length 
as q, specifying a value for each quantile. 

(float)qnorm(float p, [numeric mean = 0], [numeric sd = 1]) 
Returns a vector of quantiles for a normal distribution with lower tail probabilities less than p, with 
mean mean and standard deviation sd. The mean and sd parameters may either be singletons, 
specifying a single value to be used for all of the quantiles, or they may be vectors of the same length 
as p, specifying a value for each quantile computation. 

(float)rbeta(integer$ n, numeric alpha, numeric beta) 
Returns a vector of n random draws from a beta distribution with parameters alpha and beta.  The 
alpha and beta parameters may either be singletons, specifying a single value to be used for all of the 
draws, or they may be vectors of length n, specifying a value for each draw.  Draws are made from a 
beta distribution with probability density P(s | α,β) = [Γ(α+β)/Γ(α)Γ(β)]sα−1(1−s)β−1, where α is alpha 
and β is beta.  Both parameters must be greater than 0.  The values drawn are in the interval [0, 1]. 

(integer)rbinom(integer$ n, integer size, float prob) 
Returns a vector of n random draws from a binomial distribution with a number of trials specified by 
size and a probability of success specified by prob.  The size and prob parameters may either be 
singletons, specifying a single value to be used for all of the draws, or they may be vectors of length n, 
specifying a value for each draw. 

(float)rcauchy(integer$ n, [numeric location = 0], [numeric scale = 1]) 
Returns a vector of n random draws from a Cauchy distribution with location location and scale 
scale.  The location and scale parameters may either be singletons, specifying a single value to be 
used for all of the draws, or they may be vectors of length n, specifying a value for each draw. 

(integer)rdunif(integer$ n, [integer min = 0], [integer max = 1]) 
Returns a vector of n random draws from a discrete uniform distribution from min to max, inclusive.  
The min and max parameters may either be singletons, specifying a single value to be used for all of 

 59



the draws, or they may be vectors of length n, specifying a value for each draw.  See runif() for 
draws from a continuous uniform distribution. 

(float)rexp(integer$ n, [numeric mu = 1]) 
Returns a vector of n random draws from an exponential distribution with mean mu (i.e. rate 1/mu).  
The mu parameter may either be a singleton, specifying a single value to be used for all of the draws, 
or it may be a vector of length n, specifying a value for each draw. 

(float)rf(integer$ n, numeric d1, numeric d2) 
Returns a vector of n random draws from an F-distribution with degrees of freedom d1 and d2.  The 
d1 and d2 parameters may either be singletons, specifying a single value to be used for all of the 
draws, or they may be vectors of length n, specifying a value for each draw. 

(float)rgamma(integer$ n, numeric mean, numeric shape) 
Returns a vector of n random draws from a gamma distribution with mean mean and shape parameter 
shape.  The mean and shape parameters may either be singletons, specifying a single value to be used 
for all of the draws, or they may be vectors of length n, specifying a value for each draw.  Draws are 
made from a gamma distribution with probability density P(s | α,β) = [Γ(α)βα]−1sα−1exp(−s/β), where α is 
the shape parameter shape, and the mean of the distribution given by mean is equal to αβ.  Values of 
mean less than zero are allowed, and are equivalent (in principle) to the negation of a draw from a 
gamma distribution with the same shape parameter and the negation of the mean parameter. 

(integer)rgeom(integer$ n, float p) 
Returns a vector of n random draws from a geometric distribution with parameter p.  The p parameter 
may either be a singleton, specifying a single value to be used for all of the draws, or it may be a 
vector of length n, specifying a value for each draw.  Eidos follows R in using the geometric 
distribution with support on the set {0, 1, 2, …}, where the drawn value indicates the number of 
failures prior to success.  There is an alternative definition, based upon the number of trial required to 
get one success, so beware. 

(float)rlnorm(integer$ n, [numeric meanlog = 0], [numeric sdlog = 1]) 
Returns a vector of n random draws from a lognormal distribution with mean meanlog and standard 
deviation sdlog, specified on the log scale.  The meanlog and sdlog parameters may either be 
singletons, specifying a single value to be used for all of the draws, or they may be vectors of length n, 
specifying a value for each draw. 

(float)rmvnorm(integer$ n, numeric mu, numeric sigma) 
Returns a matrix of n random draws from a k-dimensional multivariate normal distribution with a 
length k mean vector mu and a k × k variance-covariance matrix sigma.  The mu and sigma parameters 
are used for all n draws.  The draws are returned as a matrix with n rows (one row per draw) and k 
columns (one column per dimension).  The number of dimensions k must be at least two; for k=1, use 
rnorm(). 

Cholesky decomposition of the variance-covariance matrix sigma is involved as an internal step, and 
this requires that sigma be positive-definite; if it is not, an error will result.  When more than one draw 
is needed, it is much more efficient to call rmvnorm() once to generate all of the draws, since the 
Cholesky decomposition of sigma can then be done just once. 

(integer)rnbinom(integer$ n, numeric size, float prob) 
Returns a vector of n random draws from a negative binomial distribution representing the number of 
failures which occur in a sequence of Bernoulli trials before reaching a target number of successful 
trials specified by size, given a probability of success specified by prob.  The mean of this distribution 
for size s and prob p is s(1−p)/p, with variance s(1−p)/p2.  The size and prob parameters may either 
be singletons, specifying a single value to be used for all of the draws, or they may be vectors of length 
n, specifying a value for each draw. 

 60



(float)rnorm(integer$ n, [numeric mean = 0], [numeric sd = 1]) 
Returns a vector of n random draws from a normal distribution with mean mean and standard 
deviation sd.  The mean and sd parameters may either be singletons, specifying a single value to be 
used for all of the draws, or they may be vectors of length n, specifying a value for each draw. 

(integer)rpois(integer$ n, numeric lambda) 
Returns a vector of n random draws from a Poisson distribution with parameter lambda (not to be 
confused with the language concept of a “lambda”; lambda here is just the name of a parameter, 
because the symbol typically used for the parameter of a Poisson distribution is the Greek letter λ).  
The lambda parameter may either be a singleton, specifying a single value to be used for all of the 
draws, or it may be a vector of length n, specifying a value for each draw. 

(float)runif(integer$ n, [numeric min = 0], [numeric max = 1]) 
Returns a vector of n random draws from a continuous uniform distribution from min to max, 
inclusive.  The min and max parameters may either be singletons, specifying a single value to be used 
for all of the draws, or they may be vectors of length n, specifying a value for each draw.  See 
rdunif() for draws from a discrete uniform distribution. 

(float)rweibull(integer$ n, numeric lambda, numeric k) 
Returns a vector of n random draws from a Weibull distribution with scale parameter lambda and 
shape parameter k, both greater than zero.  The lambda and k parameters may either be singletons, 
specifying a single value to be used for all of the draws, or they may be vectors of length n, specifying 
a value for each draw.  Draws are made from a Weibull distribution with probability distribution P(s |
 λ,k) = (k / λk) sk−1 exp(-(s/λ)k). 

3.4  Vector construction functions 

(*)c(...) 
Returns the concatenation of all of its parameters into a single vector, stripped of all matrix/array 
dimensions (see rbind() and cbind() for concatenation that does not strip this information).  The 
parameters will be promoted to the highest type represented among them, and that type will be the 
return type.  NULL values are ignored; they have no effect on the result. 

(float)float(integer$ length) 
Returns a new float vector of the length specified by length, filled with 0.0 values.  This can be 
useful for pre-allocating a vector which you then fill with values by subscripting. 

(integer)integer(integer$ length, [integer$ fill1 = 0], [integer$ fill2 = 1], 
[Ni fill2Indices = NULL]) 

Returns a new integer vector of the length specified by length, filled with 0 values by default.  This 
can be useful for pre-allocating a vector which you then fill with values by subscripting. 

If a value is supplied for fill1, the new vector will be filled with that value instead of the default of 0.  
Additionally, if a non-NULL vector is supplied for fill2Indices, the indices specified by 
fill2Indices will be filled with the value provided by fill2.  For example, given the default values 
of 0 and 1 for fill1 and fill2, the returned vector will contain 1 at all positions specified by 
fill2Indices, and will contain 0 at all other positions. 

(logical)logical(integer$ length) 
Returns a new logical vector of the length specified by length, filled with F values.  This can be 
useful for pre-allocating a vector which you then fill with values by subscripting. 

(object<Object>)object(void) 
Returns a new empty object vector.  Unlike float(), integer(), logical(), and string(), a 
length cannot be specified and the new vector contains no elements.  This is because there is no 

 61



default value for the object type.  Adding to such a vector is typically done with c().  Note that the 
return value is of type object<Object>; this method creates an object vector that does not know 
what element type it contains.  Such object vectors may be mixed freely with other object vectors 
in c() and similar contexts; the result of such mixing will take its object-element type from the 
object vector with a defined object-element type (if any). 

(*)rep(* x, integer$ count) 
Returns the repetition of x: the entirety of x is repeated count times.  The return type matches the type 
of x. 

(*)repEach(* x, integer count) 
Returns the repetition of elements of x: each element of x is repeated.  If count is a singleton, it 
specifies the number of times that each element of x will be repeated.  Otherwise, the length of count 
must be equal to the length of x; in this case, each element of x is repeated a number of times 
specified by the corresponding value of count. 

(*)sample(* x, integer$ size, [logical$ replace = F], [Nif weights = NULL]) 
Returns a vector of size containing a sample from the elements of x.  If replace is T, sampling is 
conducted with replacement (the same element may be drawn more than once); if it is F (the default), 
then sampling is done without replacement.  A vector of weights may be supplied in the optional 
parameter weights; if not NULL, it must be equal in size to x, all weights must be non-negative, and 
the sum of the weights must be greater than 0.  If weights is NULL (the default), then equal weights 
are used for all elements of x.  An error occurs if sample() runs out of viable elements from which to 
draw; most notably, if sampling is done without replacement then size must be at most equal to the 
size of x, but if weights of zero are supplied then the restriction on size will be even more stringent.  
The draws are obtained from the standard Eidos random number generator, which might be shared 
with the Context. 

(numeric)seq(numeric$ from, numeric$ to, [Nif$ by = NULL], [Ni$ length = NULL]) 
Returns a sequence, starting at from and proceeding in the direction of to until the next value in the 
sequence would fall beyond to.  If the optional parameters by and length are both NULL (the default), 
the sequence steps by values of 1 or -1 (as needed to proceed in the direction of to).  A different step 
value may be supplied with by, but must have the necessary sign.  Alternatively, a sequence length 
may be supplied in length, in which case the step magnitude will be chosen to produce a sequence 
of the requested length (with the necessary sign, as before).  If from and to are both integer then the 
return type will be integer when possible (but this may not be possible, depending upon values 
supplied for by or length), otherwise it will be float. 

(integer)seqAlong(* x) 
Returns an index sequence along x, from 0 to size(x) - 1, with a step of 1.  This is a convenience 
function for easily obtaining a set of indices to address or iterate through a vector.  Any matrix/array 
dimension information is ignored; the index sequence is suitable for indexing into x as a vector. 

(integer)seqLen(integer$ length) 
Returns an index sequence of length, from 0 to length - 1, with a step of 1; if length is 0 the 
sequence will be zero-length.  This is a convenience function for easily obtaining a set of indices to 
address or iterate through a vector.  Note that when length is 0, using the sequence operator with 0:
(length-1) will produce 0 -1, and calling seq(a, b, length=length) will raise an error, but 
seqLen(length) will return integer(0), making seqLen() particularly useful for generating a 
sequence of a given length that might be zero. 

(string)string(integer$ length) 
Returns a new string vector of the length specified by length, filled with "" values.  This can be 
useful for pre-allocating a vector which you then fill with values by subscripting. 

 62



3.5  Value inspection & manipulation functions 

(logical$)all(logical x, ...) 
Returns T if all values are T in x and in any other arguments supplied; if any value is F, returns F.  All 
arguments must be of logical type.  If all arguments are zero-length, T is returned. 

(logical$)any(logical x, ...) 
Returns T if any value is T in x or in any other arguments supplied; if all values are F, returns F.  All 
arguments must be of logical type.  If all arguments are zero-length, F is returned. 

(void)cat(* x, [string$ sep = " "], [logical$ error = F]) 
Concatenates output to Eidos’s output stream, joined together by sep.  The value x that is output may 
be of any type.  A newline is not appended to the output, unlike the behavior of print(); if a trailing 
newline is desired, you can use "\n" (or use the catn() function).  Also unlike print(), cat() tends 
to emit very literal output; print(logical(0)) will emit “logical(0)”, for example – showing a 
semantic interpretation of the value – whereas cat(logical(0)) will emit nothing at all, since there 
are no elements in the value (it is zero-length).  Similarly, print(NULL) will emit “NULL”, but 
cat(NULL) will emit nothing. 

By default (when error is F), the output is sent to the standard Eidos output stream.  When running at 
the command line, this sends it to stdout; when running in SLiMgui, this sends it to the simulation 
window’s output textview.  If error is T, the output is instead sent to the Eidos error stream.  When 
running at the command line, this sends it to stderr; when running in SLiMgui, the output is routed 
to the simulation’s debugging output window. 

(void)catn([* x = ""], [string$ sep = " "], [logical$ error = F]) 
Concatenates output (with a trailing newline) to Eidos’s output stream, joined together by sep.  The 
behavior of catn() is identical to that of cat(), except that a final newline character is appended to 
the output for convenience.  For catn() a default value of "" is supplied for x, to allow a simple 
catn() call with no parameters to emit a newline. 

By default (when error is F), the output is sent to the standard Eidos output stream.  When running at 
the command line, this sends it to stdout; when running in SLiMgui, this sends it to the simulation 
window’s output textview.  If error is T, the output is instead sent to the Eidos error stream.  When 
running at the command line, this sends it to stderr; when running in SLiMgui, the output is routed 
to the simulation’s debugging output window. 

(string)format(string$ format, numeric x) 
Returns a vector of formatted strings generated from x, based upon the formatting string format.  The 
format parameter may be any string value, but must contain exactly one escape sequence 
beginning with the % character.  This escape sequence specifies how to format a single value from the 
vector x.  The returned vector contains one string value for each element of x; each string value is 
identical to the string supplied in format, except with a formatted version of the corresponding value 
from x substituted in place of the escape sequence. 

The syntax for format is a subset of the standard C/C++ printf()-style format strings (available in 
many places online, such as http://en.cppreference.com/w/c/io/fprintf).  The escape sequence used to 
format each value of x is composed of several elements: 

– A % character at the beginning, initiating the escape sequence (if an actual % character is desired, 
rather than an escape sequence, %% may be used) 

– Optional flags that modify the style of formatting: 

• - : The value is left-justified with the field (as opposed to the default of right-justification). 

• + : The sign of the value is always prepended, even if the value is positive (as opposed to 
the default of appending the sign only if the value is negative). 

 63

http://en.cppreference.com/w/c/io/fprintf


• space : The value is prepended by a space when a sign is not prepended.  This is ignored if the 
+ flag is present, since values are then always prepended by a sign. 

• # : An alternative format is used.  For %o, at least one leading zero is always produced.  
For %x and %X, 0x or 0X (respectively) is prepended if the value is nonzero.  For %f, %F, 
%e, %E, %g, and %G, a decimal point is forced even if no zeros follow. 

• 0 : Leading zeros are used to pad the field instead of spaces.  This flag is ignored if the 
left-justification flag, -, is present.  It is also ignored for integer values, if a precision 
is specified. 

– An optional minimum field width, specified as an integer value.  Fields will be padded out to this 
minimum width.  Padding will be done with space characters by default (or with zeros, if the 0 
flag is used), on the left by default (or on the right, if the - flag is used). 

– An optional precision, given as an integer value preceded by a . character.  If no integer value 
follows the . character, a precision of zero will be used.  For integer values of x (formatted with 
%d, %i, %o, %x, or %X) the precision specifies the minimum number of digits that will appear (with 
extra zeros on the left if necessary), with a default precision of 1.  For float values of x formatted 
with %f, %F, %e, %E, %g, or %G, the precision specifies the minimum number of digits that will 
appear to the right of the decimal point (with extra zeros on the right if necessary), with a default 
precision of 6. 

– A format specifier.  For integer values, this may be %d or %i (producing base-10 output; there is 
no difference between the two), %o (producing base-8 or octal output), %x (producing base-16 
hexadecimal output using lowercase letters), or %X (producing base-16 hexadecimal output using 
uppercase letters).  For float values, this may be %f or %F to produce decimal notation (of the 
form [−]ddd.ddd; there is no difference between the two), %e or %E to produce scientific notation 
(of the form [−]d.ddde±dd or [−]d.dddE±dd, respectively), or %g or %G to produce either 
decimal notation or scientific notation (using the formatting of %f / %e or %F / %E, respectively) on 
a per-value basis, depending upon the range of the value. 

Note that relative to the standard C/C++ printf()-style behavior, there are a few differences: (1) only 
a single escape sequence may be present in the format string, (2) the use of * to defer field width and 
precision values to a passed parameter is not supported, (3) only integer and float values of x are 
supported, (4) only the %d, %i, %o, %x, %X, %f, %F, %e, %E, %g, and %G format specifiers are supported, 
and (5) no length modifiers may be supplied, since Eidos does not support different sizes of the 
integer and float types.  Note also that the Eidos conventions of emitting INF and NAN for infinities 
and Not-A-Number values respectively is not honored by this function; the strings generated for such 
values are platform-dependent, following the implementation definition of the C++ compiler used to 
build Eidos, since format() calls through to snprintf() to assemble the final string values. 

For example, format("A number: %+7.2f", c(-4.1, 15.375, 8)) will produce a vector with 
three elements: "A number:   -4.10" "A number:  +15.38" "A number:   +8.00".  The 
precision of .2 results in two digits after the decimal point, the minimum field width of 7 results in 
padding of the values on the left (with spaces) to a minimum of seven characters, the flag + causes a 
sign to be shown on positive values as well as negative values, and the format specifier f leads to the 
float values of x being formatted in base-10 decimal.  One string value is produced in the result 
vector for each value in the parameter x.  These values could then be merged into a single string with 
paste(), for example, or printed with print() or cat(). 

(logical$)identical(* x, * y) 
Returns a logical value indicating whether two values are identical.  If x and y have exactly the 
same type and size, and all of their corresponding elements are exactly the same, and (for matrices 
and arrays) their dimensions are identical, this will return T, otherwise it will return F.  The test here is 
for exact equality; an integer value of 1 is not considered identical to a float value of 1.0, for 
example.  Elements in object values must be literally the same element, not simply identical in all of 
their properties.  Type promotion is never done.  For testing whether two values are the same, this is 

 64



generally preferable to the use of operator == or operator !=; see the discussion at section 2.5.1.  Note 
that identical(NULL,NULL) is T. 

(*)ifelse(logical test, * trueValues, * falseValues) 
Returns the result of a vector conditional operation: a vector composed of values from trueValues, 
for indices where test is T, and values from falseValues, for indices where test is F.  The lengths 
of trueValues and falseValues must either be equal to 1 or to the length of test; however, 
trueValues and falseValues don’t need to be the same length as each other.  Furthermore, the type 
of trueValues and falseValues must be the same (including, if they are object type, their element 
type).  The return will be of the same length as test, and of the same type as trueValues and 
falseValues.  Each element of the return vector will be taken from the corresponding element of 
trueValues if the corresponding element of test is T, or from the corresponding element of 
falseValues if the corresponding element of test is F; if the vector from which the value is to be 
taken (i.e., trueValues or falseValues) has a length of 1, that single value is used repeatedly, 
recycling the vector.  If test, trueValues, and/or falseValues are matrices or arrays, that will be 
ignored by ifelse() except that the result will be of the same dimensionality as test. 

This is quite similar to a function in R of the same name; note, however, that Eidos evaluates all 
arguments to functions calls immediately, so trueValues and falseValues will be evaluated fully 
regardless of the values in test, unlike in R.  Value expressions without side effects are therefore 
recommended. 

(integer$)length(* x) 
Returns the size (e.g., length) of x: the number of elements contained in x.  Note that length() is a 
synonym for size(). 

(integer)match(* x, * table) 
Returns a vector of the positions of (first) matches of x in table.  Type promotion is not performed; x 
and table must be of the same type.  For each element of x, the corresponding element in the result 
will give the position of the first match for that element of x in table; if the element has no match in 
table, the element in the result vector will be -1.  The result is therefore a vector of the same length 
as x.  If a logical result is desired, with T indicating that a match was found for the corresponding 
element of x, use (match(x, table) >= 0). 

(integer)order(+ x, [logical$ ascending = T]) 
Returns a vector of sorting indices for x: a new integer vector of the same length as x, containing 
the indices into x that would sort x.  In other words, x[order(x)]==sort(x).  This can be useful for 
more complex sorting problems, such as sorting several vectors in parallel by a sort order determined 
by one of the vectors.  If the optional logical parameter ascending is T (the default), then the sorted 
order will be ascending; if it is F, the sorted order will be descending.  The ordering is determined 
according to the same logic as the < and > operators in Eidos.  To easily sort vectors in a single step, 
use sort() or sortBy(), for non-object and object vectors respectively. 

(string$)paste(..., [string$ sep = " "]) 
Returns a joined string composed from the string representations of the elements of the parameters 
passed in, taken in order, joined together by sep.  Although this function is based upon the R paste() 
function of the same name, note that it is much simpler and less powerful; in particular, the result is 
always a singleton string, rather than returning a non-singleton string vector when one of the 
parameters is a non-singleton.  The string representation used by paste() is the same as that emitted 
by cat(). 

(string$)paste0(...) 
Returns a joined string composed from the string representations of the elements of the parameters 
passed in, taken in order, joined together with no separator.  This function is identical to paste(), 
except that no separator is used.  Note that this differs from the semantics of paste0() in R. 

 65



(void)print(* x, [logical$ error = F]) 
Prints output to Eidos’s output stream.  The value x that is output may be of any type.  A newline is 
appended to the output.  See cat() for a discussion of the differences between print() and cat(). 

By default (when error is F), the output is sent to the standard Eidos output stream.  When running at 
the command line, this sends it to stdout; when running in SLiMgui, this sends it to the simulation 
window’s output textview.  If error is T, the output is instead sent to the Eidos error stream.  When 
running at the command line, this sends it to stderr; when running in SLiMgui, the output is routed 
to the simulation’s debugging output window. 

(*)rev(* x) 
Returns the reverse of x: a new vector with the same elements as x, but in the opposite order. 

(integer$)size(* x) 
Returns the size of x: the number of elements contained in x.  Note that length() is a synonym for 
size(). 

(+)sort(+ x, [logical$ ascending = T]) 
Returns a sorted copy of x: a new vector with the same elements as x, but in sorted order.  If the 
optional logical parameter ascending is T (the default), then the sorted order will be ascending; if it 
is F, the sorted order will be descending.  The ordering is determined according to the same logic as 
the < and > operators in Eidos.  To sort an object vector, use sortBy().  To obtain indices for sorting, 
use order(). 

(object)sortBy(object x, string$ property, [logical$ ascending = T]) 
Returns a sorted copy of x: a new vector with the same elements as x, but in sorted order.  If the 
optional logical parameter ascending is T (the default), then the sorted order will be ascending; if it 
is F, the sorted order will be descending.  The ordering is determined according to the same logic as 
the < and > operators in Eidos.  The property argument gives the name of the property within the 
elements of x according to which sorting should be done.  This must be a simple property name; it 
cannot be a property path.  For example, to sort a Mutation vector by the selection coefficients of the 
mutations, you would simply pass "selectionCoeff", including the quotes, for property.  To sort a 
non-object vector, use sort().  To obtain indices for sorting, use order(). 

(void)str(* x, [logical$ error = F]) 
Prints the structure of x: a summary of its type and the values it contains.  If x is an object, note that 
str() produces different results from the str() method of x; the str() function prints the external 
structure of x (the fact that it is an object, and the number and type of its elements), whereas the 
str() method prints the internal structure of x (the external structure of all the properties contained 
by x). 

By default (when error is F), the output is sent to the standard Eidos output stream.  When running at 
the command line, this sends it to stdout; when running in SLiMgui, this sends it to the simulation 
window’s output textview.  If error is T, the output is instead sent to the Eidos error stream.  When 
running at the command line, this sends it to stderr; when running in SLiMgui, the output is routed 
to the simulation’s debugging output window. 

(integer)tabulate(integer bin, [Ni$ maxbin = NULL]) 
Returns occurrence counts for each non-negative integer in bin.  Occurrence counts are tabulated 
into bins for each value 0:maxbin in bin; values outside that range are ignored.  The default value of 
maxbin, NULL, is equivalent to passing maxbin=max(0, bin); in other words, by default the result 
vector will be exactly large enough to accommodate counts for every integer in bin.  In any case, the 
result vector will contain maxbin+1 elements (some or all of which might be zero, if the occurrence 
count of that integer in bin is zero). 

Note that the semantics of this function differ slightly from the tabulate() function in R, because R is 
1-based and Eidos is 0-based. 

 66



(*)unique(* x, [logical$ preserveOrder = T]) 
Returns the unique values in x.  In other words, for each value k in x that occurs at least once, the 
vector returned will contain k exactly once.  If preserveOrder is T (the default), the order of values in 
x is preserved, taking the first instance of each value; this is relatively slow, with O(n2) performance.  If 
preserveOrder if F instead, the order of values in x is not preserved, and no particular ordering 
should be relied upon; this is relatively fast, with O(n log n) performance.  This performance difference 
will only matter for large vectors, however; for most applications the default behavior can be retained 
whether the order of the result matters or not. 

(integer)which(logical x) 
Returns the indices of T values in x.  In other words, if an index k in x is T, then the vector returned 
will contain k; if index k in x is F, the vector returned will omit k.  One way to look at this is that it 
converts from a logical subsetting vector to an integer (index-based) subsetting vector, without 
changing which subset positions would be selected. 

(integer$)whichMax(+ x) 
Returns the index of the (first) maximum value in x.  In other words, if k is equal to the maximum 
value in x, then the vector returned will contain the index of the first occurrence of k in x.  If the 
maximum value is unique, the result is the same as (but more efficient than) the expression 
which(x==max(x)), which returns the indices of all of the occurrences of the maximum value in x. 

(integer$)whichMin(+ x) 
Returns the index of the (first) minimum value in x.  In other words, if k is equal to the minimum 
value in x, then the vector returned will contain the index of the first occurrence of k in x.  If the 
minimum value is unique, the result is the same as (but more efficient than) the expression 
which(x==min(x)), which returns the indices of all of the occurrences of the minimum value in x. 

3.6  Value type testing and coercion functions 

(float)asFloat(+ x) 
Returns the conversion to float of x.  If x is string and cannot be converted to float, Eidos will 
throw an error. 

(integer)asInteger(+ x) 
Returns the conversion to integer of x.  If x is of type string or float and cannot be converted to 
integer, Eidos will throw an error. 

(logical)asLogical(+ x) 
Returns the conversion to logical of x.  Recall that in Eidos the empty string "" is considered F, 
and all other string values are considered T.  Converting INF or -INF to logical yields T (since 
those values are not equal to zero); converting NAN to logical throws an error. 

(string)asString(+ x) 
Returns the conversion to string of x.  Note that asString(NULL) returns "NULL" even though NULL 
is zero-length. 

(string$)elementType(* x) 
Returns the element type of x, as a string.  For the non-object types, the element type is the same 
as the type: "NULL", "logical", "integer", "float", or "string".  For object type, however, 
elementType() returns the name of the type of element contained by the object, such as "Species" 
or "Mutation" in the Context of SLiM.  Contrast this with type(). 

(logical$)isFloat(* x) 
Returns T if x is float type, F otherwise. 

 67



(logical$)isInteger(* x) 
Returns T if x is integer type, F otherwise. 

(logical$)isLogical(* x) 
Returns T if x is logical type, F otherwise. 

(logical$)isNULL(* x) 
Returns T if x is NULL type, F otherwise. 

(logical$)isObject(* x) 
Returns T if x is object type, F otherwise. 

(logical$)isString(* x) 
Returns T if x is string type, F otherwise. 

(string$)type(* x) 
Returns the type of x, as a string: "NULL", "logical", "integer", "float", "string", or 
"object".  Contrast this with elementType(). 

3.7  String manipulation functions 

(lis)grep(string$ pattern, string x, [logical$ ignoreCase = F], 
[string$ grammar = "ECMAScript"], [string$ value = "indices"], 
[logical$ fixed = F], [logical$ invert = F]) 

Searches for regular expression matches in the string-elements of x.  Regular expressions (regexes) 
express patterns that strings can either match or not match; they are very widely used in programming 
languages and terminal shells.  The topic of regexes is very complex, and a great deal of information 
about them can be found online, including examples and tutorials; this manual will not attempt to 
document the topic in detail. 

The grep() function uses a regex supplied in pattern, looking for matches for the regex in each 
element of x.  If ignoreCase is F (the default), the pattern matching will be case sensitive (i.e., 
uppercase versus lowercase will matter); if it is T, the pattern matching will be case-insensitive. 

The grammar parameter determines the regex grammar used to find matches.  Several options are 
available.  The default, "ECMAScript", is a straightforward regex grammar, the specification for which 
can be found at https://www.cplusplus.com/reference/regex/ECMAScript/ among many other links.  
The "basic" grammar uses POSIX basic regular expressions, often called BRE; this is documented at 
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions.  The 
"extended" grammar uses POSIX extended regular expressions, often called ERE; this is documented 
at https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions.  The 
"awk" grammar is based upon the "extended" grammar, with more escapes for non-printing 
characters.  The "grep" and "egrep" grammars are based upon the "basic" and "extended" 
grammars, respectively, but also allow newline characters ("\n") to separate alternations.  If you are 
not sure which grammar you want to use, "ECMAScript" is recommended.  All of these grammars are 
implemented internally in Eidos using the C++ <regex> library, so if you need clarification on the 
details of a grammar, you can search for related C++ materials online. 

Information about the matches found is returned in one of four ways.  If value is "indices" (the 
default), an integer vector is returned containing the index in x for each match.  If value is 
"elements", a string vector is returned containing the actual string-elements of x for each match.  If 
value is "matches", a string vector is returned containing only the substring that matched, within 
each string-element in x that matched (if more than one substring in a given element matched, the first 
match is returned).  Finally, if value is "logical" a logical vector is returned, of the same length as 
x, containing T where the corresponding element of x matched, or F where it did not match.  This 

 68

https://www.cplusplus.com/reference/regex/ECMAScript/
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions


function therefore encapsulates the functionality of both the grep() and grepl() functions of R; use 
value="logical" for functionality like that of R’s grepl(). 

If fixed is F (the default), matching is determined using pattern following the specified regex 
grammar as described above.  If fixed is T, matching is instead determined using pattern as a 
string value to be matched “as is”, rather than as a regular expression; the grammar specified does 
not matter in this case, but ignoreCase still applies.  This could be thought of as another grammar 
value, really, meaning “no grammar”, but it is supplied as a separate flag following R. 

Finally, if invert if F (the default) matching proceeds as normal for the chosen regex grammar, 
whereas if invert if T matching is inverted: indices, elements, or logical values are returned for the 
elements of x that did not match.  If invert is T, the value parameter may not be “matches". 

Note that there is not presently any way to extract subpattern matches, nor is there any way to perform 
replacements of matches. 

(integer)nchar(string x) 
Returns a vector of the number of characters in the string-elements of x. 

(logical)strcontains(string x, string$ s, [integer$ pos = 0]) 
Returns the occurrence of a string specified by s in each of the elements of x, starting at position pos.  
Position 0, the default, is the beginning of x; a position of 0 means the entire string is searched.  A 
starting search position that is at or beyond the end of a given element of x is not an error; it just 
implies that a match will not be found in that element.  The existences of matches are returned as a 
logical vector; if a match was found in a given element, the corresponding value in the returned 
vector is T, otherwise it is F.  This function is a simplified version of strfind(), which returns the 
positions of matches.  The strprefix() and strsuffix() functions are also related. 

(integer)strfind(string x, string$ s, [integer$ pos = 0]) 
Returns the first occurrence of a string specified by s in each of the elements of x, starting at position 
pos.  Position 0, the default, is the beginning of x; a position of 0 means the entire string is searched.  
A starting search position that is at or beyond the end of a given element of x is not an error; it just 
implies that a match will not be found in that element.  The positions of matches are returned as an 
integer vector; if no match was found in a given element, the corresponding value in the returned 
vector is -1.  The strcontains() function may be used when a logical value (found / not found) is 
desired. 

(logical)strprefix(string x, string$ s) 
Returns the occurrence of a prefix string specified by s at the beginning of each of the elements of x.  
The existences of prefixes are returned as a logical vector; if a given element begins with the prefix, 
the corresponding value in the returned vector is T, otherwise it is F. 

(string)strsplit(string$ x, [string$ sep = " "]) 
Returns substrings of x that were separated by the separator string sep.  Every substring defined by an 
occurrence of the separator is included, and thus zero-length substrings may be returned.  For 
example, strsplit(".foo..bar.", ".") returns a string vector containing "", "foo", "", "bar", 
"".  In that example, the empty string between "foo" and "bar" in the returned vector is present 
because there were two periods between foo and bar in the input string – the empty string is the 
substring between those two separators.  If sep is "", a vector of single characters will be returned, 
resulting from splitting x at every position.  Note that paste() performs the inverse operation of 
strsplit(). 

(logical)strsuffix(string x, string$ s) 
Returns the occurrence of a suffix string specified by s at the end of each of the elements of x.  The 
existences of suffixes are returned as a logical vector; if a given element ends with the suffix, the 
corresponding value in the returned vector is T, otherwise it is F. 

 69



(string)substr(string x, integer first, [Ni last = NULL]) 
Returns substrings extracted from the elements of x, spanning character position first to character 
position last (inclusive).  Character positions are numbered from 0 to nchar(x)-1.  Positions that fall 
outside of that range are legal; a substring range that encompasses no characters will produce an 
empty string.  If first is greater than last, an empty string will also result.  If last is NULL (the 
default), then the substring will extend to the end of the string.  The parameters first and last may 
either be singletons, specifying a single value to be used for all of the substrings, or they may be 
vectors of the same length as x, specifying a value for each substring. 

3.8  Matrix and array functions 

(*)apply(* x, integer margin, string$ lambdaSource) 
Prior to Eidos 1.6 / SLiM 2.6, sapply() was named apply(), and this function did not yet exist 

Applies a block of Eidos code to margins of x.  This function is essentially an extension of sapply() 
for use with matrices and arrays; it is recommended that you fully understand sapply() before 
tackling this function.  As with sapply(), the lambda specified by lambdaSource will be executed for 
subsets of x, and the results will be concatenated together with type-promotion in the style of c() to 
produce a result.  Unlike sapply(), however, the subsets of x used might be rows, columns, or 
higher-dimensional slices of x, rather than just single elements, depending upon the value of margin.  
For apply(), x must be a matrix or array (see section 2.9).  The apply() function in Eidos is patterned 
directly after the apply() function in R, and should behave identically, except that dimension indices 
in Eidos are zero-based whereas in R they are one-based. 

The margin parameter gives the indices of dimensions of x that will be iterated over when assembling 
values to supply to lambdaSource.  If x is a matrix it has two dimensions: rows, of dimension index 0, 
and columns, of dimension index 1.  These are the indices of the dimension sizes returned by dim(); 
dim(x)[0] gives the number of rows of x, and dim(x)[1] gives the number of columns.  These 
dimension indices are also apparent when subsetting x; a subset index in position 0, such as x[m,], 
gives row m of x, whereas a subset index in position 1, such as x[,n], gives column n of x.  In the 
same manner, supplying 0 for margin specifies that subsets of x from x[0,] to x[m,] should be 
“passed” to lambdaSource, through the applyValue “parameter”; dimension 0 is iterated over, 
whereas dimension 1 is taken in aggregate since it is not included in margin.  The final effect of this is 
that whole rows of x are passed to lambdaSource through applyValue.  Similarly, margin=1 would 
specify that subsets of x from x[,0] to x[,n] should be passed to lambdaSource, resulting in whole 
columns being passed.  Specifying margin=c(0,1) would indicate that dimensions 0 and 1 should 
both be iterated over (dimension 0 more rapidly), so for a matrix each each individual value of x 
would be passed to lambdaSource.  Specifying margin=c(1,0) would similarly iterate over both 
dimensions, but dimension 1 more rapidly; the traversal order would therefore be different, and the 
dimensionality of the result would also differ (see below).  For higher-dimensional arrays dimension 
indices beyond 1 exist, and so margin=c(0,1) or margin=c(1,0) would provide slices of x to 
lambdaSource, each slice having a specific row and column index.  Slices are generated by 
subsetting in the same way as operator [], but additionally, redundant dimensions are dropped as by 
drop(). 

The return value from apply() is built up from the type-promoted concatenated results, as if by the 
c() function, from the iterated execution of lambdaSource; the only question is what dimensional 
structure is imposed upon that vector of values.  If the results from lambdaSource are not of a 
consistent length, or are of length zero, then the concatenated results are returned as a plain vector.  If 
all results are of length n > 1, the return value is an array of dimensions c(n, dim(x)[margin]); in 
other words, each n-vector provides the lowest dimension of the result, and the sizes of the marginal 
dimensions are imposed upon the data above that.  If all results are of length n == 1, then if a single 
margin was specified the result is a vector (of length equal to the size of that marginal dimension), or if 
more than one margin was specified the result is an array of dimension dim(x)[margin]; in other 

 70



words, the sizes of the marginal dimensions are imposed upon the data.  Since apply() iterates over 
the marginal dimensions in the same manner, these structures follows the structure of the data. 

The above explanation may not be entirely clear, so let’s look at an example.  If x is a matrix with two 
rows and three columns, such as defined by x = matrix(1:6, nrow=2);, then executing 
apply(x, 0, "sum(applyValue);"); would cause each row of x to be supplied to the lambda 
through applyValue, and the values in each row would thus be summed to produce 9 12 as a result.  
The call apply(x, 1, "sum(applyValue);"); would instead sum columns of x, producing 3 7 11 
as a result.  Now consider using range() rather than sum() in the lambda, thus producing two values 
for each row or column.  The call apply(x, 0, "range(applyValue);"); produces a result of 
matrix(c(1,5,2,6), nrow=2), with the range of the first row of x, 1–5, in the first column of the 
result, and the range of the second row of x, 2–6, in the second column.  Although visualization 
becomes more difficult, these same patterns extend to higher dimensions and arbitrary margins of x. 

(*)array(* data, integer dim) 
Creates a new array from the data specified by data, with the dimension sizes specified by dim.  The 
first dimension size in dim is the number of rows, and the second is the number of columns; further 
entries specify the sizes of higher-order dimensions.  As many dimensions may be specified as desired, 
but with a minimum of two dimensions.  An array with two dimensions is a matrix (by definition); note 
that matrix() may provide a more convenient way to make a new matrix.  Each dimension must be 
of size 1 or greater; 0-size dimensions are not allowed. 

The elements of data are used to populate the new array; the size of data must therefore be equal to 
the size of the new array, which is the product of all the values in dim.  The new array will be filled in 
dimension order: one element in each row until a column is filled, then on to the next column in the 
same manner until all columns are filled, and then onward into the higher-order dimensions in the 
same manner. 

(*)cbind(...) 
Combines vectors or matrices by column to produce a single matrix.  The parameters must be vectors 
(which are interpreted by cbind() as if they were one-column matrices) or matrices.  They must be of 
the same type, of the same class if they are of type object, and have the same number of rows.  If 
these conditions are met, the result is a single matrix with the parameters joined together, left to right.  
Parameters may instead be NULL, in which case they are ignored; or if all parameters are NULL, the 
result is NULL.  A sequence of vectors, matrices, and NULLs may thus be concatenated with the NULL 
values removed, analogous to c().  Calling cbind(x) is an easy way to create a one-column matrix 
from a vector. 

To combine vectors or matrices by row instead, see rbind(). 

(integer)dim(* x) 
Returns the dimensions of matrix or array x.  The first dimension value is the number of rows, the 
second is the number of columns, and further values indicate the sizes of higher-order dimensions, 
identically to how dimensions are supplied to array().  NULL is returned if x is not a matrix or array. 

(*)drop(* x) 
Returns the result of dropping redundant dimensions from matrix or array x.  Redundant dimensions 
are those with a size of exactly 1.  Non-redundant dimensions are retained.  If only one non-
redundant dimension is present, the result is a vector; if more than one non-redundant dimension is 
present, the result will be a matrix or array.  If x is not a matrix or array, it is returned unmodified. 

(*)matrix(* data, [Ni$ nrow = NULL], [Ni$ ncol = NULL], [logical$ byrow = F]) 
Creates a new matrix from the data specified by data.  By default this creates a one-column matrix.  If 
non-NULL values are supplied for nrow and/or ncol, a matrix will be made with the requested number 
of rows and/or columns if possible; if the length of data is not compatible with the requested 
dimensions, an error will result.  By default, values from data will populate the matrix by columns, 

 71



filling each column sequentially before moving on to the next column; if byrow is T the matrix will be 
populated by rows instead. 

(numeric)matrixMult(numeric x, numeric y) 
Returns the result of matrix multiplication of x with y.  In Eidos (as in R), with two matrices A and B 
the simple product A * B multiplies the corresponding elements of the matrices; in other words, if X is 
the result of A * B, then Xij = Aij * Bij.  This is parallel to the definition of other operators; A + B adds 
the corresponding elements of the matrices (Xij = Aij + Bij), etc.  In R, true matrix multiplication is 
achieved with a special operator, %*%; in Eidos, the matrixMult() function is used instead. 

Both x and y must be matrices, and must be conformable according to the standard definition of 
matrix multiplication (i.e., if x is an n × m matrix then y must be a m × p matrix, and the result will be 
a n × p matrix).  Vectors will not be promoted to matrices by this function, even if such promotion 
would lead to a conformable matrix. 

(integer$)ncol(* x) 
Returns the number of columns in matrix or array x.  For vector x, ncol() returns NULL; size() 
should be used.  An equivalent of R’s NCOL() function, which treats vectors as 1-column matrices, is 
not provided but would be trivial to implement as a user-defined function. 

(integer$)nrow(* x) 
Returns the number of rows in matrix or array x.  For vector x, nrow() returns NULL; size() should 
be used.  An equivalent of R’s NROW() function, which treats vectors as 1-column matrices, is not 
provided but would be trivial to implement as a user-defined function. 

(*)rbind(...) 
Combines vectors or matrices by row to produce a single matrix.  The parameters must be vectors 
(which are interpreted by rbind() as if they were one-row matrices) or matrices.  They must be of the 
same type, of the same class if they are of type object, and have the same number of columns.  If 
these conditions are met, the result is a single matrix with the parameters joined together, top to 
bottom.  Parameters may instead be NULL, in which case they are ignored; or if all parameters are 
NULL, the result is NULL.  A sequence of vectors, matrices, and NULLs may thus be concatenated with 
the NULL values removed, analogous to c().  Calling rbind(x) is an easy way to create a one-row 
matrix from a vector. 

To combine vectors or matrices by column instead, see cbind(). 

(*)t(* x) 
Returns the transpose of x, which must be a matrix.  This is the matrix reflected across its diagonal; or 
alternatively, the matrix with its columns written out instead as rows in the same order. 

3.9  Filesystem access functions 

(logical$)createDirectory(string$ path) 
Creates a new filesystem directory at the path specified by path and returns a logical value 
indicating if the creation succeeded (T) or failed (F).  If the path already exists, createDirectory() 
will do nothing to the filesystem, will emit a warning, and will return T to indicate success if the 
existing path is a directory, or F to indicate failure if the existing path is not a directory. 

(logical$)deleteFile(string$ filePath) 
Deletes the file specified by filePath and returns a logical value indicating if the deletion 
succeeded (T) or failed (F). 

(logical$)fileExists(string$ filePath) 
Checks the existence of the file specified by filePath and returns a logical value indicating if it 
exists (T) or does not exist (F).  This also works for directories. 

 72



(string)filesAtPath(string$ path, [logical$ fullPaths = F]) 
Returns a string vector containing the names of all files in a directory specified by path.  If the 
optional parameter fullPaths is T, full filesystem paths are returned for each file; if fullPaths is F 
(the default), then only the filenames relative to the specified directory are returned.  This list includes 
directories (i.e. subfolders), including the "." and ".." directories on Un*x systems.  The list also 
includes invisible files, such as those that begin with a "." on Un*x systems.  This function does not 
descend recursively into subdirectories.  If an error occurs during the read, NULL will be returned. 

(logical$)flushFile(string$ filePath) 
Flushes buffered content to a file specified by filePath.  Normally, written data is buffered by 
writeFile() if the compress option of that function is T, holding the data in memory rather than 
writing it to disk immediately.  This buffering improves both performance and file size; however, 
sometimes it is desirable to flush the buffered data to disk with flush() so that the filesystem is up to 
date.  Note that flushing after every write is not recommended, since it will lose all of the benefits of 
buffering.  Calling flushFile() for a path that has not been written to, or is not being buffered, will 
do nothing.  If the flush is successful, T will be returned; if not, F will be returned (but at present, an 
error will result instead). 

(string$)getwd(void) 
Gets the current filesystem working directory.  The filesystem working directory is the directory 
which will be used as a base path for relative filesystem paths.  For example, if the working directory is 
"~/Desktop" (the Desktop subdirectory within the current user’s home directory, as represented by 
~), then the filename "foo.txt" would correspond to the filesystem path "~/Desktop/foo.txt", 
and the relative path "bar/baz/" would correspond to the filesystem path “~/Desktop/bar/baz/“. 

Note that the path returned may not be identical to the path previously set with setwd(), if for 
example symbolic links are involved; but it ought to refer to the same actual directory in the 
filesystem. 

The initial working directory is – as is generally the case on Un*x – simply the directory given to the 
running Eidos process by its parent process (the operating system, a shell, a job scheduler, a debugger, 
or whatever the case may be).  If you launch Eidos (or SLiM) from the command line in a Un*x shell, it 
is typically the current directory in that shell.  Before relative filesystem paths are used, you may 
therefore wish check what the initial working directory is on your platform, with getwd(), if you are 
not sure.  Alternatively, you can simply use setwd() to set the working directory to a known path. 

(object<DataFrame>$)readCSV(string$ filePath, [ls colNames = T], 
[Ns$ colTypes = NULL], [string$ sep = ","], [string$ quote = '"'], 
[string$ dec = "."], [string$ comment = ""]) 

Reads data from a CSV or other delimited file specified by filePath and returns a DataFrame object 
containing the data in a tabular form.  CSV (comma-separated value) files use a somewhat standard 
file format in which a table of data is provided, with values within a row separated by commas, while 
rows in the table are separated by newlines.  Software from R to Excel (and Eidos; see the 
serialize() method of Dictionary) can export data in CSV format.  This function can actually also 
read files that use a delimiter other than commas; TSV (tab-separated value) files are a popular 
alternative.  Since there is substantial variation in the exact file format for CSV files, this 
documentation will try to specify the precise format expected by this function.  Note that CSV files 
represent values differently that Eidos usually does, and some of the format options allowed by 
readCSV(), such as decimal commas, are not otherwise available in Eidos. 

If colNames is T (the default), the first row of data is taken to be a header, containing the string names 
of the columns in the data table; those names will be used by the resulting DataFrame.  If colNames is 
F, a header row is not expected and column names are auto-generated as X1, X2, etc.  If colNames is 
a string vector, a header row is not expected and colNames will be used as the column names; if 
additional columns exist beyond the length of colNames their names will be auto-generated.  
Duplicate column names will generate a warning and be made unique. 

 73



If colTypes is NULL (the default), the value type for each column will be guessed from the values it 
contains, as described below.  If colTypes is a singleton string, it should contain single-letter codes 
indicating the desired type for each column, from left to right.  The letters lifs have the same 
meaning as in Eidos signatures (logical, integer, float, and string); in addition, ? may be used 
to indicate that the type for that column should be guessed as by default, and _ or - may be used to 
indicate that that column should be skipped – omitted from the returned DataFrame.  Other 
characters in colTypes will result in an error.  If additional columns exist beyond the end of the 
colTypes string their types will be guessed as by default. 

The separator between values is supplied by sep; it is a comma by default, but a tab can be used 
instead by supplying tab ("\t" in Eidos), or another character may also be used.  If sep is the empty 
string "", the separator between values is “whitespace”, meaning one or more spaces or tabs.  When 
the separator is whitespace, whitespace at the beginning or the end of a line will be ignored. 

Similarly, the character used to quote string values is a double quote ('"' in Eidos), by default, but 
another character may be supplied in quote.  When the string delimiter is encountered, all following 
characters are considered to be part of the string until another string delimiter is encountered, 
terminating the string; this includes spaces, comment characters, newlines, and everything else.  
Within a string value, the string delimiter itself is used twice in a row to indicate that the delimiter 
itself is present within the string; for example, if the string value (shown without the usual surrounding 
quotes to try to avoid confusion) is she said "hello", and the string delimiter is the double quote as 
it is by default, then in the CSV file the value would be given as "she said ""hello""".  The usual 
Eidos style of escaping characters using a backslash is not part of the CSV standard followed here.  
(When a string value is provided without using the string delimiter, all following characters are 
considered part of the string except a newline, the value separator sep, the quote separator quote, 
and the comment separator comment; if none of those characters are present in the string value, the 
quote delimiter may be omitted.) 

The character used to indicate a decimal delimiter in numbers may be supplied with dec; by default 
this is "." (and so 10.0 would be ten, written with a decimal point), but "," is common in European 
data files (and so 10,0 would be ten, written with a decimal comma).  Note that dec and sep may not 
be the same, so that it is unambiguous whether 10,0 is two numbers (10 and 0) or one number (10.0).  
For this reason, European CSV files that use a decimal comma typically use a semicolon as the value 
separator, which may be supplied with sep=";" to readCSV(). 

Finally, the remainder of a line following a comment character will be ignored when the file is read; 
by default comment is the empty string, "", indicating that comments do not exist at all, but "#" is a 
popular comment prefix. 

To translate the CSV data into a DataFrame, it is necessary for Eidos to guess what value type each 
column is unless a column type is specified by colTypes.  Quotes surrounding a value are irrelevant 
to this guess; for example, 1997 and "1997" are both candidates to be integer values (because some 
programs generate CSV output in which every value is quoted regardless of type).  If every value in a 
column is either true, false, TRUE, FALSE, T, or F, the column will be taken to be logical.  
Otherwise, if every value in a column is an integer (here defined as an optional + or -, followed by 
nothing but decimal digits 0123456789), the column will be taken to be integer.  Otherwise, if every 
value in a column is a floating-point number (here defined as an optional + or -, followed by decimal 
digits 0123456789, optionally a decimal separator and then optionally more decimal digits, and 
ending with an optional exponent like e7, E+05, or e-2), the column will be taken to be float; the 
special values NAN, INF, INFINITY, -INF, and -INFINITY (not case-sensitive) are also candidates to 
be float (if the rest of the column is also convertible to float), representing the corresponding 
float constants.  Otherwise, the column will be taken to be string.  NULL and NA are not 
recognized by readCSV() in CSV files and will be read as strings.  Every line in a CSV file must 
contain the same number of values (forming a rectangular data table); missing values are not allowed 
by readCSV() since there is no way to represent them in DataFrame (since Eidos has no equivalent of 
R’s NA value).  Spaces are considered part of a data field and are not trimmed, following the RFC 4180 
standard.  These choices are an attempt to provide optimal behavior for most clients, but given the 

 74



lack of any universal standard for CSV files, and the lack of any type information in the CSV format, 
they will not always work as desired; in such cases, it should be reasonably straightforward to 
preprocess input files using standard Unix text-processing tools like sed and awk. 

(string)readFile(string$ filePath) 
Reads in the contents of a file specified by filePath and returns a string vector containing the lines 
(separated by \n and \r characters) of the file.  Reading files other than text files is not presently 
supported.  If an error occurs during the read, NULL will be returned. 

(string$)setwd(string$ path) 
Sets the current filesystem working directory.  The filesystem working directory is the directory which 
will be used as a base path for relative filesystem paths (see getwd() for further discussion).  An error 
will result if the working directory cannot be set to the given path. 

The current working directory prior to the change will be returned as an invisible string value; the 
value returned is identical to the value that would have been returned by getwd(), apart from its 
invisibility. 

See getwd() for discussion regarding the initial working directory, before it is set with setwd(). 

(string$)tempdir(void) 
Returns a path to a directory appropriate for saving temporary files.  The path returned by 
tempdir() is platform-specific, and is not guaranteed to be the same from one run of SLiM to the 
next.  It is guaranteed to end in a slash, so further path components should be appended without a 
leading slash.  At present, on macOS and Linux systems, the path will be "/tmp/"; this may change in 
future Eidos versions without warning. 

(logical$)writeFile(string$ filePath, string contents, [logical$ append = F], 
[logical$ compress = F]) 

Writes or appends to a file specified by filePath with contents specified by contents, a string 
vector of lines.  If append is T, the write will be appended to the existing file (if any) at filePath; if it 
is F (the default), then the write will replace an existing file at that path.  If the write is successful, T 
will be returned; if not, F will be returned (but at present, an error will result instead). 

If compress is T, the contents will be compressed with zlib as they are written, and the standard .gz 
extension for gzip-compressed files will be appended to the filename in filePath if it is not already 
present.  If the compress option is used in conjunction with append==T, Eidos will buffer data to 
append and flush it to the file in a delayed fashion (for performance reasons), and so appended data 
may not be visible in the file until later – potentially not until the process ends (i.e., the end of the 
SLiM simulation, for example).  If that delay if undesirable, buffered data can be explicitly flushed to 
the filesystem with flushFile().  The compress option was added in Eidos 2.4 (SLiM 3.4).  Note that 
readFile() does not currently support reading in compressed data. 

Note that newline characters will be added at the ends of the lines in contents.  If you do not wish to 
have newlines added, you should use paste() to assemble the elements of contents together into a 
singleton string. 

(string$)writeTempFile(string$ prefix, string$ suffix, string contents, 
[logical$ compress = F]) 

Writes to a unique temporary file with contents specified by contents, a string vector of lines.  The 
filename used will begin with prefix and end with suffix, and will contain six random characters 
in between; for example, if prefix is "plot1_" and suffix is ".pdf", the generated filename might 
look like "plot1_r5Mq0t.pdf".  It is legal for prefix, suffix, or both to be the empty string, "", 
but supplying a file extension is usually advisable at minimum.  The file will be created inside the /
tmp/ directory of the system, which is provided by Un*x systems as a standard location for temporary 
files; the /tmp/ directory should not be specified as part of prefix (nor should any other directory 
information).  The filename generated is guaranteed not to already exist in /tmp/.  The file is created 

 75



with Un*x permissions 0600, allowing reading and writing only by the user for security.  If the write is 
successful, the full path to the temporary file will be returned; if not, "" will be returned. 

If compress is T, the contents will be compressed with zlib as they are written, and the standard .gz 
extension for gzip-compressed files will be appended to the filename suffix in suffix if it is not 
already present.  The compress option was added in Eidos 2.4 (SLiM 3.4).  Note that readFile() 
does not currently support reading in compressed data. 

Note that newline characters will be added at the ends of the lines in contents.  If you do not wish to 
have newlines added, you should use paste() to assemble the elements of contents together into a 
singleton string. 

3.10  Color manipulation functions 

(string)cmColors(integer$ n) 
This method has been deprecated, and may be removed in a future release of Eidos.  In SLiM 3.5 and 
later, use colors(n, "cm") instead. 

Generate colors in a “cyan-magenta” color palette. 

(string)colors(numeric x, string$ name) 
Generate colors in a standard color palette.  If x is a singleton integer, the returned vector will 
contain x color strings representing x colors equidistant along the named palette, spanning its full 
extent.  Alternatively, if x is a float vector of values in [0,1], the returned vector will contain one 
color string for each value in x, representing the color at the corresponding fraction along the named 
palette (values outside [0,1] will be clamped to that range).  (Note that the function signature states the 
type of x as numeric, but in this function the integer and float cases have completely different 
semantic meanings.) 

The color palette specified by name may be any of the following color palettes based upon color 
palettes in R: 

 
"cm"

   

 
"heat"

   

 
"terrain"

  

It may also be one of the following color palettes based on color palettes in MATLAB (and the Turbo 
palette from Anton Mikhailov of the Google AI group, based upon the Jet palette provided by 
MATLAB): 

 
"parula"

  

 
"hot"

   

 
"jet"

   

 
"turbo"

  

 
"gray"

   

Finally, it may be one of the following color palettes based upon color palettes in Matplotlib, also 
available in the viridis R package.  These color palettes are designed to be perceptually uniform, 
changing continuously and linearly.  They are also designed to perform well even for users with red-

 76



green colorblindness; the "cividis" palette, in particular, is designed to look nearly identical to 
those with and without red-green colorblindness, to be perceptually uniform in both hue and 
brightness, and to increase linearly in brightness. 

 
"magma"

  

 
"inferno"

  

 
"plasma"

  

 
"viridis"

  

 
"cividis"

  

This function replaces the deprecated cmColors(), heatColors(), and terrainColors() functions, 
and adds several several additional color palettes to Eidos.  See rainbow() for another color palette 
function. 

(float)color2rgb(string color) 
Converts a color string to RGB.  The color string specified in color may be either a named color (see 
chapter 7) or a color in hexadecimal format such as "#007FC0".  The equivalent RGB color is returned 
as a float vector of length three (red, green, blue).  Returned RGB values will be in the interval [0, 1]. 

This function can also be called with a non-singleton vector of color strings in color.  In this case, the 
returned float value will be a matrix of RGB values, with three columns (red, green, blue) and one 
row per element of color. 

(string)heatColors(integer$ n) 
This method has been deprecated, and may be removed in a future release of Eidos.  In SLiM 3.5 and 
later, use colors(n, "heat") instead. 

Generate colors in a “heat map” color palette. 

(float)hsv2rgb(float hsv) 
Converts an HSV color to RGB.  The HSV color is specified in hsv as a float vector of length three 
(hue, saturation, value), and the equivalent RGB color is returned as a float vector of length three 
(red, green, blue).  HSV values will be clamped to the interval [0, 1], and returned RGB values will 
also be in the interval [0, 1]. 

This function can also be called with a matrix of HSV values, with three columns (hue, saturation, 
value).  In this case, the returned float value will be a matrix of RGB values, with three columns (red, 
green, blue) and one row per row of hsv. 

(string)rainbow(integer$ n, [float$ s = 1.0], [float$ v = 1.0], 
[float$ start = 0.0], [Nf$ end = NULL], [logical$ ccw = T]) 

Generate colors in a “rainbow” color palette.  The number of colors desired is passed in n, and the 
returned vector will contain n color strings.  Parameters s and v control the saturation and value of the 
rainbow colors generated.  The color sequence begins with the hue start, and ramps to the hue end, 
in a counter-clockwise direction around the standard HSV color wheel if ccw is T (the default, 
following R), otherwise in a clockwise direction.  If end is NULL (the default), a value of (n-1)/n is 
used, producing a complete rainbow around the color wheel when start is also the default value of 
0.0.  See colors() for other color palettes. 

(string)rgb2color(float rgb) 
Converts an RGB color to a color string.  The RGB color is specified in rgb as a float vector of 
length three (red, green, blue).  The equivalent color string is returned as singleton string specifying 

 77



the color in the format "#RRGGBB", such as "#007FC0".  RGB values will be clamped to the interval 
[0, 1]. 

This function can also be called with a matrix of RGB values, with three columns (red, green, blue).  In 
this case, the returned string value will be a vector of color strings, with one element per row of 
rgb. 

(float)rgb2hsv(float rgb) 
Converts an RGB color to HSV.  The RGB color is specified in rgb as a float vector of length three 
(red, green, blue), and the equivalent HSV color is returned as a float vector of length three (hue, 
saturation, value).  RGB values will be clamped to the interval [0, 1], and returned HSV values will 
also be in the interval [0, 1]. 

This function can also be called with a matrix of RGB values, with three columns (red, green, blue).  In 
this case, the returned float value will be a matrix of HSV values, with three columns (hue, 
saturation, value) and one row per row of rgb. 

(string)terrainColors(integer$ n) 
This method has been deprecated, and may be removed in a future release of Eidos.  In SLiM 3.5 and 
later, use colors(n, "terrain") instead. 

Generate colors in a “terrain” color palette. 

3.11  Miscellaneous functions 

(void)assert(logical assertions, [Ns$ message = NULL]) 
Assert that a condition or conditions are true.  If any element of assertions is F, execution will be 
stopped.  A message, “assertion failed”, will be printed before stopping; if message is not NULL; its 
value will then be printed. 

(void)beep([Ns$ soundName = NULL]) 
Plays a sound or beeps.  On macOS in a GUI environment (i.e., in EidosScribe or SLiMgui), the 
optional parameter soundName can be the name of a sound file to play; in other cases (if soundName is 
NULL, or at the command line, or on platforms other than OS X) soundName is ignored and a standard 
system beep is played. 

When soundName is not NULL, a sound file in a supported format (such as .aiff or .mp3) is searched 
for sequentially in four standard locations, in this order: ~/Library/Sounds, /Library/Sounds, /
Network/Library/Sounds, and finally /System/Library/Sounds.  Standard OS X sounds located 
in /System/Library/Sounds include "Basso", "Blow", "Bottle", "Frog", "Funk", "Glass", 
"Hero", "Morse", "Ping", "Pop", "Purr", "Sosumi", "Submarine", and "Tink".  Do not include 
the file extension, such as .aiff or .mp3, in soundName. 

CAUTION: When not running in EidosScribe or SLiMgui, it is often the case that the only simple 
means available to play a beep is to send a BEL character (ASCII 7) to the standard output.  
Unfortunately, when this is the case, it means that (1) no beep will be audible if output is being 
redirected into a file, and (2) a control character, ^G, will occur in the output at the point when the 
beep was requested.  It is therefore recommended that beep() be used only when doing interactive 
work in a terminal shell (or in a GUI), not when producing output files.  However, this issue is 
platform-specific; on some platforms beep() may result in a beep, and no emitted ^G, even when 
output is redirected.  When a ^G must be emitted to the standard output to generate the beep, a 
warning message will also be emitted to make any associated problems easier to diagnose. 

(void)citation(void) 
Prints citation information for Eidos to Eidos’s output stream. 

 78



(float$)clock([string$ type = "cpu"]) 
Returns the value of a system clock.  If type is "cpu", this returns the current value of the CPU usage 
clock.  This is the amount of CPU time used by the current process, in seconds; it is unrelated to the 
current time of day (for that, see the time() function).  This is useful mainly for determining how 
much processor time a given section of code takes; clock() can be called before and after a block of 
code, and the end clock minus the start clock gives the elapsed CPU time consumed in the execution 
of the block of code.  See also the timed parameter of executeLambda(), which automates this 
procedure.  Note that if multiple cores are utilized by the process, the CPU usage clock will be the 
sum of the CPU usage across all cores, and may therefore run faster than the wall clock. 

If type is "mono", this returns the value of the system’s monotonic clock.  This represents user-
perceived (“wall clock”) elapsed time from some arbitrary timebase (which will not change during the 
execution of the program), but it will not jump if the time zone or the wall clock time are changed for 
the system.  This clock is useful for measuring user-perceived elapsed time, as described above, and 
may provide a more useful metric for performance than CPU time if multiple cores are being utilized. 

(string$)date(void) 
Returns a standard date string for the current date in the local time of the executing machine.  The 
format is %d-%m-%Y (day in two digits, then month in two digits, then year in four digits, zero-padded 
and separated by dashes) regardless of the localization of the executing machine, for predictability 
and consistency. 

(string$)debugIndent(void) 
Returns the indentation string currently being used to start lines in the debugging output stream.  In a 
pure Eidos context this will currently be the empty string, "".  In specific Contexts, such as SLiM, the 
debugging output stream may be structured with nested indentation, in which case this string will 
typically be a series of spaces or tabs.  To make your debugging output (such as from cat(), catn(), 
or print() with the error=T optional argument set) line up with other output at the current level of 
execution nesting, you can start your new lines of output with this string if you wish. 

(void)defineConstant(string$ symbol, * value) 
Defines a new constant with the name symbol and the value specified by value.  Syntactically, the 
value may be any value at all; semantically, however, if value is of object type then value’s class 
must be under retain/release memory management internally.  This restriction is necessary because if 
the Context defines the point in time when a given object ceases to exist (rather than that being 
governed by retain/release), then a defined constant referencing that object would become invalid, 
which must be prevented.  At present, among the classes defined by SLiM, only Chromosome, 
Mutation, and Substitution are under retain/release; all object classes built into Eidos are under 
retain/release. 

The name cannot previously be defined in any way (i.e., as either a variable or a constant).  The 
defined constant acts identically to intrinsic Eidos constants such as T, NAN, and PI, and will remain 
defined for as long as the Eidos context lives even if it is defined inside a block being executed by 
executeLambda(), apply(), sapply(), or a Context-defined script block. 

(void)defineGlobal(string$ symbol, * value) 
Defines a new global variable with the name symbol and the value specified by value.  Syntactically, 
the value may be any value at all; semantically, however, if value is of object type then value’s class 
must be under retain/release memory management internally.  This restriction is necessary because if 
the Context defines the point in time when a given object ceases to exist (rather than that being 
governed by retain/release), then a defined global variable referencing that object would become 
invalid, which must be prevented.  At present, among the classes defined by SLiM, only Chromosome, 
Mutation, and Substitution are under retain/release; all object classes built into Eidos are under 
retain/release. 

 79



The name cannot previously be defined as a constant.  The result is similar to a standard variable 
assignment with operator =, except that the variable is always defined in the global scope (even if the 
defineGlobal() call is made inside a user-defined function or other locally-scoped block, such as a 
SLiM event or callback).  This means that the variable will remain defined even after the current scope 
is exited.  Note that global variables can be hidden by local variables with the same name; unlike 
defined constants, such scoped masking is allowed. 

(vNlifso)doCall(string$ functionName, ...) 
Returns the results from a call to a specified function.  The function named by the parameter 
functionName is called, and the remaining parameters to doCall() are forwarded on to that function 
verbatim.  This can be useful for calling one of a set of similar functions, such as sin(), cos(), etc., 
to perform a math function determined at runtime, or one of the as...() family of functions to 
convert to a type determined at runtime.  Note that named arguments and default arguments, beyond 
the functionName argument, are not supported by doCall(); all arguments to the target function 
must be specified explicitly, without names. 

(vNlifso)executeLambda(string$ lambdaSource, [ls$ timed = F]) 
Executes a block of Eidos code defined by lambdaSource.  Eidos allows you to execute lambdas: 
blocks of Eidos code which can be called directly within the same scope as the caller.  Eidos lambdas 
do not take arguments; for this reason, they are not first-class functions.  (Since they share the scope of 
the caller, however, you may effectively pass values in and out of a lambda using variables.)  The 
string argument lambdaSource may contain one or many Eidos statements as a single string 
value.  Lambdas are represented, to the caller, only as the source code string lambdaSource; the 
executable code is not made available programmatically.  If an error occurs during the tokenization, 
parsing, or execution of the lambda, that error is raised as usual; executing code inside a lambda does 
not provide any additional protection against exceptions raised.  The return value produced by the 
code in the lambda is returned by executeLambda().  If the optional parameter timed is T, the total 
(CPU clock) execution time for the lambda will be printed after the lambda has completed (see 
clock()); if it is F (the default), no timing information will be printed.  The timed parameter may also 
be "cpu" or "mono" to specifically request timing with the CPU clock (which will count the usage 
across all cores, and may thus run faster than wall clock time if multiple cores are being utilized) or 
the monotonic clock (which will correspond, more or less, to elapsed wall clock time regardless of 
multithreading); see the documentation for clock() for further discussion of these timing options. 

The current implementation of executeLambda() caches a tokenized and parsed version of 
lambdaSource, so calling executeLambda() repeatedly on a single source string is much more 
efficient than calling executeLambda() with a newly constructed string each time.  If you can use a 
string literal for lambdaSource, or reuse a constructed source string stored in a variable, that will 
improve performance considerably. 

(logical)exists(string symbol) 
Returns a logical vector indicating whether symbols exist.  If a symbol has been defined as an 
intrinsic Eidos constant like T, INF, and PI, or as a Context-defined constant like sim in SLiM, or as a 
user-defined constant using defineConstant(), or as a variable by assignment, this function returns 
T.  Otherwise, the symbol has not been defined, and exists() returns F.  This is commonly used to 
check whether a user-defined constant already exists, with the intention of defining the constant if it 
has not already been defined.  A vector of symbols may be passed, producing a vector of 
corresponding results. 

(void)functionSignature([Ns$ functionName = NULL]) 
Prints function signatures for all functions (if functionName is NULL, the default), or for the function 
named by functionName, to Eidos’s output stream.  See section 2.7.4 for more information. 

 80



(void)functionSource(string$ functionName) 
Prints the Eidos source code for the function specified by functionName, or prints a diagnostic 
message if the function is implemented in C++ rather than Eidos. 

(integer$)getSeed(void) 
Returns the random number seed.  This is the last seed value set using setSeed(); if setSeed() has 
not been called, it will be a seed value chosen based on the process-id and the current time when 
Eidos was initialized, unless the Context has set a different seed value. 

(void)license(void) 
Prints Eidos’s license terms to Eidos’s output stream. 

(void)ls([logical$ showSymbolTables = F]) 
Prints all currently defined variables to Eidos’s output stream.  See section 2.4.1 for more information. 

Beginning in Eidos 2.5 (SLiM 3.5), the showSymbolTables optional argument can be set to T to 
request full information on the current symbol table chain.  This will show which symbol table a given 
symbol is defined in, as well as revealing whether there are other symbols with the same name that 
have been masked by a local definition.  This is mostly useful for debugging. 

(void)rm([Ns variableNames = NULL]) 
Removes variables from the Eidos namespace; in other words, it causes the variables to become 
undefined.  Variables are specified by their string name in the variableNames parameter.  If the 
optional variableNames parameter is NULL (the default), all variables will be removed (be careful!). 

In SLiM 3, there was an optional parameter removeConstants that, if T, allowed you to remove 
defined constants (and then potentially redefine them to have a different value).  The 
removeConstants parameter was removed in SLiM 4, since the defineGlobal() function now 
provides the ability to define (and redefine) global variables that are not constant. 

(*)sapply(* x, string$ lambdaSource, [string$ simplify = "vector"]) 
Named apply() prior to Eidos 1.6 / SLiM 2.6 

Applies a block of Eidos code to the elements of x.  This function is sort of a hybrid between c() and 
executeLambda(); it might be useful to consult the documentation for both of those functions to 
better understand what sapply() does.  For each element in x, the lambda defined by lambdaSource 
will be called.  For the duration of that callout, a variable named applyValue will be defined to have 
as its value the element of x currently being processed.  The expectation is that the lambda will use 
applyValue in some way, and will return either NULL or a new value (which need not be a singleton, 
and need not be of the same type as x).  The return value of sapply() is generated by concatenating 
together all of the individual vectors returned by the lambda, in exactly the same manner as the c() 
function (including the possibility of type promotion). 

Since this function can be hard to understand at first, here is an example: 

sapply(1:10, "if (applyValue % 2) applyValue ^ 2; else NULL;”); 

This produces the output 1 9 25 49 81.  The sapply() operation begins with the vector 1:10.  For 
each element of that vector, the lambda is called and applyValue is defined with the element value.  
In this respect, sapply() is actually very much like a for loop.  If applyValue is even (as evaluated 
by the modulo operator, %), the condition of the if statement is F and so NULL is returned by the 
lambda; this must be done explicitly, since a void return is not allowed by sapply().  If applyValue 
is odd, on the other hand, the lambda returns its square (as calculated by the exponential operator, ^).  
Just as with the c() function, NULL values are dropped during concatenation, so the final result 
contains only the squares of the odd values. 

This example illustrates that the lambda can “drop” values by returning NULL, so sapply() can be 
used to select particular elements of a vector that satisfy some condition, much like the subscript 

 81



operator, [].  The example also illustrates that input and result types do not have to match; the vector 
passed in is integer, whereas the result vector is float. 

Beginning in Eidos 1.6, a new optional parameter named simplify allows the result of sapply() to 
be a matrix or array in certain cases, better organizing the elements of the result.  If the simplify 
parameter is "vector", the concatenated result value is returned as a plain vector in all cases; this is 
the default behavior, for backward compatibility.  Two other possible values for simplify are 
presently supported.  If simplify is "matrix", the concatenated result value will be turned into a 
matrix with one column for each non-NULL value returned by the lambda, as if the values were joined 
together with cbind(), as long as all of the lambda’s return values are either (a) NULL or (b) the same 
length as the other non-NULL values returned.  If simplify is "match", the concatenated result value 
will be turned into a vector, matrix, or array that exactly matches the dimensions as x, with a one-to-
one correspondence between x and the elements of the return value just like a unary operator, as long 
as all of the lambda’s return values are singletons (with no NULL values).  Both "matrix" and "match" 
will raise an error if their preconditions are not met, to avoid unexpected behavior, so care should be 
taken that the preconditions are always met when these options are used. 

As with executeLambda(), all defined variables are accessible within the lambda, and changes made 
to variables inside the lambda will persist beyond the end of the sapply() call; the lambda is 
executing in the same scope as the rest of your code. 

The sapply() function can seem daunting at first, but it is an essential tool in the Eidos toolbox.  It 
combines the iteration of a for loop, the ability to select elements like operator [], and the ability to 
assemble results of mixed type together into a single vector like c(), all with the power of arbitrary 
Eidos code execution like executeLambda().  It is relatively fast, compared to other ways of 
achieving similar results such as a for loop that accumulates results with c().  Like 
executeLambda(), sapply() is most efficient if it is called multiple times with a single string script 
variable, rather than with a newly constructed string for lambdaSource each time. 

Prior to Eidos 1.6 (SLiM 2.6), sapply() was instead named apply(); it was renamed to sapply() in 
order to more closely match the naming of functions in R.  This renaming allowed a new apply() 
function to be added to Eidos that operates on the margins of matrices and arrays, similar to the 
apply() function of R (see apply(), above). 

(void)setSeed(integer$ seed) 
Set the random number seed.  Future random numbers will be based upon the seed value set, and the 
random number sequence generated from a particular seed value is guaranteed to be reproducible.  
The last seed set can be recovered with the getSeed() function. 

(void)source(string$ filePath, [logical$ chdir = F]) 
Executes the contents of an Eidos source file found at the filesystem path filePath.  This is 
essentially shorthand for calling readFile(), joining the read lines with newlines to form a single 
string using paste(), and then passing that string to executeLambda().  The source file must consist 
of complete Eidos statements.  Regardless of what the last executed source line evaluates to, 
source() has no return value.  If no file exists at filePath, an error will be raised. 

The chdir parameter controls the current working directory in effect while the source file is executed.  
If chdir is F (the default), the current working directory will remain unchanged.  If chdir is T, the 
current working directory will be temporarily changed to the filesystem path at which the source file is 
located, and restored after execution of the source file is complete. 

(void)stop([Ns$ message = NULL]) 
Stops execution of Eidos (and of the Context, such as the running SLiM simulation, if applicable), in 
the event of an error.  If the optional message parameter is not NULL, it will be printed to Eidos’s error 
stream prior to stopping. 

 82



(logical$)suppressWarnings(logical$ suppress) 
Turns suppression of warning messages on or off.  The suppress flag indicates whether suppression 
of warnings should be enabled (T) or disabled (F).  The previous warning-suppression value is returned 
by suppressWarnings(), making it easy to suppress warnings from a given call and then return to 
the previous suppression state afterwards.  It is recommended that warnings be suppressed only 
around short blocks of code (not all the time), so that unexpected but perhaps important warnings are 
not missed.  And of course warnings are generally emitted for good reasons; before deciding to 
disregard a given warning, make sure that you understand exactly why it is being issued, and are 
certain that it does not represent a serious problem. 

(*)sysinfo(string$ key) 
Returns information about the system.  The information returned by tempdir() depends upon the 
value of key, which selects one of the pieces of information listed: 

key value 

os the name of the OS; "macOS" or "Windows", or "Unix" for all others 

sysname the name of the kernel 

release the operating system (kernel) release 

version the operating system (kernel) version 

nodename the name by which the machine is known on the network 

machine the hardware type; often the CPU type (e.g., "x86_64") 

The value "unknown" will be returned for a key if the correct value cannot be ascertained.  Note that 
the values of keys that refer to the kernel may not be what you expect; for example, on one particular 
macOS 10.15.7 system, sysname returns "Darwin", release returns "19.6.0", and version returns 
"Darwin Kernel Version 19.6.0: Thu Sep 16 20:58:47 PDT 2021; 
root:xnu-6153.141.40.1~1/RELEASE_X86_64". 

Further keys can be added if there is information that would be useful, particularly if a cross-platform 
way to obtain the information can be found. 

(string)system(string$ command, [string args = ""], [string input = ""], 
[logical$ stderr = F], [logical$ wait = T]) 

Runs a Un*x command in a /bin/sh shell with optional arguments and input, and returns the result 
as a vector of output lines.  The args parameter may contain a vector of arguments to command; they 
will be passed directly to the shell without any quoting, so applying the appropriate quoting as needed 
by /bin/sh is the caller’s responsibility.  The arguments are appended to command, separated by 
spaces, and the result is passed to the shell as a single command string, so arguments may simply be 
given as part of command instead, if preferred.  By default no input is supplied to command; if input is 
non-empty, however, it will be written to a temporary file (one line per string element) and the 
standard input of command will be redirected to that temporary file (using standard /bin/sh 
redirection with <, appended to the command string passed to the shell).  By default, output sent to 
standard error will not be captured (and thus may end up in the output of the SLiM process, or may be 
lost); if stderr is T, however, the standard error stream will be redirected into standard out (using 
standard /bin/sh redirection with 2>&1, appended to the command string passed to the shell). 

Arbitrary command strings involving multiple commands, pipes, redirection, etc., may be used with 
system(), but may be incompatible with the way that args, input, and stderr are handled by this 
function, so in this case supplying the whole command string in command may be the simplest course.  
You may redirect standard error into standard output yourself in command with 2>&1.  Supplying input 
to a complex command line can often be facilitated by the use of parentheses to create a subshell; for 
example, 

system("(wc -l | sed 's/ //g')", input=c('foo', 'bar', 'baz')); 

 83



will supply the input lines to wc courtesy of the subshell started for the () operator.  If this strategy 
doesn’t work for the command line you want to execute, you can always write a temporary file 
yourself using writeFile() or writeTempFile() and redirect that file to standard input in command 
with <. 

If wait is T (the default), system() will wait for the command to finish, and return the output 
generated as a string vector, as described above.  If wait is F, system() will instead append " &" 
to the end of the command line to request that it be run in the background, and it will not collect and 
return the output from the command; instead it will return string(0) immediately.  If the output from 
the command is needed, it could be redirected to a file, and that file could be checked periodically in 
Eidos for some indication that the command had completed; if output is not redirected to a file, it may 
appear in SLiM’s output stream.  If the final command line executed by system() ends in " &", the 
behavior of system() should be just as if wait=T had been supplied, but it is recommended to use 
wait=T instead to ensure that the command line is correctly assembled. 

(string$)time(void) 
Returns a standard time string for the current time in the local time of the executing machine.  The 
format is %H:%M:%S (hour in two digits, then minute in two digits, then seconds in two digits, zero-
padded and separated by dashes) regardless of the localization of the executing machine, for 
predictability and consistency.  The 24-hour clock time is used (i.e., no AM/PM). 

(float$)usage([logical$ peak = F]) 
Returns the current (or peak) memory usage.  This is the amount of memory used by the current 
process, in MB (megabytes); multiply by 1024*1024 to get the usage in bytes.  If peak is F (the 
default), the current memory usage is returned; if peak is T, the maximum memory usage over the 
history of the process is returned.  Memory usage is a surprisingly complex topic; the particular metric 
reported by usage() is the resident set size, or RSS, which includes memory usage from shared 
libraries, but does not include memory that is swapped out or has never been used.  For most 
purposes, RSS is a useful metric of memory usage from a practical perspective.  On some platforms 
(AIX, BSD, Solaris) the memory usage reported may be zero, but it should be correct on both macOS 
and Linux platforms. 

This function can be useful for documenting the memory usage of long runs as they are in progress; in 
SLiM, it could also be used to trigger tree-sequence simplification with a call to treeSeqSimplify(), 
to reduce memory usage when it becomes too large, but keep in mind that the simplification process 
itself may cause a substantial spike in memory usage. 

When running under SLiM, other tools for monitoring memory usage include the slim command-line 
options -m[em] and -M[emhist], and the outputUsage() method of Community; see the SLiM 
manual for more information. 

(float)version([logical$ print = T]) 
Get Eidos’s version.  There are two ways to use this function.  If print is T, the default, then the 
version number is printed to the Eidos output stream in a formatted manner, like “Eidos version 
2.1”.  If Eidos is attached to a Context that provides a version number, that is also printed, like “SLiM 
version 3.1”.  In this case, the Eidos version number, and the Context version number if available, 
are returned as an invisible float vector.  This is most useful when using Eidos interactively.  If print 
is F, on the other hand, nothing is printed, but the returned float vector of version numbers is not 
invisible.  This is useful for scripts that need to test the Eidos or Context version they are running 
against. 

In both cases, in the float version numbers returned, a version like 2.4.2 would be returned as 2.42; 
this would not scale well to subversions greater than nine, so that will be avoided in our versioning. 

 84



4.  User-defined functions 

Beginning in Eidos 1.5 (SLiM 2.5), it is now possible to define your own functions in Eidos, 
rather than being limited to the built-in functions described in chapter 3.  Doing so is quite simple; 
first you declare the new function, and then you supply a compound statement that defines the 
code of the new function.  Unlike in languages such as C, where declaration and definition of 
functions are separate and are often done in different source files, in Eidos these two actions are 
always done in conjunction, as described in the following subsection. 

4.1  Declaring and defining new functions 
As a trivial example, suppose we wish to define a function that doubles whatever float value is 

passed to it.  This is very easy to do: 

function (float)double(float x) 
{ 
 return 2 * x; 
} 

The function keyword initiates the declaration of a new function.  It is followed by the full 
signature for the new function, as described in sections 2.7.4–2.7.7; here the signature declares 
that the function is named double, takes a parameter named x that is of type float, and returns 
type float.  This signature is then followed by the definition of the new function, in the form of a 
compound statement; here, the double() function is defined as returning two times the value it 
was passed.  Note that a return statement is used here to explicitly return a specified value from 
the function (see section 2.6.6); if no return statement is encountered, void will be implicitly 
returned (which will result in a type-check error unless the function was declared as potentially 
returning void). 

Calling such functions works in exactly the same way as calling built-in functions: 

> double(5.35) 
 

10.7 

Functions may be recursive; a simple factorial() function might be defined recursively as: 

function (integer)factorial(integer x) 
{ 
 if (x <= 1) 
  return 1; 
 else 
  return x * factorial(x - 1); 
} 

This works well enough, as you can see: 

> factorial(13) 
 

6227020800 

As with the built-in Eidos functions, user-defined functions may take multiple parameters, each 
of which may be allowed to be one of several different possible types.  Parameters to user-defined 
functions may also be optional, with a default value if left unsupplied.  Finally, functions are 
scoped; the code inside them executes in a private namespace in which only the parameters to the 
function, plus global constants and variables, are available, and variables defined inside a function 
(local variables) will not persist beyond the end of the function’s execution.  These topics will be 
covered in more detail in the following sections. 

 85



4.2  Complex type specifications 
The functions defined above used only simple built-in types; one took a float and returned a 

float, the other took an integer and returned an integer.  Just like some of the built-in functions 
in Eidos, however, your user-defined functions may use a more complex signature that allows and 
disallows specific types for each parameter. 

Eidos is a stickler for types, and does not automatically coerce variables to a different type to 
satisfy a function’s signature, so calling the double() function we defined above with an integer 
argument is an error: 

> double(7); 
 

ERROR (EidosCallSignature::CheckArguments): argument 1 (x) cannot be type 
integer for function double(). 

This may be remedied by passing 7.0 instead, or by explicitly coercing the argument to float 
with asFloat(); or, more usefully, the function may be fixed to work with integer arguments as 
well.  To demonstrate this last possibility, we can redefine double() (the new definition will 
replace the old): 

function (numeric)double(numeric x) 
{ 
 return 2 * x; 
} 

Recall that numeric is an Eidos keyword that refers to either (both) integer and float type (see, 
e.g., section 2.7.6).  Now, if called with an integer argument, double() returns an integer: 

> double(7) 
 

14 

If called with a float argument, it will instead return a float; the function’s code will be 
executed with whatever type of argument is passed to it, since Eidos is a dynamically-typed 
language. 

To underline that last point about dynamic typing, let’s expand our definition of double() again, 
this time to support string arguments as well: 

function (ifs)double(ifs x) 
{ 
 return x + x; 
} 

The ifs type specifier indicates that the type of the parameter and the return value may be 
integer, float, or string (see section 2.7.6); it could just as well have been specified as sif or 
fsi, since the order of the letters is unimportant.  This definition leverages the fact that while the * 
operator does not work with strings, the + operator does.  Our function behaves just as it did before 
for integer and float arguments, but now it works for string too: 

> double("foo") 
 

"foofoo" 

So far, so good.  Let’s expand our function to work with logical as well: 

function (lifs)double(lifs x) 
{ 
 return x + x; 
} 

 86



Now if we call it with a logical argument we get this: 

> double(T) 
 

ERROR (EidosInterpreter::Evaluate_Plus): the combination of operand types 
logical and logical is not supported by the binary '+' operator. 

Of course this makes sense; T+T has no meaning in Eidos and is not legal.  But suppose we 
would like double() to do something useful with a logical argument, such as replicate the 
argument into a vector of twice the length.  We can implement that by having double() check the 
type of its argument explicitly: 

function (lifs)double(lifs x) 
{ 
 if (isLogical(x)) 
  return rep(x, 2); 
 else 
  return x + x; 
} 

This now works with logical: 

> double(T) 
 

T T 

It has replicated the logical vector supplied using the rep() function.  Speaking of vectors, 
since we didn’t specify that double()’s argument or return value is a singleton (which we would do 
using the $ symbol), double() works with non-singleton vectors automatically: 

> double(c(1.6, -9.4)) 
 

3.2 -18.8 
> double(c(3, 7)) 
 

6 14 
 

> double(c("foo", "bar")) 
 

"foofoo" "barbar" 
 

> double(c(T, F)) 
 

T F T F 

Finally, note that this version of double() could be written more concisely using the ternary 
conditional operator (see section 2.3.5): 

function (lifs)double(lifs x) 
{ 
 return isLogical(x) ? rep(x, 2) else x + x; 
} 

We will use that syntax in the sections that follow, for brevity. 

4.3  Type specifications that include objects 
In the previous section we built a function that works with arguments of type logical, integer, 

float, and string.  What about arguments of type object?  Since the base Eidos language, with 
no Context, does not contain any object classes, in this section we will consider this question 
from the perspective of SLiM, the Context in which most users will be using Eidos.  SLiM defines a 
class named Subpopulation, and instances of that class – individual subpopulations – are often 
named p1, p2, etc. 

 87



First of all, let’s expand the double() function to take any object argument and replicate it: 

function (lifso)double(lifso x) 
{ 
 return (isLogical(x) | isObject(x)) ? rep(x, 2) else x + x; 
} 

In SLiM’s console, we can use this to replicate a vector containing subpopulations, for example: 

> double(c(p1, p2)) 
 

Subpopulation<p1> Subpopulation<p2> Subpopulation<p1> Subpopulation<p2> 

So far, so good.  But suppose we wanted it to do something smarter with a subpopulation 
object, such as return an integer that is double the number of individuals in the subpopulation 
supplied?  Let’s implement that, allowing the function to take only objects of type Subpopulation: 

function (lifs)double(lifso<Subpopulation> x) 
{ 
 if (isObject(x)) 
  return x.individualCount * 2; 
 else 
  return isLogical(x) ? rep(x, 2) else x + x; 
} 

The new <Subpopulation> syntax after the o in the parameter type specifier indicates that if an 
object is present, it is required to be of type Subpopulation.  The type-checking machinery in 
Eidos will raise an error if an object parameter of a different class is passed in.  Note that since the 
function returns an integer when a subpopulation is passed in, the return-type specifier still does 
not list object as a possibility.  This new function behaves as desired; when passed subpopulations 
of size 500, it provides double their size: 

> double(c(p1, p2)) 
 

1000 1000 

As a final exercise, let us suppose that we want this behavior when a Subpopulation argument 
is supplied, but we want the old behavior of vector replication when an object of any other class 
is supplied.  This is also straightforward: 

function (lifso)double(lifso x) 
{ 
 if (elementType(x) == "Subpopulation") 
  return x.individualCount * 2; 
 else 
  return (isLogical(x) | isObject(x)) ? rep(x, 2) else x + x; 
} 

This uses the elementType() function to diagnose the case in which a Subpopulation has been 
passed, and treats it specially; all other cases go through the old version of the code: 

> double(p1) 
 

1000 
 

> double(sim) 
 

Species Species 

In practice, functions of this sort that do radically different things depending upon the type of 
their arguments are generally a bad idea.  However, sometimes providing different behaviors for 
the same “message” sent to different classes can make sense, as in object-oriented programming. 

 88



4.4  Optional parameters and default values 
Parameters for user-defined functions may be optional, just as was described for built-in 

functions in section 2.7.5.  Optional parameters are declared using brackets, just as they are 
shown in function signatures.  A default value must be supplied for all optional parameters; if a 
value is not given by the caller for an optional parameter when a function is called, the default 
value is automatically supplied for that parameter by Eidos.  In this way, all parameters are 
guaranteed to have defined values by the time the code of the function begins to execute. 

As an example, let’s go back to an earlier, simpler version of double() and make the x argument 
optional, with a default of our favorite string value, "foo": 

function (ifs)double([ifs x = "foo"]) 
{ 
 return x + x; 
} 

The brackets indicate that x is optional, and = "foo" supplies the default value when x is 
omitted.  Calling double() with no argument is now legal: 

> double() 
 

"foofoo" 

Default values may be any numeric or string constant (6, "foo", 1.2), or any of the built-in Eidos 
constants (T, F, E, PI, INF, NAN, NULL).  At present it is not legal for a default value to be an 
expression, or a constant that is not built into Eidos, unlike in some languages such as R.  
However, it is common practice for NULL to be used as a default value indicating that the 
parameter should be considered to be missing, unspecified, or having some other special value. 

Once an optional argument has been specified, all subsequent arguments must also be 
optional, so that the way that unnamed arguments are assigned is simple and unambiguous when 
a function is called. 

Note that although some built-in Eidos functions, such as c(), take a variable number of 
arguments as specified by an ellipsis (...) in their function prototype, this capability is not 
presently supported for user-defined functions.  However, parameters may certainly be vectors 
containing multiple elements, as we have seen above. 

4.5  Scope with user-defined functions 
“Scope”, in computer science, refers to the visibility and lifetime of variables in code – when 

they begin to exist, where they can be referenced, and when they cease to exist.  Scoping rules 
vary greatly among languages, and in some ways Eidos’s scoping rules are unusual. 

Eidos is a weakly scoped language; there is no concept of block scope, file scope, or module 
scope, for example, as there is in more strongly scoped languages such as C or C++, and there is 
no support for dynamic scoping either – no equivalent of environments in R, for example.  
Variables that are defined generally go into the global scope, exist forever unless removed with 
rm(), and are visible everywhere thenceforth.  There is one major exception to this, however, and 
it is user-defined functions. 

In Eidos, user-defined functions are executed in their own private scope, often called a local 
scope.  That local scope contains the parameters passed to the function as arguments, and if the 
function defines any new variables as it executes they will also be contained by the function’s local 
scope.  This private scope ceases to exist at the end of execution of the user-defined function.  
When you are executing in a local scope, the global scope is still visible, however; constants and 
variables that have been defined in the global scope can still be used (unless they are masked by a 

 89



local variable of the same name, which can be a cause of confusion and bugs; the symbols in the 
local scope take precedence).  When you assign a value to a variable name with operator = inside 
a function’s local scope, the variable is always defined in the local scope (even if a global variable 
with the same name already exists; the global variable will then be masked by the local variable). 

Variables can still be created in the global scope even when executing a user-defined function – 
just not with operator =.  You can always define a global variable using the defineGlobal() 
function, even if you are inside a local scope (but if a local variable already exists with the same 
name, the global variable will be masked). 

There are actually two kinds of entities that can live in the global scope: variables, which we 
have discussed already, and constants.  Variables can change in value; constants cannot.  A 
constant is defined in the global scope with the defineConstant() function (there is no way to 
define a constant in a local scope).  Once defined, the constant will continue to exist, with the 
same value, forever.  This is primarily a safety measure; you can rely on a constant having the 
value you have given it, as it cannot be modified accidentally. 

The other difference between variables and constants is that variables can be masked, as we 
have discussed; a local variable will mask a global variable with the same name.  Constants cannot 
be masked.  Once a global constant has been defined, it is illegal for any variable to exist, in any 
scope, with the same name as the constant; the constant’s name is reserved for as long as the 
constant exists.  This is, again, a safety feature; when using a constant, you can rely upon its value 
being what you intended, because masking cannot occur. 

There is one substantial caveat to the use of global constants and variables, as well as to other 
ways of storing Eidos values beyond the local scope (such as inserting them into a Dictionary with 
setValue()): not all object classes can be persisted beyond the local scope.  In Eidos, the Context 
often defines the lifetime of objects; objects are created and destroyed by the Context, and Eidos is 
simply representing those dynamic objects in script.  This means that, in general, keeping a long-
term reference to an object in a variable is unsafe; the object might cease to exist, and then what 
happens to the variable?  To prevent this problem, Eidos limits which object classes can be kept 
long-term to those that follow an internal memory-management strategy called “retain-release”.  
The details of this internal scheme are unimportant; what is important is knowing which classes 
use retain-release, and which don’t.  The built-in Eidos classes Dictionary and Image do; they can 
therefore be kept long-term.  If you are using Eidos with SLiM, some SLiM classes use retain-
release and some don’t; see the discussion of scoping rules in the SLiM manual for current 
information on this topic. 

Finally, in case you are wondering, user-defined functions in Eidos are not themselves variables, 
and are in the global scope – all defined functions are available everywhere, similarly to how Eidos 
treats global constants and global variables.  References to functions are resolved at the point of 
the call dispatch, so a function foo() could call a function bar() even though bar() is defined 
after foo() in the input script, as long as bar() has been defined by the time foo() is actually 
called; there is no need for forward declaration of bar() as there is in languages like C and C++.  If 
bar() has not been declared at the point in time when foo() is called and actually attempts to call 
bar(), an error will result; if bar() has been defined, on the other hand, then the implementation 
of bar() that is defined at that moment in time is called.  It is not possible to redefine the built-in 
Eidos functions, but the definition of user-defined functions be changed.  (It would be wise to use 
this only to refine functions when working interactively, however, rather than designing spaghetti 
code that relies upon dynamically redefining functions during the course of execution.) 

 90



5.  Built-in classes 

Eidos has always had built-in classes, but they were largely hidden from view; they acted as the 
superclasses of the Eidos classes in SLiM, providing base functionality across those classes, but 
could not be created as objects in their own right.  In Eidos 2.5 (SLiM 3.5), that has changed; it is 
now possible to create instances of the Dictionary and Image classes.  Since these classes have 
become more public, they are now fully documented here. 

5.1  Class Object 
Superclass: none 

Object is the base class of all objects in Eidos.  It is an “abstract” base class, meaning that 
instances of Object itself cannot be created; it just provides base functionality that is available in 
all of its subclasses – i.e., all Eidos objects. 

5.1.1  Object properties 
Object has no properties. 

5.1.2  Object methods 

+ (integer$)length(void) 
Returns the size (e.g., length) of the receiving object.  This is equivalent to the length() (or size()) 
function; in other words, for any object x, the return value of the function call length(x) equals the 
return value of the class method call x.length().  This method is provided solely for syntactic 
convenience.  Note that +length() is a synonym for +size(). 

+ (void)methodSignature([Ns$ methodName = NULL]) 
Prints the method signature for the method specified by methodName, or for all methods supported by 
the receiving object if methodName is NULL (the default). 

+ (void)propertySignature([Ns$ propertyName = NULL]) 
Prints the property signature for the property specified by propertyName, or for all properties 
supported by the receiving object if propertyName is NULL (the default). 

+ (integer$)size(void) 
Returns the size of the receiving object.  This is equivalent to the size() (or length()) function; in 
other words, for any object x, the return value of the function call size(x) equals the return value of 
the class method call x.size().  This method is provided solely for syntactic convenience.  Note that 
+length() is a synonym for +size(). 

– (void)str(void) 
Prints the internal property structure of the receiving object; in particular, the element type of the 
object is printed, followed, on successive lines, by all of the properties supported by the object, their 
types, and a sample of their values. 

– (string$)stringRepresentation(void) 
Returns a singleton string value that represents the receiving object.  By default, this is simply the 
name of the class of the receiving object; however, many subclasses of Object provide a different 
string representation.  The value returned by stringRepresentation() is the same string that would 
be printed by print() for the object, so stringRepresentation() allows the same representation 
to be used in other contexts such as paste() and cat(). 

 91



5.2  Class DataFrame 
Superclass: Dictionary 

(object<DataFrame>$)DataFrame(...) 
The DataFrame constructor can be called in the same ways as the constructor for Dictionary (its 
superclass): with no parameters to make an empty DataFrame, with key-value pairs, with a singleton 
Dictionary (or a subclass of Dictionary, like DataFrame) to make a copy, or with a singleton string 
in JSON format.  See the Dictionary class for further documentation. 

DataFrame is a subclass of Dictionary that provides “data table” functionality similar to an R 
data frame: a collection of named columns that form a square spreadsheet-like grid, where the 
columns all have the same number of values but may be different types.  Because Dictionary is 
DataFrame’s superclass, all of the methods and properties of Dictionary may be used with 
DataFrame, and it would be a good idea to familiarize yourself with Dictionary before delving into 
DataFrame.  However, DataFrame imposes the additional requirement that the value for each key 
(each “column”) must be the same length, and may not be a matrix or array (i.e., must be a simple 
vector).  This requirement will be checked even when using Dictionary methods with DataFrame. 

Prior to Eidos 2.7 (SLiM 3.7), the Dictionary class was used directly for this sort of purpose.  
That usage is now deprecated; DataFrame should be used instead. 

5.2.1  DataFrame properties 

colNames => (string) 
A vector containing all of the string column names in the DataFrame, in order.  This property is 
currently an alias for the Dictionary property allKeys. 

dim => (integer) 
A two-element vector containing the dimensions of the DataFrame.  The 0th element is the number of 
rows (as provided by nrow), and the 1st element is the number of columns (as provided by ncol). 

ncol => (integer$) 
The number of columns in the DataFrame; this will be equal to the length of colNames. 

nrow => (integer$) 
The number of rows in the DataFrame (i.e., the number of elements in a column).  This will be the 
same for every column, by definition. 

5.2.2  DataFrame methods 

– (*)asMatrix(void) 
Returns a matrix representation of the DataFrame.  The matrix will have the same type as the elements 
of the DataFrame; if the DataFrame contains more than one type of element, an error will be raised.  
The order of the columns of the DataFrame will be preserved.  This method is useful, for example, if 
you wish to read in a text file as a matrix; you can use readCSV() to read the file as a DataFrame, 
and then convert it to a matrix with asMatrix(). 

– (void)cbind(object source, ...) 
Adds all of the columns contained by source (which must be a Dictionary or a subclass of 
Dictionary such as DataFrame) to the receiver.  This method makes the target DataFrame wider, by 
adding new columns.  If source contains a column name that is already defined in the target, an error 
will result.  As always for DataFrame, the columns of the resulting DataFrame must all be the same 
length. 

The source parameter may be a non-singleton vector containing multiple Dictionary objects, and 
additional Dictionary vectors may be supplied (thus the ellipsis in the signature).  Each Dictionary 
supplied will be added to the target, in the order supplied. 

 92



This method is similar to the Dictionary method addKeysAndValuesFrom(), which may be used 
instead if replacement of duplicate columns is desired. 

– (void)rbind(object source, ...) 
Appends all of the columns contained by source (which must be a Dictionary or a subclass of 
Dictionary such as DataFrame) to the receiver.  This method makes the DataFrame taller, by adding 
new rows.  If the source and target do not contain the same column names in the same order, an error 
will result.  As always for DataFrame, the columns of the resulting DataFrame must all be the same 
length. 

The source parameter may be a non-singleton vector containing multiple Dictionary objects, and 
additional Dictionary vectors may be supplied (thus the ellipsis in the signature).  Each Dictionary 
supplied will be appended to the target, in the order supplied. 

This method is similar to the Dictionary method appendKeysAndValuesFrom(), which may be 
used instead if one wishes the append to work even when the columns are in different orders, or other 
such situations. 

– (*)subset([Nli rows = NULL], [Nlis cols = NULL]) 
Returns the elements in the selected rows and columns of the target DataFrame.  The selection logic is 
based upon that for subsetRows() and subsetColumns(), respectively; in short, rows may be 
selected by integer indices or by a logical vector, and columns may be selected by integer 
indices, by a logical vector, or by a string vector of column names.  In addition, however, NULL 
may be passed for either rows or cols to select all of the rows or all of the columns, respectively; this 
is the default for both parameters.  If you want entire rows (rather than selecting particular columns), 
pass NULL for cols; if you want entire columns (rather than selecting particular rows), pass NULL for 
rows. 

The first step performed by subset() is to produce a DataFrame that contains the selected rows and 
columns.  If that DataFrame contains more than one column, it is simply returned, and the behavior 
of subset() is identical to calling subsetRows() and subsetColumns() in sequence (in either 
order).  If, however, the resulting DataFrame contains only a single column, then subset() will 
return a vector containing the elements in that column – unlike the behavior of subsetRows() and 
subsetColumns(), which always return a DataFrame.  This method is therefore a convenient way to 
get a single value, or multiple values from the same column, from a DataFrame.  (Note that the 
Dictionary method getValue() can also be used to get all of the values from a given DataFrame 
column.) 

– (object<DataFrame>$)subsetColumns(lis index) 
Returns a new DataFrame containing values for the selected columns of the target DataFrame.  The 
selection logic described below is similar to how the subset operator [] in Eidos works, selecting the 
columns of the target DataFrame. 

The index parameter may be either integer, logical, or string; we will discuss the integer case 
first.  If index is a singleton integer, the returned DataFrame will contain the index’th column of 
the target (counting from the left, from 0).  If index is a non-singleton integer vector, the returned 
DataFrame will contains all of the selected columns, in the order that they are selected by index.  If 
any index value is out of range for the target DataFrame (such that the DataFrame does not have an 
index’th column), an error will result.  If the same column is specified more than once, unique 
column names will be automatically generated for the additional copies of the column. 

If index is a string vector, the returned DataFrame will contain copies of the columns in the target 
named by index.  As with an integer vector, it is an error if a given column does not exist in the 
target; and unique column names will be generated for additional copies of a column. 

Finally, if index is a logical vector, the length of index must be equal to the number of columns in 
the target.  In this case, the T values in index select the columns which will be included in the 
returned DataFrame.  The columns in the returned DataFrame will be in the same order as in the 
target. 

 93



– (object<DataFrame>$)subsetRows(li index, [logical$ drop = F]) 
Returns a new DataFrame containing values for selected rows of the target DataFrame.  The selection 
logic described below works exactly as the subset operator [] does in Eidos, selecting the rows of the 
target DataFrame. 

The index parameter may be either integer or logical; we will discuss the integer case first.  If 
index is a singleton integer, the returned DataFrame will contain the index’th element of the value 
of each key of the target, under the same keys; this is a single row of the target DataFrame.  If index is 
a non-singleton integer vector, the returned DataFrame will contain the values for all of the selected 
rows, in the order that they are selected by index.  If any index value in index is out of range for the 
target DataFrame (such that that DataFrame does not have an index’th row), an error will result. 

If index is logical, the length of index must be equal to the number of rows in the target.  In this 
case, the T values in index select the rows which will be included in the returned DataFrame.  The 
values of each column in the returned DataFrame will be in the same order as in the target. 

If the values of index are such that no value for a given key is selected, the drop parameter controls 
the resulting behavior.  If drop is F (the default), the key will be included in the returned dictionary 
with a zero-length value of matching type, such as integer(0) or string(0).  If drop is T, the key 
will be omitted from the returned dictionary. 

5.3  Class Dictionary 
Superclass: Object 

(object<Dictionary>$)Dictionary(...) 
Creates a new Dictionary object.  Called without arguments, as Dictionary(), this creates a new 
empty Dictionary. 

Alternatively, key-value pairs can be passed to set up the initial state of the new Dictionary.  These 
are set, sequentially, on the new Dictionary, just as setValue() would do.  For example, calling 
Dictionary("a", 0:3, "b", c("foo", "bar")) is equivalent to calling Dictionary() and then 
calling setValue("a", 0:3) and then setValue("b", c("foo", "bar")) on it; it is just a 
shorthand for convenience. 

Another alternative is to call Dictionary() with a singleton Dictionary as its only argument; this 
creates a new Dictionary that is a copy of the Dictionary passed, containing the same keys and 
values.  This is equivalent to creating a new empty Dictionary and then calling 
addKeysAndValuesFrom() to copy key-value pairs over; it is just a shorthand for convenience. 

A final alternative is to call Dictionary() with a singleton string as its only argument; this creates a 
new Dictionary from the string, assuming that it is a data archive in JSON format.  Note that a JSON 
string can be generated from the serialize() method of Dictionary; together with this way of 
creating a Dictionary, this provides the ability to persist arbitrary information to a string (perhaps a 
file on disk) and back again.  The recreated Dictionary should be identical to the original, except 
that zero length vectors such as integer(0), float(0), logical(0), and string(0) will all be 
serialized as "[]" and recreated as integer(0) since JSON does not provide a way to specify the 
type of a zero-length array. 

Dictionary is a subclass of Object that provides basic key-value dictionary functionality: you 
can associate values (whether singletons or vectors, and of any type) with string keys.  This lets 
you attach arbitrary values to objects, effectively extending them with new properties that you 
define.  Dictionary is the base class of most of the Eidos classes in SLiM, and this means that you 
can use Dictionary’s methods with most SLiM classes.  Among SLiM’s Eidos classes, only Genome 
and GenomicElement inherit directly from Object, for efficiency, and thus do not possess 
Dictionary’s functionality. 

 94



Dictionary follows “sharing semantics”, as usual in Eidos (see section 2.8.2).  This means that if 
more than one Dictionary contains the same object (including a Dictionary), they will share that 
object, rather than containing copies.  It is possible for a Dictionary to contain itself. 

Prior to Eidos 2.7 (SLiM 3.7), the Dictionary class was used directly to model a “data frame” as 
in R – a collection of named columns of equal length but different type.  That usage is now 
deprecated; DataFrame should be used instead. 

Internally, there are actually two classes, DictionaryBase (which provides the functionality 
documented here) and Dictionary (which provides some memory-management utilities on top of 
DictionaryBase).  This fact is largely hidden from the user of Eidos, at this point in time, since the 
class hierarchy is not currently open to introspection (i.e., you cannot ask an object what the 
superclass of its class is).  However, if you wish to write a user-defined function that can take any 
object that inherits from Dictionary, you should actually use DictionaryBase for that purpose. 

5.3.1  Dictionary properties 

allKeys => (string) 
A vector containing all of the string keys that have been assigned values using setValue(), in 
sorted (alphabetical) order. 

5.3.2  Dictionary methods 

– (void)addKeysAndValuesFrom(object$ source) 
Adds all of the key-value pairs contained by source (which must be a Dictionary or a subclass of 
Dictionary) to the receiver.  If the target already contains a key that is defined in source, the target’s 
value for that key will be replaced by the value in source (contrast this with 
appendKeysAndValuesFrom()). 

– (void)appendKeysAndValuesFrom(object source) 
Appends all of the key-value pairs contained by source (which must be a Dictionary or a subclass 
of Dictionary) to the receiver.  If the target already contains a key that is defined in source, the value 
from source will be appended to the target’s existing value, which must be of the same type (contrast 
this with addKeysAndValuesFrom()); if the target does not already contain a key that is defined in 
source, that key-value pair will simply be added to the target. 

In the current implementation, it is an error for either of the values involved in an append to be a 
matrix or array; values in these Dictionary objects should be simple vectors.  This limitation 
preserves the future option to expand this method’s functionality to do smart things with matrices and 
arrays. 

– (void)clearKeysAndValues(void) 
Removes all key-value pairs from the receiver. 

– (object<Dictionary>$)getRowValues(li index, [logical$ drop = F]) 
Returns a new Dictionary containing values for selected “rows” of the target Dictionary, allowing 
Dictionary to act similarly to a DataFrame.  See the subsetRows() method of class DataFrame for 
comparison; the main utility of getRowValues() is that it can be used on a Dictionary that has 
ragged “rows”.  The selection logic described below works similarly to the subset operator [] in Eidos, 
selecting the “rows” of the target Dictionary. 

The index parameter may be either integer or logical; we will discuss the integer case first.  If 
index is a singleton integer, the returned Dictionary will contain the index’th element of the 
value of each key of the target, under the same keys; this is a single “row” of the target Dictionary.  
If index is a non-singleton integer vector, the returned Dictionary will contain the values for all of 
the selected rows, in the order that they are selected by index.  If any index value in index is out of 

 95



range for any key of the target Dictionary (such that that key does not have an index’th value), the 
returned dictionary will simply not have a value for that “row” of that key. 

If index is logical, the T values in index select the “rows” which will be included in the returned 
Dictionary.  The values within each column in the returned Dictionary will be in the same order 
as in the target.  The length of index need not match any column of the Dictionary; excess “rows” 
beyond the length of index will not be selected, and excess values in index beyond the end of the 
longest “column” will have no effect. 

If the values of index are such that no value for a given key is selected, the drop parameter controls 
the resulting behavior.  If drop is F (the default), the key will be included in the returned dictionary 
with a zero-length value of matching type, such as integer(0) or string(0).  If drop is T, the key 
will be omitted from the returned dictionary. 

– (*)getValue(string$ key) 
Returns the value previously set for the dictionary entry identifier key using setValue(), or NULL if 
no value has been set. 

– (logical$)identicalContents(object$ x) 
Returns T if the target Dictionary is equal to x in all respects – containing the same keys, with values 
that are identical in the sense defined by the identical() function in Eidos – or returns F otherwise. 

Note that if Dictionary objects are contained, as values, by the dictionaries being tested for equality, 
they will be compared according to the standards of identical(), and must therefore actually be the 
same Dictionary object, shared by both dictionaries, for isEqual() to return T. 

– (string)serialize([string$ format = "slim"]) 
Returns a serialized form of the dictionary’s contents as a string singleton or vector.  Four formats are 
supported at present, as chosen with the format parameter: "slim" and “json" produce a singleton 
string, whereas "csv" and "tsv" produce a string vector.  These serializations can be written to disk 
with writeFile() or writeTempFile(), written to the output stream with cat(), or used in any 
other way. 

The default "slim" format is intended for simple, informal use where a very easily parseable string is 
desired.  For a simple dictionary containing only keys with singleton non-object values, this will be a 
semicolon-delimited string like "key1=value1;key2=value2;".  Values of type string will be 
quoted, and will be escaped with backslash escape sequences, including \\, \", \', \t, \r, and \n.  
Values that are not singleton will be separated by spaces, such as "key1=1 2 3;", while values that 
are themselves dictionaries will be delimited by braces, such as 
"key1={key1=value1;key2=value2;};".  Keys, since they are also of type string, will be quoted 
and backslash-escaped if necessary, but simple keys that do not require that treatment will be 
serialized without quotes for simplicity.  No facility for parsing "slim" serializations back into Eidos is 
presently provided. 

The "json" format, introduced in Eidos 2.7 (SLiM 3.7), provides serialization of the Dictionary into 
the standard JSON format, which may not be quite as brief or human-readable, but which can be used 
as a standard interchange format and read by the Dictionary() constructor in Eidos as well as by 
many other programs.  For example, a Dictionary with a key "key1" with integer value 1:3 and 
key "key2" with string value "value2" would produce the JSON serialization '{"key1":
[1,2,3],"key2":["value2"]}', where the outer single quotes are not part of the serialization itself, 
but are indicating that the serialization is a string value.  Note that since all Eidos values are vectors, 
even singleton values are serialized into JSON as arrays by Eidos; the hope is that this will make 
automated parsing of these JSON strings easier, since the singleton case will not have to be special-
cased.  For example, Dictionary("a", 1, "b", Dictionary("x", 2)) would be serialized into 
JSON as '{"a":[1],"b":[{"x":[2]}]}'.  Documentation on the JSON format can be found online. 

The "csv" and "tsv" formats produce standard comma-separated value (CSV) or tab-separated value 
(TSV) data.  These formats are primarily intended for output from DataFrame, since that class is used 
to represent the sort of data tables that CSV/TSV are typically used for; but it may be used with 

 96



Dictionary too, particularly if it is being used to represent a data table with ragged columns (missing 
values will just be skipped over, producing two commas or two tabs in sequence).  Values of type 
string will always be quoted, with double quotes (with a repeated double quote used to indicate the 
presence of a double quote inside a string value, as usual in CSV); values of other types never will.  
Decimal points (not decimal commas, regardless of system localization) will always be used for float 
values, and will never be used for integer values.  Values of logical type will be serialized as TRUE or 
FALSE, without quotes.  A header line providing the names of the columns (i.e., the keys of the target 
Dictionary) will always be generated; those column names will also be quoted.  One string 
element will be generated for each row of the target, plus one string element for the header line; 
newlines will not be present in the resulting string vector unless newlines were present within the 
string values in the Dictionary.  The resulting data, if written to a file, should be readable in Eidos 
using readCSV() (as long as there are no ragged columns or missing values), as well as in other 
software such as R and Excel. 

– (void)setValue(string$ key, * value) 
Sets a value for the dictionary entry identifier key.  The value, which may be of any type, can be 
fetched later using getValue().  If value is of type object, the object class must internally be under 
retain-release memory management; among SLiM’s Eidos classes, only Chromosome, Mutation, and 
Substitution presently are (see the Eidos manual’s documentation for defineConstant() for 
further discussion).  Setting a key to a value of NULL removes that key from the dictionary. 

5.4  Class Image 
Superclass: Dictionary 

(object<Image>$)Image(...) 
Creates a new Image object.  This can be called in a few different ways. 

Passed a singleton string, as Image(string$ filePath), it creates a new Image from the PNG file 
at filePath.  If the file represents a grayscale image, an 8-bit grayscale (K) Image will be created; all 
other PNG files will yield a 24-bit color (RGB) Image. 

Passed an integer or float vector, as Image(numeric matrix), it creates a new grayscale Image 
from the values in matrix, which must be a matrix as its name suggests.  If matrix is integer, its 
values must be in [0, 255], and will be used directly as 8-bit pixel values without translation; if 
matrix is float, its values must be in [0.0, 1.0], and will be translated into 8-bit pixel values.  The 
dimensions of the image, in pixels, will be equal to the dimensions of the matrix.  The orientation of 
the image will match that of the matrix, in the sense that the image will appear as the matrix does 
when printed in the Eidos console; internally this requires a transposition of values, as discussed 
further below.  For the integer case, the integerK property of the resulting image will recover the 
original matrix exactly; for the float case, the floatK property will only approximately recover the 
original matrix since the translation into 8-bit pixel values involves quantization, but values of 0.0 and 
1.0 will be recovered exactly. 

Image is a subclass of Dictionary that represents a pixel-based image.  Images can be loaded 
from PNG files (that is the only format presently supported), and may be either RGB (i.e., with red/
green/blue color channels) or K (grayscale).  Channels can be accessed directly as Eidos matrices.  
There is not presently support for getting or setting pixel values; please put in a request if you 
would find such functionality useful.  A new Image can be created from a PNG file on disk, and an 
Image can be written out to disk as a PNG file.  A new Image can also be created from a matrix of 
values. 

Images on disk are stored by row: all of the pixels of the topmost row are given from left to 
right, then all the pixels of the next row, and so forth.  Note that the storage order for matrices is 
transposed: all the pixels of the leftmost column are given from top to bottom, then all the pixels of 
the next column, and so forth.  When Image reads a file from disk, this transposition is done 

 97



automatically.  If you work with the channel data in matrix form, this should work transparently; 
but if you access the pixel data as a vector, rather than as a matrix, note that the order of the pixels 
will be by column, not by row, and so it will not match the order on disk. 

5.4.1  Image properties 

width => (integer$) 
The width of the image, in pixels. 

height => (integer$) 
The height of the image, in pixels. 

isGrayscale => (logical$) 
This flag is T if the image is grayscale, with only a K channel; it is F if the image is color, with R/G/B 
channels. 

bitsPerChannel => (integer$) 
The number of bits used to represent a single pixel, in one channel of the image.  At present this is 
always 8; grayscale (K) images are 8-bit, color (RGB) images are 24-bit.  It could be extended to 
support 16-bit channels in future. 

integerR => (integer) 
The red (R) channel of the image, represented as a 2D integer matrix.  Values will be in [0,255].  See 
the floatR property for an alternative representation.  If the image is grayscale, this property is 
unavailable. 

integerG => (integer) 
The green (G) channel of the image, represented as a 2D integer matrix.  Values will be in [0,255].  
See the floatG property for an alternative representation.  If the image is grayscale, this property is 
unavailable. 

integerB => (integer) 
The blue (R) channel of the image, represented as a 2D integer matrix.  Values will be in [0,255].  
See the floatB property for an alternative representation.  If the image is grayscale, this property is 
unavailable. 

integerK => (integer) 
The gray (K) channel of the image, represented as a 2D integer matrix.  Values will be in [0,255].  
See the floatK property for an alternative representation.  If the image is color, this property is 
unavailable. 

floatR => (float) 
The red (R) channel of the image, represented as a 2D float matrix.  Values will be in [0,1], obtained 
by dividing the integerR layer by 255.  See the integerR property for an alternative representation.  
If the image is grayscale, this property is unavailable. 

floatG => (float) 
The green (G) channel of the image, represented as a 2D float matrix.  Values will be in [0,1], 
obtained by dividing the integerG layer by 255.  See the integerG property for an alternative 
representation.  If the image is grayscale, this property is unavailable. 

floatB => (float) 
The blue (B) channel of the image, represented as a 2D float matrix.  Values will be in [0,1], 
obtained by dividing the integerB layer by 255.  See the integerB property for an alternative 
representation.  If the image is grayscale, this property is unavailable. 

 98



floatK => (float) 
The gray (K) channel of the image, represented as a 2D float matrix.  Values will be in [0,1], 
obtained by dividing the integerK layer by 255.  See the integerK property for an alternative 
representation.  If the image is color, this property is unavailable. 

5.4.2  Image methods 

– (void)write(string$ filePath) 
Writes the image to the given filesystem path filePath as PNG data.  It is suggested, but not 
required, that filePath should end in a .png or .PNG filename extension.  If the file cannot be 
written, an error will result.  At present, since bitsPerChannel is always 8, grayscale data will be 
written as an 8-bit grayscale PNG while color (RGB) data will be written as a 24-bit color PNG 
without alpha. 

 99



6.  EidosScribe 

6.1  EidosScribe overview 
EidosScribe is a macOS application that provides an interactive scripting environment for Eidos.  

It’s a very simple app, so this manual will provide only a very quick overview of it. 
EidosScribe is installed automatically if you use the macOS double-click installer for SLiM, in 

which case it is located in the /Applications folder by default.  It can also be built in Xcode, 
following the instructions in the SLiM manual and using the EidosScribe target. 

All the action in EidosScribe happens in one window, the scripting window: 

 
The numbers in this screenshot mark controls and areas of the EidosScribe window: 

1. the Console area, 
2. the Script area, 
3. the Check Script button, 
4. the Eidos Help button, 
5. the Execute Selection button, 
6. the Execute File button, 
7. the Clear Console button, 
8. the Show Tokens button, 
9. the Show AST button, and 
10. the Show Execution Trace button. 

 100



6.2  Interactive scripting 
The Console area (1) is the most important part of the EidosScribe window for interactive 

scripting.  The > prompt shown by EidosScribe indicates that it is ready for new input.  Input may 
be entered at the prompt; that single line may contain more than one statement, but it must be 
syntactically complete.  In other words, unlike some other interpreter environments, a partial 
statement will not result in a continuation prompt requesting further lines of input; it will instead 
result in a parsing error.  Multi-line input can be entered using option-Return (or option-Enter) to 
insert newlines; the input will not be processed until Return or Enter is pressed. 

Given syntactically and semantically correct input, EidosScribe will tokenize, parse, and 
execute the input, and will show the output and results in the Console.  Color-coding is used to 
differentiate among the different blocks of text in the Console; blue text is user input, whereas 
black text is output from Eidos.  The Console area can be cleared by pressing the Clear Console 
button (7). 

The Console remembers its history of previously executed commands.  You may flip through 
that history using the up and down arrow keys.  This is particularly useful when a like of input 
generated an error due to a typo; you can press up-arrow and edit the line to fix the problem. 

Note that for interactive scripting, a semicolon is not required at the end of your input line to 
terminate your last statement.  So 6+7 is acceptable input, and will be executed as 6+7; after 
correction.  This is intended to be a convenience feature for quick interactive sessions; 
remembering the semicolons can be frustrating, especially for those coming from languages such 
as R that do not require them. 

6.3  File-based script execution 
EidosScribe also allows for programming based upon a script file.  The Script area (2) shows 

your script file.  You may enter any text you wish in that area; it is of no significance until you tell 
EidosScribe to execute it in the Console. 

To execute a block of your script, select it and press the Execute Selection button (5).  If you 
wish to execute a single line of script, you can simply place the insertion point anywhere within 
that line and press Execute Selection, and the full line will be executed.  You can also execute the 
full contents of your Script area by pressing the Execute File button (6). 

You can check the syntax of your script at any time by pressing the Check Script button (3).  This 
runs the tokenizer and parser on your script, so syntax errors will be found and flagged.  It does 
not, however, execute your script, so semantic errors such as supplying the wrong number of 
parameters to a function or mixing incompatible types will not be found; those are runtime errors 
that are only found when your script is actually executed. 

Help with Eidos can be brought up by pressing the Eidos Help button (4).  In fact, that button 
may well bring up this very manual; but perhaps something briefer and more immediately helpful 
will appear, depending upon the version of EidosScribe you are using. 

Unlike in interactive scripting (section 6.2), file-based script execution requires a semicolon at 
the end of every statement; EidosScribe will not correct your script prior to execution.  Semicolons 
are, in fact, a required part of the grammar of Eidos, and the cheap hack that EidosScribe uses to 
add them in interactive mode would not work well as a general solution. 

6.4  Code completion 
It can be hard to remember the names of all of the properties and methods exported by Eidos 

objects, as well as the names of the functions and global variables.  For this reason, EidosScribe 
provides a code completion mechanism to assist you in programming.  The keyboard command to 

 101



initiate code completion is the Escape key (␛); Command-period (⌘.) may also work depending 
upon your key bindings. 

The situations in which code completion will work are somewhat limited.  If the selection is at a 
point in your script where a new statement is beginning (after a semicolon, ;,  or a right brace, }, 
for example), you will be offered a list of all of the global constants and variables, functions, and 
statement keywords available.  If the selection is in an object key path such as sim.chromosome. 
you will be offered a list of the properties and methods supported for that key path.  In both of 
these circumstances, a partial identifier just prior to the selection will be used to filter the choices 
available. 

For example, if you begin a new statement and type si and then press ␛, you will be offered 
completions beginning with “si”: sim (the Species simulation global variable), if you are using 
Eidos in SLiM, and sin() and size(), the two functions whose names begin with “si”.  Similarly, if 
(in SLiMgui, in fact, not in EidosScribe) you type sim.chromosome.r and then press ␛, you will be 
offered completions based upon the Chromosome object type that begin with “r”: 
recombinationEndPositions and recombinationRates. 

Eidos is generally aware of the types produced by functions, methods, and properties; it uses the 
same information that it uses to provide the output for the functionSignature() function (section 
2.7.4) and the methodSignature() and propertySignature() methods (section 2.8.6).  In some 
cases, that information is insufficient; the sortBy() function returns an object, for example, but it is 
not known what class that object will be until the code is actually executed.  In such cases, code 
completion cannot provide suggestions.  In most cases, however, it has the information it needs. 

Code completion actually parses and analyzes your code whenever you invoke it.  What this 
means is that it can anticipate the effects of code you have written before you actually execute that 
code.  For example, if you go to EidosScribe’s Script area and type xyzzy = 17; but do not execute 
that line, the symbol xyzzy is not defined in Eidos.  Nevertheless, if you now go to the following 
line, type xy and press ␛, you will see that code completion offers xyzzy as a candidate.  Eidos 
expects that xyzzy will become defined when you eventually get around to executing the code that 
you are writing, and so it considers that variable to exist for purposes of code completion.  In fact, 
if you are working in SLiMgui and write sim.addSubpop("p6", 500); and then go to the next line 
and press ␛, p6 will be offered as a candidate; Eidos knows that a side effect of the addSubpop() 
method is to define a new global variable for the new subpopulation. 

6.5  Debugging controls 
EidosScribe provides some facilities for examining the internals of Eidos.  This is intended 

primarily for debugging, but might also be of interest to those who are curious about how the 
language is implemented. 

6.5.1  Showing tokenization 
The Show Tokens button (8), if pressed, causes the token stream obtained from the user’s input 

to be displayed in the Console.  Tokens are small chunks into which the input is broken prior to 
processing.  In the English language, tokens would be words and punctuation marks; in Eidos, 
tokens are operators, numeric and string literals, function names, variable names, and such.  
Showing tokens allows you to verify that your input was broken into tokens correctly.  For 
example: 

> x = 3+7*3^2 
 

@x = #3 + #7 * #3 ^ #2 ; EOF  

 102



You can see that x was tokenized as an identifier (marked with an @), the numbers were 
tokenized as numeric literals (and thus marked with #), the operators were given their own tokens, 
and the end of the input was marked with an EOF (End Of File) token. 

6.5.2  Showing the abstract syntax tree (AST) 
The Show AST button (9), if pressed, causes the AST (Abstract Syntax Tree) generated from the 

token stream to be shown.  The AST is an intermediate representation of the user’s input as a tree, 
where operators are nodes in the tree and their operands are their children.  The nesting of the tree 
is shown with parentheses.  So for the input above, we would have: 

> x = 3+7*3^2 
 

($> 
  (= 
    @x 
    (+ 
      #3 
      (* 
        #7 
        (^ #3 #2) 
      ) 
    ) 
  ) 
) 

The deepest node is the exponentiation, 3^2.  The next node up multiplies the result of that 
exponentiation by 7, and so forth.  At the top of the tree is the parent node for the whole input line, 
which is marked with the special designator $> representing the EidosScribe prompt.  You can 
examine the AST to confirm that the correct grouping and precedence of operations is being 
expressed by the tree. 

6.5.3  Showing the evaluation trace 
The Show Execution Trace button, if pressed, causes EidosScribe to output a trace of Eidos’s 

internal execution as it processes the AST, evaluates it, and generates a result.  Evaluating the AST 
depends upon an algorithm that recursively “walks” the AST, visiting parents and then visiting each 
of their children in turn.  As each child is evaluated, it generates a return value; those return values 
are collected, and once assembled together, allow the evaluation of the parent, which can then 
generate its own return value.  The execution trace shows entry into, and exit out of, each node in 
the AST as it is walked, as well as each intermediate return value generated.  Since this execution 
trace refers to functions and state that is internal to the implementation of Eidos, it may be of 
limited utility; at a minimum, however, it can be used to confirm that execution of the AST results 
in a call sequence that makes logical sense.  For example, for the example above, the execution 
trace would be: 

> x = 3+7*3^2 
 

EvaluateInterpreterBlock() entered 
  EvaluateNode() : token = 
  Evaluate_Assign() entered 
    Evaluate_LValueReference() : token @x 
    EvaluateNode() : token + 
    Evaluate_Plus() entered 
      EvaluateNode() : token #3 
      Evaluate_Number() entered 
      Evaluate_Number() : return == 3 
      EvaluateNode() : token * 
      Evaluate_Mult() entered 
        EvaluateNode() : token #7 
        Evaluate_Number() entered 

 103



        Evaluate_Number() : return == 7 
        EvaluateNode() : token ^ 
        Evaluate_Exp() entered 
          EvaluateNode() : token #3 
          Evaluate_Number() entered 
          Evaluate_Number() : return == 3 
          EvaluateNode() : token #2 
          Evaluate_Number() entered 
          Evaluate_Number() : return == 2 
        Evaluate_Exp() : return == 9 
      Evaluate_Mult() : return == 63 
    Evaluate_Plus() : return == 66 
  Evaluate_Assign() : return == NULL 
EvaluateInterpreterBlock() : return == NULL 

At the deepest level, for example, you can see how the exponentiation, 3^2, is evaluated by first 
evaluating each operand (getting 3 and 2 as results), and then performing an exponentiation of 3 
and 2 to produce a result of 9.  That 9 is then passed up as an operand to its parent, 
Evaluate_Mult, which evaluates the multiplication of 7 and 3^2.  When the recursive tree walk 
completes, the topmost node returns NULL, because the assignment operator always generates NULL 
as its result (the assignment of a value to a variable is a side effect). 

If all that made no sense, it doesn’t matter.  It is of interest mainly to those who are interested in 
debugging Eidos and EidosScribe – although an understanding of it might be useful in writing 
scripts, too. 

 104



7.  Colors in Eidos 

Eidos has no direct support for graphical user interfaces at present; it is a language that is used 
purely at the command line or as a scripting interface.  It can nevertheless be useful for Eidos to 
provide some support for the control of a graphical user interface implemented by the Context.  
The first foray that we have taken in this direction is to allow Eidos script to control the colors of 
some of the graphical elements presented in SLiMgui (see the color and colorSubstitution 
properties on various SLiM classes).  To facilitate this, some basic support has been added to Eidos 
for the specification of colors and the conversion of colors between the RGB and HSV color 
spaces. 

Basically, Eidos follows the lead of the R language in this respect: colors are represented by 
string values, as described in detail below.  Colors can also be described with float vectors 
containing either RGB (red/green/blue) or HSV (hue/saturation/value) values, but the intention is 
that the Context would not use such color descriptions directly; instead, the float vector 
description would be converted into a color string that the Context would use.  The color string is 
therefore intended to be the “native” color format.  The rgb2color() function is provided to 
convert an RGB float vector into a color string, while the color2rgb() function can perform the 
reverse conversion.  The hsv2rgb() and rgb2hsv() functions provide the ability to convert between 
color spaces when using float vector color descriptions.  (See section 3.9 for descriptions of these 
functions.) 

Two ways to specify a color string are supported: named colors, and hexadecimal RGB values.  
To specify a named color, simply give the name of the color (in quotes, since it is a string literal 
value).  For example, "red" is a standard shade of red, and "coral" is a particular shade of orange.  
In all, 657 named colors are supported, exactly matching the named colors supported by R.  A 
quick internet search will supply several websites with lists of these named colors presented in 
various ways; for example, http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf is one useful list.  
It should be noted that R’s color list has some flaws; for example, "azure" is not azure at all, but 
instead a shade just slightly off white, for no apparent reason.  For compatibility, however, these 
flaws are mirrored precisely in the named colors available in Eidos. 

To specify a color with a hexadecimal RGB string, supply a string of the form "#RRGGBB", where 
RR is a two-digit hexadecimal value for red, and GG and BB are likewise values for green and blue.  
Hexadecimal is base 16; digits in hexadecimal are 0123456789ABCDEF, where base 10 math of 
course uses only 0123456789.  A hexadecimal value of 00 represents zero, whereas FF represents 
255 in base 10.  The red, green, and blue values can therefore range from 0 to 255.  Black is 
represented by "#000000", white by "#FFFFFF".  Pure red is "#FF0000", pure green is "#00FF00", 
and pure blue is "#0000FF".  An R color chart showing the hexadecimal values for all of the 
standard named colors is at http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf; 
this can be helpful for devising new hexadecimal colors if you aren’t used to this representation 
scheme.  This reveals, for example, that "coral" is "#FF7F50", a fact that could also be discovered 
with a call to color2rgb("coral"); a shade with a bit less green in it could then be easily derived 
by changing the 7F portion to a smaller hexadecimal number. 

Usually, the colors a model uses will be hard-coded into the model as string literals.  It is 
certainly possible to create color strings at runtime, though.  The simplest way is to use the 
rgb2color() function.  It expects a float vector containing the red, green, and blue components 
as values in the interval [0, 1]; it rescales these values to [0, 255] and returns the corresponding 
hexadecimal string.  For example, to get a shade of bright red with a little green mixed in (making 
it a little bit orange), do: 

rgb2color(c(1.0, 0.3, 0.0)); 

 105

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf


The format() function of Eidos can also produce a two-digit hexadecimal string for a given 
integer; with three calls to format() to generate the red, green, and blue portions of the color 
string, and some use of the + operator to stick it all together, making a color string representing 
arbitrary RGB color components should be straightforward.  For example: 

r = 127; 
g = 63; 
b = 255; 
"#" + format("%.2X",r) + format("%.2X",g) + format("%.2X",b); 

As long as r, g, and b are integer values within the interval [0, 255], this code ought to 
produce a properly-formatted color string. 

 106



8.  Eidos language reference sheet 

This reference sheet may be downloaded as a separate PDF from http://messerlab.org/slim/. 

 

if (condition) statement [else statement] conditional statement with optional alternative statement
while (condition) statement loop while T, with a condition test at the loop top
do statement while (condition) loop while T, with a condition test at the loop bottom
for (identifier in vector) statement iterate through the values in a vector, executing statement
next / break skip the rest of this iteration, or exit a loop entirely
return [return-value] exit a script block, returning a value if one is given

function (return)name(params) { ... } create a user-defined function (only at the top level)

Math:
(numeric)abs(numeric x): absolute value of x
(float)acos(numeric x): arc cosine of x
(float)asin(numeric x): arc sine of x
(float)atan(numeric x): arc tangent of x
(float)atan2(numeric x, numeric y): arc tangent of y/x, inferring the correct quadrant
(float)ceil(float x): ceiling (rounding toward +∞) of x
(float)cos(numeric x): cosine of x
(numeric)cumProduct(numeric x): cumulative product along x
(numeric)cumSum(numeric x): cumulative summation along x
(float)exp(numeric x): base-e exponential of x, ex

(float)floor(float x): floor (rounding toward −∞) of x
(integer)integerDiv(integer x, integer y): integer division of x by y
(integer)integerMod(integer x, integer y): integer modulo of x by y (the remainder after integer division)
(logical)isFinite(float x): T or F for each element of x; "finite" means not INF, -INF, or NAN
(logical)isInfinite(float x): T or F for each element of x; "infinite" means INF and -INF only
(logical)isNAN(float x): T or F for each element of x; "infinite" means NAN only
(float)log(numeric x): base-e logarithm of x
(float)log10(numeric x): base-10 logarithm of x
(float)log2(numeric x): base-2 logarithm of x
(numeric$)product(numeric x): product of the elements of x, Π x
(float)round(float x): round x to the nearest values; half-way cases round away from 0
(*)setDifference(* x, * y): set-theoretic difference, x ∖ y
(*)setIntersection(* x, * y): set-theoretic intersection, x ∩ y
(*)setSymmetricDifference(* x, * y): set-theoretic symmetric difference x ∆ y
(*)setUnion(* x, * y): set-theoretic union, x ∪ y
(float)sin(numeric x): sine of x
(float)sqrt(numeric x): square root of x
(numeric$)sum(lif x): summation of the elements of x, Σ x
(float$)sumExact(float x): exact summation of x without roundoff error, to the limit of floating-point precision
(float)tan(numeric x): tangent of x
(float)trunc(float x): truncation (rounding toward 0) of x

Types (in promotion order):
    NULL: no explicit value
    logical: true/false values
    integer: whole numbers
    float: real numbers
    string: characters
    object: Eidos objects,
          such as SLiM objects

Constants:
    E: e (2.7182...) (float)
    PI: π (3.1415...) (float)
    F: false (logical)
    T: true (logical)
    INF: infinity (float)
    NAN: not a number (float)
    NULL: a NULL-type value

Operators (precedence order):
    [], (), . subset, call, member
    ^ exponentiation
    +, -, ! unary plus/minus, logical not
    : sequence construction
    *, /, % multiplication, division, modulo
    +, - addition and subtraction
    <, >, <=, >= less-than, greater-than, etc.
    ==, != equality and inequality
    & logical (Boolean) and
    | logical (Boolean) or
    ?else ternary conditional
    = assignment

Empty statement: ;
Compound statement: { ... }
Single-line comment: // ...
Block comment: /* ... */

Eidos Reference Sheet 14 September 2022

 107

http://messerlab.org/slim/


 

Statistics:

(float$)cor(numeric x, numeric y): sample Pearson’s correlation coefficient between x and y
(float$)cov(numeric x, numeric y): corrected sample covariance between x and y
(+$)max(+ x, ...): largest value within x and the additional optional arguments
(float$)mean(lif x): arithmetic mean of x
(+$)min(+ x, ...): smallest value within x and the additional optional arguments
(+)pmax(+ x, + y): parallel maximum of x and y (the element-wise maximum for each corresponding pair)
(+)pmin(+ x, + y): parallel minimum of x and y( the element-wise maximum for each corresponding pair)
(float)quantile(numeric x, [Nf probs = NULL]): quantiles of x
(numeric)range(numeric x, ...): range (min/max) of x and the additional optional arguments
(float$)sd(numeric x): corrected sample standard deviation of x
(float$)ttest(float x, [Nf y = NULL], [Nf$ mu = NULL]): run a one-sample or two-sample t-test
(float$)var(numeric x): corrected sample variance of x

Vector construction:

(*)c(...): concatenate the given vectors to make a single vector of uniform type
(float)float(integer$ length): construct a float vector of length, initialized with 0.0
(integer)integer(integer$ length, [integer$ fill1 = 0], [integer$ fill2 = 1], 
   [Ni fill2indices = NULL]): construct an integer vector of length, initialized with the given fill values
(logical)logical(integer$ length): construct a logical vector of length, initialized with F
(object<Object>)object(void): construct an empty object vector
(*)rep(* x, integer$ count): repeat x a given number of times
(*)repEach(* x, integer count): repeat each element of x a given number of times
(*)sample(* x, integer$ size, [logical$ replace = F], [Nif weights = NULL]): sample from x
(numeric)seq(n$ from, n$ to, [Nif$ by = NULL], [Ni$ length = NULL]): construct a sequence
(integer)seqAlong(* x): construct a sequence along the indices of x
(integer)seqLen(integer$ length): construct a sequence with length elements, counting upward from 0
(string)string(integer$ length): construct a string vector of length, initialized with ""

Value inspection / manipulation:

(logical$)all(logical x, ...): T if all values supplied are T, otherwise F
(logical$)any(logical x, ...): T if any values supplied are T, otherwise F
(void)cat(* x, [s$ sep = " "], [l$ error = F]): concatenate output
(void)catn([* x = ""], [s$ sep = " "], [l$ error = F]): concatenate output with trailing newline
(string)format(string$ format, numeric x): format the elements of x as strings
(logical$)identical(* x, * y): T if x and y are identical in all respects, otherwise F
(*)ifelse(logical test, * trueValues, * falseValues): vector conditional
(integer$)length(* x): count elements in x (synonymous with size())
(integer)match(* x, * table): positions of matches for x within table
(integer)order(+ x, [logical$ ascending = T]): indexes of x that would produce sorted order
(string$)paste(..., [string$ sep = " "]): paste together a string with separators
(string$)paste0(...): paste together a string with no separators
(void)print(* x, [l$ error = F]): print x to the output stream
(*)rev(* x): reverse the order of the elements in x
(integer$)size(* x): count elements in x (synonymous with length())
(+)sort(+ x, [logical$ ascending = T]): sort non-object vector x
(object)sortBy(object x, string$ property, [l$ ascending = T]): sort object vector x by a property
(void)str(* x, [l$ error = F]): print the external structure of a value
(integer)tabulate(integer bin, [Ni$ maxbin = NULL]): tabulate occurrence counts of values in bin
(*)unique(* x, [logical$ preserveOrder = T]): unique values in x (preserveOrder = F is faster)
(integer)which(logical x): indices in x which are T
(integer$)whichMax(+ x): first index in x with the maximum value
(integer$)whichMin(+ x): first index in x with the minimum value

 108



 

Type testing / coercion:

(float)asFloat(+ x): convert x to type float
(integer)asInteger(+ x): convert x to type integer
(logical)asLogical(+ x): convert x to type logical
(string)asString(+ x): convert x to type string
(string$)elementType(* x): element type of x; for object x, this is the class of the object-elements
(logical$)isFloat(* x): T if x is of type float, F otherwise
(logical$)isInteger(* x): T if x is of type integer, F otherwise
(logical$)isLogical(* x): T if x is of type logical, F otherwise
(logical$)isNULL(* x): T if x is of type NULL, F otherwise
(logical$)isObject(* x): T if x is of type object, F otherwise
(logical$)isString(* x): T if x is of type string, F otherwise
(string$)type(* x): type of vector x; this is NULL, logical, integer, float, string, or object

Distribution drawing / density:

(float)dmvnorm(float x, numeric mu, numeric sigma): multivariate normal density function values
(float)dbeta(float x, numeric alpha, numeric beta): beta distribution density function values
(float)dexp(float x, [numeric mu = 1]): exponential distribution density function values
(float)dgamma(float x, numeric mean, numeric shape): gamma distribution density function values
(float)dnorm(float x, [numeric mean = 0], [numeric sd = 1]): normal density function values
(integer)findInterval(numeric x, numeric vec, [logical$ rightmostClosed = F],
   [logical$ allInside = F]): find interval indices
(float)pnorm(float q, [numeric mean = 0], [numeric sd = 1]): normal distribution CDF values
(float)qnorm(float p, [numeric mean = 0], [numeric sd = 1]): normal distribution quantile values
(float)rbeta(integer $n, numeric alpha, numeric beta): beta distribution draws
(integer)rbinom(integer $n, integer size, float prob): binomial distribution draws
(float)rcauchy(integer $n, [numeric location = 0], [numeric scale = 1]): Cauchy distribution draws
(integer)rdunif(integer $n, [integer min = 0], [integer max = 1]): discrete uniform distribution draws
(float)rexp(integer $n, [numeric mu = 1]): exponential distribution draws
(float)rf(integer $n, numeric d1, numeric d1): F-distribution draws
(float)rgamma(integer $n, numeric mean, numeric shape): gamma distribution draws
(integer)rgeom(integer $n, float p): geometric distribution draws
(float)rlnorm(integer $n, [numeric meanlog = 0], [numeric sdlog = 1]): lognormal distribution draws
(float)rmvnorm(integer $n, numeric mu, numeric sigma): multivariate normal distribution draws
(integer)rnbinom(integer $n, integer size, float prob): negative binomial distribution draws
(float)rnorm(integer $n, [numeric mean = 0], [numeric sd = 1]): normal distribution draws
(integer)rpois(integer $n, numeric lambda): Poisson distribution draws
(float)runif(integer $n, [numeric min = 0], [numeric max = 1]): uniform distribution draws
(float)rweibull(integer $n, numeric lambda, numeric k): Weibull distribution draws

String manipulation:

(lis)grep(string$ pattern, string x, [logical$ ignoreCase = F], 
   [string$ grammar = "ECMAScript"], [string$ value = "indices"], [logical$ fixed = F], 
   [logical$ invert = F]): regular expression substring matching
(integer)nchar(string x): character counts for the string values in x
(logical)strcontains(string x, string$ s, [i$ pos = 0]): check for occurrence of s in x from pos
(integer)strfind(string x, string$ s, [i$ pos = 0]): find first occurrences of s in x from pos
(logical)strprefix(string x, string$ s): check for prefix s in x
(string)strsplit(string$ x, [string$ sep = " "]): split string x into substrings by separator sep
(logical)strsuffix(string x, string$ s): check for suffix s in x
(string)substr(string x, integer first, [Ni last = NULL]): get substrings from x

 109



 

Miscellaneous:

(void)assert(logical assertions, [Ns$ message = NULL]): assert that condition(s) are true; if not, stop
(void)beep([Ns$ soundName = NULL]): play a sound or beep
(void)citation(void): print the reference citation for Eidos and the current Context
(float$)clock([string$ type = "cpu"]): get the current CPU usage clock, for timing of code blocks
(string$)date(void): get the current date as a formatted string
(string$)debugIndent(void): get the current indentation string for debugging output
(void)defineConstant(string$ symbol, * value): define a new constant with a given value
(void)defineGlobal(string$ symbol, * value): define a new global variable with a given value
(*)doCall(string$ functionName, ...): call the named function with the given arguments
(*)executeLambda(string$ lambdaSource, [ls$ timed = F]): execute a string as code
(logical)exists(string symbol): T for defined symbols, F otherwise
(void)functionSignature([Ns$ functionName = NULL]): print the call signature(s) for function(s)
(void)functionSource(string$ functionName): print the Eidos source code (if any) for a function
(integer$)getSeed(void): get the last random number generator seed set
(void)license(void): print license information for Eidos and the current Context
(void)ls([logical$ showSymbolTables = F]): list all variables currently defined
(void)rm([Ns variableNames = NULL]): remove (undefine) variables
(*)sapply(* x, string$ lambdaSource, [string$ simplify = "vector"]): apply code across elements of x
(void)setSeed(integer$ seed): set the random number generator seed
(void)source(string$ filePath, [logical$ chdir = F]): execute a source file as code
(void)stop([Ns$ message = NULL]): stop execution and print the given error message
(logical$)suppressWarnings(logical$ suppress): suppress (or stop suppressing) warning messages
(*)sysinfo(string$ key): get information about the system – operating system, hardware, etc.
(string)system(string$ command, [string args = ""], [string input = ""], 
   [logical$ stderr = F], [logical$ wait = T]): run a Un*x command with the given arguments and input
(string$)time(void): get the current time as a formatted string
(float$)usage([logical$ peak = F]): get the current or peak memory usage of the process
(float)version([logical$ print = T]): get the Eidos and Context version numbers

Filesystem access:

(logical$)createDirectory(string$ path): create a new filesystem directory at path
(logical$)deleteFile(string$ filePath): delete file at filePath
(logical$)fileExists(string$ filePath): check for the existence of a file (or directory) at filePath
(string)filesAtPath(string$ path, [logical$ fullPaths = F]): get the names of the files in a directory
(logical$)flushFile(string$ filePath): flush any buffered content for the file at filePath
(string$)getwd(void): get the current filesystem working directory
(object<DataFrame>$)readCSV(string$ filePath, [ls colNames = T], [Ns$ colTypes = NULL], 
   [string$ sep = ","], [string$ quote = '"'], [string$ dec = "."], 
   [string$ comment = ""]): read tabular data from a CSV/TSV file to create a new DataFrame
(string)readFile(string$ filePath): read lines from the file at filePath as a string vector
(string$)setwd(string$ path): set the filesystem working directory
(string$)tempdir(void): get the path for a directory suitable for temporary files
(logical$)writeFile(string$ filePath, string contents, [logical$ append = F], 
   [logical$ compress = F]): write to a file
(string$)writeTempFile(string$ prefix, string$ suffix, string contents, 
   [logical$ compress = F]): write to a temporary file

Color manipulation:

(string)colors(numeric x, string$ name): generate color strings from the named color palette
(float)color2rgb(string color): convert color string(s) to RGB values
(float)hsv2rgb(float hsv): convert HSV color(s) to RGB values
(string)rainbow(integer$ n, [float$ s = 1], [float$ v = 1], [float$ start = 0], 
   [Nf$ end = NULL], [logical$ ccw = T]): generate colors in a “rainbow” color palette
(string)rgb2color(float rgb): convert RGB color(s) to color string(s)
(float)rgb2hsv(float rgb): convert RGB color(s) to HSV values

 110



 

Matrix and array functions:
(*)apply(* x, integer margin, string$ lambdaSource): apply code across margins of matrix/array x
(*)array(* data, integer dim): create an array from data, with dimensionality dim
(*)cbind(...): combine vectors and/or matrices by column
(integer)dim(* x): dimensions of matrix or array x
(*)drop(* x): drop redundant dimensions from matrix or array x
(*)matrix(* data, [Ni$ nrow = NULL], [Ni$ ncol = NULL], [logical$ byrow = F]): create a matrix
(numeric)matrixMult(numeric x, numeric y): matrix multiplication of conformable matrices x and y
(integer$)ncol(* x): number of columns in matrix or array x
(integer$)nrow(* x): number of rows in matrix or array x
(*)rbind(...): combine vectors and/or matrices by row
(*)t(* x): transpose of x

Class Object:
Superclass: none

+ (integer$)length(void): count elements in the target object vector (synonymous with size())
+ (void)methodSignature([Ns$ methodName]): print the signature for methodName, or for all methods
+ (void)propertySignature([Ns$ propertyName]): print the signature for propertyName, or for all properties
+ (integer$)size(void): count elements in the target object vector (synonymous with length())
- (void)str(void): print the internal structure (properties, types, values) for an object vector
- (string$)stingRepresentation(void): returns the string representation that print() would print

Class Dictionary:
Superclass: Object

(object<Dictionary>$)Dictionary(...): creates a new Dictionary, with several variants:

(object<Dictionary>$)Dictionary(): new empty Dictionary
(object<Dictionary>$)Dictionary(string$ key, *$ value, ...): new Dictionary with key-value pairs
(object<Dictionary>$)Dictionary(object<Dictionary>$ d): new Dictionary that is a copy of d
(object<Dictionary>$)Dictionary(string$ json): new Dictionary from a JSON serialization

allKeys => (string): a vector of all keys that have been assigned a value

- (void)addKeysAndValuesFrom(object$ source): adds key–value pairs from source
- (void)appendKeysAndValuesFrom(object source): appends key–value pairs from source
- (void)clearKeysAndValues(void): removes all key–value pairs
- (*)getValue(string$ key): fetch the value assigned to key (or NULL if no value is assigned)
- (object<Dictionary>$)getRowValues(li index, [logical$ drop = F]): returns selected “rows”
- (logical$)identicalContents(object$ x): returns T if the target contains identical keys and values to x
- (string)serialize(string$ format): returns a string representation ('slim' / 'json' / 'csv' / 'tsv')
- (void)setValue(string$ key, * value): sets a key–value pair

Class DataFrame:
Superclass: Dictionary

(object<Dictionary>$)DataFrame(...): creates a new DataFrame, with the same variants as Dictionary() 
   see also the readCSV() function, which creates a DataFrame from a CSV/TSV file

colNames => (string): a vector of the names of all columns
dim => (integer): a vector of dimensions (rows, columns)
ncol => (integer$): the number of columns
nrow => (integer$): the number of rows

- (*)asMatrix(void): returns a matrix representation of the target DataFrame
- (void)cbind(object source, ...): adds columns from source and ..., increasing the target’s width
- (void)rbind(object source, ...): adds rows from source and ..., increasing the target’s height
- (*)subset([Nli rows = NULL], [Nlis cols = NULL]): returns selected elements, as a DataFrame or vector
- (object<DataFrame>$)subsetColumns(lis index): returns selected columns
- (object<DataFrame>$)subsetRows(li index, [logical$ drop = F]): returns selected rows

 111



 

Class Image:
Superclass: Dictionary

(object<Image>$)Image(string$ filePath): creates a new Image object from the PNG file at filePath

width => (integer$): the width of the image, in pixels
height => (integer$): the height of the image, in pixels
isGrayscale => (logical$): T if the image is grayscale, F if it is RGB
bitsPerChannel => (integer$): the number of bits used to represent one channel of the image (R/G/B/K)
integerR => (integer): the red (R) channel of the image, represented as a 2D integer matrix
integerG => (integer): the green (G) channel of the image, represented as a 2D integer matrix
integerB => (integer): the blue (B) channel of the image, represented as a 2D integer matrix
integerK => (integer): the black (K) channel of the image, represented as a 2D integer matrix
floatR => (float): the red (R) channel of the image, represented as a 2D float matrix
floatG => (float): the green (G) channel of the image, represented as a 2D float matrix
floatB => (float): the blue (B) channel of the image, represented as a 2D float matrix
floatK => (float): the black (K) channel of the image, represented as a 2D float matrix

- (void)write(string$ filePath): write PNG data for the image to filePath

 112



9.  Railroad diagrams 

These “railroad diagrams” represent Eidos’s grammar in a graphical form equivalent to its EBNF 
grammar.  This grammar has a couple of conflicts.  One is due to the if–else ambiguity as usual; 
this is resolved by associating the else clause with the closest preceding if statement to which it 
could apply, as in many other languages.  Others are resolved by one-token lookahead.  For 
example, if a param_list begins with void then the following token is checked to determine 
whether it is a closing parenthesis; if it is, the simple path is taken, otherwise the parser treats the 
void identifier as the beginning of a param_spec (and thus the beginning of a type_spec).  Other 
cases of grammar conflict are similarly resolved. 

9.1  Start rule 

 

This is Eidos’s start rule, used in the interactive interpreter; an interpreter block consists of a series of zero or 
more statements and function declarations.  Statements are described in section 9.2; function declarations 
are put off until section 9.4. 

Note that a semicolon terminating the final statement may be optional in the interactive interpreter, which is 
not reflected in this grammar; it is a convenience added by the interactive interpreter. 

This is not the start rule used by SLiM; SLiM defines a modified Eidos grammar with a different start rule for 
use in parsing SLiM input files, as described in the SLiM manual. 

9.2  Statements 

 

 

 

 

 113



 

 

 

 

Compound statements are a series of zero or more statements enclosed by braces. 

Statements are either compound statements, null statements (a lone semicolon), assignment-expressions (as 
defined in the next section), or language constructs beginning with one of the set of statement keywords 
defined by Eidos: if, for, do, while, next, break, or return.  Note that function declarations are not a 
type of statement (see section 9.4); functions can only be declared at the top level in Eidos, not anywhere 
that a statement is allowed. 

9.3  Expressions 

 

 

 

 

 

 

 

 114



 

 

 

 

 

 

 

 

 

Expressions generally involve operators, and are defined in this grammar using a hierarchy of expression 
types that establish the precedence rules for those operators (see section 2.3.6), as in many languages.  This 
hierarchy bottoms out at primary expressions, which are either an identifier (i.e., a variable name, in this 
case), a string or numeric constant, or a parenthesis-delimited subexpression. 

Note that the left-hand side of an assignment statement is restricted at runtime to be an lvalue expression, 
an expression that identifies a specific set of defined values to be modified.  For example, x is an lvalue 

 115



expression since x is a specific identifier whose value can be (re)defined, but x*y is not.  Since this 
restriction is checked at runtime, the grammar shown is correct, but it does not express this restriction. 

Note also that assignment is not valid in Eidos expressions, in general; it is only allowed in the context of an 
expr_statement.  Eidos differs from many other languages, such as C, in this respect; constructs like 
if (x=y) ... are not legal in Eidos, for safety and simplicity (see section 2.4.1).  In Eidos 1.1 (SLiM 2.1) 
named function arguments were added, so argument_expr_list was modified, and argument_expr was 
added, to allow for this possibility; the use of the = symbol in this context is not assignment, however, and 
does not modify the values of any symbols (i.e., calling abs(x=-10) does not assign -10 to x, it just 
designates -10 as the value to be passed for the function argument named x). 

Beginning in Eidos 2.5 (SLiM 3.5), grammar changes were made so that expressions such as -2^2 would 
produce the expected result (-4) according to standard mathematical rules; see section 2.3.6.  This modified 
seq_expr and unary_exp_expr (the latter of which used to be two rules, unary_expr and exp_expr). 

9.4  Function declarations 

 

 

 

 

 116



 

 

 

Beginning in Eidos version 1.5 (SLiM version 2.5), declaration of new user-defined functions is supported in 
Eidos (see chapter 4).  The option of declaring a function has been added to the start rule (see section 9.1), 
and the rules above establish the form of such declarations.  Note that, following the way that function 
prototypes are shown in Eidos, functions that return no value or that take no parameters are declared using 
the special type specifier void.  Beginning in Eidos version 2.0 (SLiM version 3.0), void has been elevated 
to a formal type rather than simply a special language keyword, and so it is now integrated into type_spec; 
this change has few practical consequences, but does allow runtime type-checking to be more rigorous in 
some cases (see section 2.7.3). 

The only real complication here is the way types are specified in function declarations, for both the return 
type and the types of function parameters.  These type specifiers may always be *, for maximum flexibility; 
this dispenses with almost all of the type-checking normally performed by Eidos.  If a type is known more 
specifically, however, it is beneficial to provide that information in the function declaration; Eidos will then 
automatically type-check parameters and return values for you, and your code may then assume that all 
parameters and return values will conform to the types given in the function declaration.  Note that a type 
specifier may be a simple base type (logical, integer, float, string, or object), one of the predefined 
compound types (numeric for either integer or float, + for any non-void base type except object, and 
* for any non-void base type including object), or a user-defined compound type given by a sequence of 
single letters specifying base types (v, N, l, i, f, s, or o), in any order.  In the latter case, a given base type 
may not be specified more than once, and type-specifiers involving only void and NULL may not be 
declared singleton; these are semantic restrictions, not syntactic, and are thus not represented in this 
grammar.  When an object type is allowed (except in the case of *), an optional class specifier may be 
supplied that gives a required class for the type when an object value is supplied; again, this allows Eidos 
to perform automatic type checking, so it should be specified when possible.  Finally, if a value must always 
be a singleton (or void or NULL), that may be specified with a trailing $, which again allows Eidos to 
perform automated checks of parameter and return values – in this case, that those values are singletons 
when required to be. 

Parameters in function declarations may be optional, specified by enclosing the parameter specification in 
brackets.  In this case, a default value must be given; when the function is called, any unsupplied parameter 
will be defined as having its default value.  Default values may be string or numeric constants (including 
an optional unary minus in front of numeric constants, beginning in Eidos 2.7), or may be an identifier 
designating a built-in Eidos constant (T, F, NULL, E, PI, NAN, or INF).  At this time, user-defined constants, 
constant expressions (beyond a leading unary minus), and expressions more generally are not allowed as 
default parameter values. 

 117



9.5  Tokens 

 

Whitespace is not significant in Eidos, so these tokens are removed from the token stream.  It is a bit odd 
that it is shown as '\t'..'\n'; in fact those characters are adjacent in ASCII. 

 

Note that beginning in Eidos 2.6 (SLiM 3.6), identifiers may contain Unicode characters above 7-bit ASCII, 
for either their first character or following characters, in addition to what is shown above.  Within the range 
of 7-bit ASCII, only the characters above are legal.  This allows variable names to include accents and other 
diacritical marks, characters from non-Roman scripts like Greek or Chinese, and even emojis.  No attempt 
is made to exclude Unicode characters that might not make sense, such as spaces of different widths, 
strange punctuation marks, etc.; all Unicode characters above 7-bit ASCII are allowed. 

 

Note that integer and float constants are not different token types; both tokenize and parse as numeric 
literals, and the distinction between them is made when the AST is interpreted.  Upon interpretation, 
numbers with a decimal point or a negative exponent are taken to be float; all other numeric literals are 
taken to be integer.  Note that this means that integer literals in Eidos may have a positive exponent. 

 

 

This railroad diagram is not strictly correct.  The lower path does not allow every possible Unicode 
character; backslash, quote, newline, and carriage return are excluded.  Literal newlines and carriage 
returns are thus not legal within string literals; they must be escaped as \n and \r, respectively.  Quotes 
and backslashes must also be escaped, but tabs may be included literally.  Single-quoted string literals 
and multiline string literals are not shown in this railroad diagram; see section 2.1.4. 

Comments are also tokens, technically, but they are removed from the token stream prior to parsing, and 
they are not readily depicted using railroad diagrams because of their unusual syntax (particularly nesting 
block comments).  See section 2.10 for an overview of comments in Eidos. 

 118



10.  The future of Eidos 

It is not presently clear what the future holds for Eidos.  The design of the language is pulled in 
two different directions at the moment.  On the one hand, it would be wonderful to extend it in 
some obvious ways to make it more powerful and general.  On the other hand, the simplicity of 
Eidos right now is both a design goal and a selling point; we want the language to be immediately 
approachable by people with no programming experience (biologists, in particular, in the case of 
SLiM).  Every feature added to the language moves us away from that goal.  Every little bit of new 
complexity has to be documented, and makes Eidos that much less approachable. 

We have not yet decided on the precise balance we wish to strike; since the primary goal for 
Eidos is to provide scriptability to SLiM, a lot depends upon what we hear back from the users of 
SLiM.  If you have feedback for us, either as a user of SLiM or as a user of Eidos in some other 
Context, we’d love to hear it. 

 119



11.  Credits and licenses for incorporated software 

Eidos incorporates code from various other software frameworks and packages.  This section 
provides credit and license information for the software thus incorporated, as well as for Eidos 
itself. 

11.1  Eidos 
Eidos is free software: you can redistribute it and/or modify it under the terms of the GNU 

General Public License as published by the Free Software Foundation, either version 3 of the 
License, or (at your option) any later version. 

Eidos is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without 
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 
the GNU General Public License for more details. 

You should have received a copy of the GNU General Public License along with Eidos. If not, 
see http://www.gnu.org/licenses/. 

11.2  GNU Scientific Library (GSL) 
Eidos contains a modified distribution of the GNU Scientific Library (GSL), which is also 

licensed under the GNU General Public License under the same terms stated above.  Thanks to the 
authors of the GSL for their very useful software, which can be found in full form at 
http://www.gnu.org/software/gsl/. 

11.3  Boost 
Eidos contains modified code from Boost (for a smart pointer implementation), which is 

licensed under the Boost Software License version 1.0 (http://www.boost.org/LICENSE_1_0.txt).  
The Boost Software License is compatible with the GPL, allowing its use here.  Thanks to all of the 
authors of Boost for their very useful software, which can be downloaded in its full form from their 
website at http://www.boost.org/users/download/#live.  Thanks especially to Peter Dimov, who 
appears to be the author of the class in question. 

11.4  MT19937-64 
Eidos contains a 64-bit Mersenne Twister implementation (a random number generator) by 

Takuji Nishimura and Makoto Matsumoto; thanks to them for this code, which was obtained from 
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c.  Following 
the terms of their license, the following text is provided from them: 

Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura, 

All rights reserved. 

Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are 
met: 

1. Redistributions of source code must retain the above copyright notice, 
this list of conditions and the following disclaimer. 

2. Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution. 

 120

http://www.gnu.org/licenses/
http://www.gnu.org/software/gsl/
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/users/download/#live
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c


3. The names of its contributors may not be used to endorse or promote 
products derived from this software without specific prior written 
permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

11.5  WiggleTools 
Eidos contains code from WiggleTools to perform t-tests.  WiggleTools is licensed under the 

Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0), which is compatible with the 
GPL, allowing its use here.  Thanks to EMBL-European Bioinformatics Institute for making this code 
available. 

11.6  ObjectPool 
Eidos contains a modified version of a C++ object pool class published by Paulo Zemek at 

http://www.codeproject.com/Articles/746630/O-Object-Pool-in-Cplusplus.  His code is under the 
Code Project Open License (CPOL), available at http://www.codeproject.com/info/cpol10.aspx.  
The CPOL is not compatible with the GPL.  Paulo Zemek has explicitly granted permission for his 
code to be used in Eidos and SLiM, and thus placed under the GPL as an alternative license.  An 
email granting this permission has been archived and can be provided upon request.  This code is 
therefore now under the same GPL license as the rest of Eidos, as stated above. 

11.7  Exact summation 
Eidos contains modified (translated to C from Python) code to compute the exact summation 

(within available precision limits) of a vector of floating-point numbers.  This code is adapted from 
Python’s fsum() function, as implemented in the file mathmodule.c in the math_fsum() C function, 
from Python version 3.6.2, downloaded from https://www.python.org/getit/source/.  The authors of 
that code appear to be Raymond Hettinger and Mark Dickinson; thanks to them.  The PSF open-
source license for Python 3.6.2, which the PSF states is GSL-compatible, may be found on their 
website at https://docs.python.org/3.6/license.html. 

11.8  JSON for Modern C++ 
SLiM contains code from the JSON for Modern C++ project (https://github.com/nlohmann/json).  

Thanks to Niels Lohmann and other contributors for this very useful library.  This code is under the 
MIT license, and is governed by the following notice: 

The class is licensed under the MIT License: 

Copyright © 2013-2019 Niels Lohmann 

Permission is hereby granted, free of charge, to any person obtaining a 
copy of this software and associated documentation files (the “Software”), 

 121

http://www.apache.org/licenses/LICENSE-2.0
http://www.codeproject.com/Articles/746630/O-Object-Pool-in-Cplusplus
http://www.codeproject.com/info/cpol10.aspx
https://www.python.org/getit/source/
https://docs.python.org/3.6/license.html
https://github.com/nlohmann/json


to deal in the Software without restriction, including without limitation 
the rights to use, copy, modify, merge, publish, distribute, sublicense, 
and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in 
all copies or substantial portions of the Software. 

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS IN THE SOFTWARE. 

The class contains the UTF-8 Decoder from Bjoern Hoehrmann which is 
licensed under the MIT License (see above). Copyright © 2008-2009 Björn 
Hoehrmann bjoern@hoehrmann.de 

The class contains a slightly modified version of the Grisu2 algorithm 
from Florian Loitsch which is licensed under the MIT License (see above). 
Copyright © 2009 Florian Loitsch 

11.9  SHA-256 
Eidos contains code for the computation of SHA-256 hashes, from https://github.com/amosnier/

sha-2.  Thanks to Alain Mosnier for this code.  It is provided under the public domain “Unlicense”, 
which reads as follows: 

This is free and unencumbered software released into the public domain. 

Anyone is free to copy, modify, publish, use, compile, sell, or distribute 
this software, either in source code form or as a compiled binary, for any 
purpose, commercial or non-commercial, and by any means. 

In jurisdictions that recognize copyright laws, the author or authors of 
this software dedicate any and all copyright interest in the software to 
the public domain. We make this dedication for the benefit of the public 
at large and to the detriment of our heirs and successors. We intend this 
dedication to be an overt act of relinquishment in perpetuity of all 
present and future rights to this software under copyright law. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER 
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 

For more information, please refer to <http://unlicense.org> 

11.10  zlib 
Eidos contains a modified copy of the zlib compression/decompression library (version 1.2.11) 

to support the writing of compressed files with writeFile() and writeTempFile().  The zlib 
library is written by Jean-loup Gailly and Mark Adler; thanks to them.  It is made freely available 
for reuse, under conditions described in the eidos_zlib/README file included in this project; those 

 122

https://github.com/amosnier/sha-2
https://github.com/amosnier/sha-2


conditions are GPL-compatible.  The original, unmodified sources for zlib may be found at http://
zlib.net/. 

11.11  tinycolormap 
Eidos contains a modified copy of the tinycolormap library (version 0.7.0) for generation of 

color maps.  The tinycolormap library is written by Yuki Koyama.  It is licensed under the MIT 
License, which is compatible with the GPL 3.0.  The original, unmodified sources for tinycolormap 
may be found at https://github.com/yuki-koyama/tinycolormap.  That code has been modified, in 
particular by merging in a pull request by Shot511 (Tomasz Gałaj) that adds support for the Turbo 
colormap, available at https://github.com/yuki-koyama/tinycolormap/pull/27.  That code is derived 
from original code by Anton Mikhailov licensed under the Apache 2.0 license, which is 
compatible with the GPL 3.0; Anton’s code is available at https://gist.github.com/mikhailov-work/
6a308c20e494d9e0ccc29036b28faa7a.  Copies of the MIT and Apache 2.0 licenses, under which 
this code was originally released, are provided in eidos_tinycolormap.h.  Thanks to Yuki, Anton, 
and Tomasz for their work. 

11.12  LodePNG 
Eidos contains a modified copy of the LodePNG library (cloned 8 October 2020, version 

20200306) for reading in PNG images for the Eidos built-in class Image.  The LodePNG library is 
written by Lode Vandevenne.  It is licensed under the Zlib License, which is compatible with the 
GPL 3.0.  The original, unmodified sources for LodePNG may be found at https://lodev.org/lodepng/, 
or on GitHub at https://github.com/lvandeve/lodepng.  The code has been modified to get rid of 
some warnings.  Thanks to Lode for this very useful code.  The Zlib license used by LodePNG can 
be found at https://raw.githubusercontent.com/lvandeve/lodepng/master/lodepng.h; it reads: 

Copyright (c) 2005-2020 Lode Vandevenne 
 
This software is provided 'as-is', without any express or implied 
warranty. In no event will the authors be held liable for any damages 
arising from the use of this software. 
 
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it 
freely, subject to the following restrictions: 
 
    1. The origin of this software must not be misrepresented; you must not 
    claim that you wrote the original software. If you use this software 
    in a product, an acknowledgment in the product documentation would be 
    appreciated but is not required. 
 
    2. Altered source versions must be plainly marked as such, and must not be 
    misrepresented as being the original software. 
 
    3. This notice may not be removed or altered from any source 
    distribution. 

11.13  Robin Hood Hashing 
Eidos contains an unmodified copy of the Robin Hood Hashing library (cloned 29 October 

2020, version 3.9.0), a very fast hash table implementation that provides a drop-in replacement for 
std::unordered_map.  Robin Hood Hashing is by Martin Ankerl, and is available on GitHub at 
https://github.com/martinus/robin-hood-hashing; thanks to Martin for this excellent software.  It is 

 123

http://zlib.net/
http://zlib.net/
https://github.com/yuki-koyama/tinycolormap
https://github.com/yuki-koyama/tinycolormap/pull/27
https://gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a
https://gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a
https://lodev.org/lodepng/
https://github.com/lvandeve/lodepng
https://raw.githubusercontent.com/lvandeve/lodepng/master/lodepng.h
https://github.com/martinus/robin-hood-hashing


licensed under the MIT license, which is compatible with the GPL 3.0.  The license for Robin 
Hood Hashing is shown here in full: 

MIT License 
 
Copyright (c) 2018-2019 Martin Ankerl 
 
Permission is hereby granted, free of charge, to any person obtaining a copy 
of this software and associated documentation files (the "Software"), to deal 
in the Software without restriction, including without limitation the rights 
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
copies of the Software, and to permit persons to whom the Software is 
furnished to do so, subject to the following conditions: 
 
The above copyright notice and this permission notice shall be included in all 
copies or substantial portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE. 

11.14  Other contributions 
Smaller snippets of code have been gleaned from the web, particularly from stackoverflow.  

Credit is given in the Eidos source code where this has occurred, and in all cases the code is 
licensed under terms compatible with the GSL (as far as we, who are not lawyers, can tell).  Thanks 
to everyone whose code has found its way into Eidos. 

 124



12.  References 

Cox, B. J., & Novobilski, A. J. (1991). Object-oriented programming: An evolutionary approach 
[Second edition]. Reading, MA: Addison-Wesley. 

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language [Second edition]. 
Englewood Cliffs, NJ: Prentice-Hall. 

R Core Team (2014). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 

Bovet, J., & Parr, T. (2008). ANTLRWorks: An ANTLR grammar development environment. 
Software: Practice and Experience, 38(12), 1305-1332. 

Parr, T. (2009). Language Implementation Patterns: Create your own domain-specific and general 
programming languages. Frisco, TX: Pragmatic Bookshelf. 

 125

http://www.R-project.org/

	1. Eidos overview
	1.1 Introduction
	1.2 Why Eidos?
	1.3 A quick summary of the Eidos language

	2. Language features
	2.1 Types, literals, and constants
	2.1.1 The integer type
	2.1.2 The float type
	2.1.3 The logical type
	2.1.4 The string type

	2.2 Vectors
	2.2.1 Everything is a vector
	2.2.2 Sequences: operator :
	2.2.3 Concatenation: function c() and type promotion
	2.2.4 Subsets: operator []

	2.3 Expressions
	2.3.1 Arithmetic expressions: operator +, -, *, /, %, ^
	2.3.2 Logical expressions: operator |, &, !
	2.3.3 Comparative expressions: operator ==, !=, <, <=, >, >=
	2.3.4 String concatenation: operator +
	2.3.5 The ternary conditional: operator ?else
	2.3.6 Nested expressions: precedence and the use of () for grouping

	2.4 Variables
	2.4.1 Assignment: operator =
	2.4.2 Everything is a vector (a reminder)

	2.5 Conditionals
	2.5.1 The if statement and testing for equality
	2.5.2 The if–else statement
	2.5.3 A digression: the semicolon, ;
	2.5.4 Compound statements with { }

	2.6 Loops
	2.6.1 The while statement
	2.6.2 The do–while statement
	2.6.3 The for statement
	2.6.4 The next statement
	2.6.5 The break statement
	2.6.6 The return statement

	2.7 Functions
	2.7.1 Calling functions: operator ()
	2.7.2 The NULL type
	2.7.3 The void type
	2.7.4 The functionSignature() function, and introducing function signatures
	2.7.5 Optional arguments and default values
	2.7.6 Function signatures summarized
	2.7.7 Named arguments in function calls

	2.8 Objects
	2.8.1 The object type
	2.8.2 Element access: operator [] and sharing semantics
	2.8.3 Properties: operator .
	2.8.4 Multiplexed assignment through properties: operator = revisited
	2.8.5 Comparison with object: operator ==, !=, <, <=, >, >= revisited
	2.8.6 Methods: operator . and the methodSignature() method

	2.9 Matrices and arrays
	2.9.1 Defining matrices and arrays
	2.9.2 Matrix and array attributes
	2.9.3 Using Eidos operators and built-in functions with matrices and arrays
	2.9.4 Subsets of matrices and arrays using operator []

	2.10 Comments
	2.10.1 Single-line comments with //
	2.10.2 Block comments with /* */


	3. Built-in functions
	3.1 Math functions
	3.2 Statistics functions
	3.3 Distribution drawing and density functions
	3.4 Vector construction functions
	3.5 Value inspection & manipulation functions
	3.6 Value type testing and coercion functions
	3.7 String manipulation functions
	3.8 Matrix and array functions
	3.9 Filesystem access functions
	3.10 Color manipulation functions
	3.11 Miscellaneous functions

	4. User-defined functions
	4.1 Declaring and defining new functions
	4.2 Complex type specifications
	4.3 Type specifications that include objects
	4.4 Optional parameters and default values
	4.5 Scope with user-defined functions

	5. Built-in classes
	5.1 Class Object
	5.1.1 Object properties
	5.1.2 Object methods

	5.2 Class DataFrame
	5.2.1 DataFrame properties
	5.2.2 DataFrame methods

	5.3 Class Dictionary
	5.3.1 Dictionary properties
	5.3.2 Dictionary methods

	5.4 Class Image
	5.4.1 Image properties
	5.4.2 Image methods


	6. EidosScribe�
	6.1 EidosScribe overview
	6.2 Interactive scripting
	6.3 File-based script execution
	6.4 Code completion
	6.5 Debugging controls
	6.5.1 Showing tokenization
	6.5.2 Showing the abstract syntax tree (AST)
	6.5.3 Showing the evaluation trace


	7. Colors in Eidos
	8. Eidos language reference sheet
	9. Railroad diagrams
	10. The future of Eidos
	11. Credits and licenses for incorporated software
	12. References

