RNAduplex
RNAduplex - manual page for RNAduplex 2.6.4
Synopsis
RNAduplex [OPTION]...
DESCRIPTION
RNAduplex 2.6.4
Compute the structure upon hybridization of two RNA strands
reads two RNA sequences from stdin or <filename> and computes optimal and
suboptimal secondary structures for their hybridization. The calculation is
simplified by allowing only inter-molecular base pairs, for the general case
use RNAcofold.
The computed optimal and suboptimal structure are written to stdout, one
structure per line. Each line consist of: The structure in dot bracket format
with a &
separating the two strands. The range of the structure in the two
sequences in the format “from,to : from,to”; the energy of duplex structure
in kcal/mol.
The format is especially useful for computing the hybrid structure between a
small probe sequence and a long target sequence.
- -h, --help
Print help and exit
- --detailed-help
Print help, including all details and hidden options, and exit
- --full-help
Print help, including hidden options, and exit
- -V, --version
Print version and exit
I/O Options:
Command line options for input and output (pre-)processing
- -s, --sorted
Sort the printed output by free energy.
(default=off)
- --noconv
Do not automatically substitute nucleotide “T” with “U”.
(default=off)
Algorithms:
Select additional algorithms which should be included in the calculations.
- -e, --deltaEnergy=range
Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol). Default is calculation of mfe structure only.
Energy Parameters:
Energy parameter sets can be adapted or loaded from user-provided input files
- -T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default=”37.0”)
- -P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.
Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib documentation for details on the file format. The placeholder file name
DNA
can be used to load DNA parameters without the need to actually specify any input file.
- -4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.
- --salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
- --saltInit=DOUBLE
Provide salt correction for duplex initialization (in kcal/mol).
Model Details:
Tweak the energy model and pairing rules additionally using the following parameters
- -d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default=”2”)
With
-d1
only unpaired bases can participate in at most one dangling end. With-d2
this check is ignored, dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default for mfe and partition function folding (-p
). The option-d0
ignores dangling ends altogether (mostly for debugging). With-d3
mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3 and works only for mfe folding.Note that with
-d1
and-d3
only the MFE computations will be using this setting while partition function uses-d2
setting, i.e. dangling ends will be treated differently.
- --noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)
For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still occasionally occur as helices of length 1.
- --noGU
Do not allow GU pairs.
(default=off)
- --noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
- --nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.
Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB will imply that AB and BA are allowed pairs, e.g.
--nsp=
”-GA” will allow GA and AG pairs. Nonstandard pairs are given 0 stacking energy.
REFERENCES
If you use this program in your work you might want to cite:
R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011), “ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26
I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188
R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molecular Biology 11:1 pp 1-13
The energy parameters are taken from:
D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004), “Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292
D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282
REPORTING BUGS
If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
SEE ALSO
RNAcofold(l) RNAfold(l)