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1 Overview

The package BayPass is a population genomics software which is primarily aimed at identify-
ing genetic markers subjected to selection and/or associated to population-specific covariates
(e.g., environmental variables, quantitative or categorical phenotypic characteristics). The un-
derlying models explicitly account for (and may estimate) the covariance structure among the
population allele frequencies that originates from the shared history of the populations under
study. Note that, apart from standard population genetics studies, BayPass is generic enough
to be also suited to the analyses of data from other kinds of experiments in which the allele
frequency covariance structure is simpler (e.g., experimental evolution). The genetic data typ-
ically consists of allele (when derived from individual genotype calls) or read (when derived
from Pool–Seq experiments) counts at several markers (for now, BayPass is restricted to the
analysis of bi–allelic markers) in several populations. Note that BayPass can handle missing
data (no count available in one or several populations) which might be helpful in some contexts.

The core BayPass model is based on the Bayenv model which was proposed by Coop et al.
(2010) and Günther and Coop (2013). However, as detailed in Gautier (2015), in addition to
a complete and independent reprogramming of the core Markov Chain Monte Carlo (MCMC)
algorithm, BayPass allows monitoring most of the parameters and the priors of the original
models and to introduce various extensions (e.g., optional addition of hyper–parameters, sam-
pling of regression coefficients in association models, modeling of spatial dependency among
consecutive markers).

BayPass is written in modern Fortran. The source code and compilation instructions for
various platforms (OS X, Windows, Linux) are available. The executable reads data file(s)
supplied by the user, and a number of options can be passed through the command line. Some
R functions are also provided in the package to facilitate interpretation of the resulting outputs.

This document provides information about how to format the data file, how to specify the
user-defined parameters, and how to interpret the results.

2 Before you start

2.1 How to compile BayPass?

The source files are to be found in the src subdirectory of the package. BayPass is coded in
Fortran90 and can therefore be compiled for any system supporting a Fortran90 compiler using
the provided Makefile. This Makefile is designed to work with either i) the free compiler
gfortran1 or; ii) the commercial ifort Intel® Fortran compiler which is available at no cost
for most platforms as part of the Intel® oneAPI HPC Toolkit2. As a consequence, using another
Fortran90 compiler requires modifying the Makefile accordingly. Note also that BayPass uses
OpenMP3 to implement multi-threading, which allows parallel calculation on computer systems
that have multiple CPUs or CPUs with multiple cores. Users thus have to make sure that
the corresponding libraries are installed (which is usually the case, on Linux OS or following
compiler installation previously described1). The following instructions run within the src

sub-directory allows compiling the code and to produce a binary:

� using the gfortran free compiler (the command should automatically produce an exe-
cutable called g_baypass):

1 If not already installed in your system, binaries are available at https://gcc.gnu.org/wiki/

GFortranBinaries and easy to install for most Windows, Mac and Linux OS versions (many thanks to Andrew
Beckerman for pointing this web-page to me!)

2http://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html
3http://openmp.org/wp/
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make clean all FC=gfortran

� using the ifort intel® Fortran compiler (the command should automatically produce an
executable called i_baypass):
make clean all FC=ifort

After compiling, one may run the command make clean to remove module-procedure and
other output files (i.e., files with .o and .mod extensions) that are not needed to run the
executable.

A comparison of the computational performances of different compiled versions of the pro-
gram is given in Table 1. The ifort Intel® Fortran compiler result in executable that are
generally faster than gfortran ones, at least when running analyses on a single thread. Yet,
the newest gfortran versions (gfortran ≥7.0) have clearly been improved and may even lead
to executable that outperform ifort compiled ones when running on multiple threads. In
addition, gfortran executables seem to scale more efficiently than ifort ones with increasing
number of threads. It should however be noticed that, whatever the compiler used, the speed
does not scale linearly with the number of threads and using more than 16 threads is not rec-
ommended (see 6.3 for some advice when dealing with large data sets). Also, the performance
may strongly depend on the considered options and on the size of the data sets

Compiler 1 thread 4 threads 8 threads 16 threads
ifort (v16.0.3) 6 min 45 s 5 min 8 s 3 min 11 s 2 min 8 s
gfortran (v10.3.0) 8 min 48 s 4 min 15 s 2 min 58 s 2 min 2 s

Table 1: Comparisons of the computational efficiency of ifort and gfortran compiled versions of BayPass
for the analysis of the Littorina Pool–Seq read count example data set (12 pools, 2,500 SNPs) described in
paragraph 5.2.

In the following, it is assumed that the program was made executable and accessible in your
path. For instance, under Linux, this may be achieved by copying the executable in a directory
declared in the path (e.g., /usr/local/bin) or by adding the program to the $PATH system
variable (using the export command)

Under Linux (or MacOS), before the first use, make sure to give appropriate execution rights to the program.
For instance you may run:

chmod +x baypass

2.2 Input file format

Depending on the type of analyses, different data files might be required by the program. The
following examples of the different input files are available in the examples directory:

� geno.bta14: this file contains allele count data for 18 French cattle breeds at 1,394 SNPs
mapping to the BTA14 bovine chromosome (see Gautier (2015) for details).

� bta.pc1: this file contains the SMS (Synthetic Morphology Score) for the 18 French cattle
breeds (see Gautier (2015) for details).

� omega.bta: this file contains the matrix Ω for the 18 French cattle breeds (Ω̂bpas
BTA) as

estimated under the core model from the whole genome SNP data (see Gautier (2015) for
details).
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� lsa.geno: this file contains read count data (Pool–Seq data) for 12 populations from the
Littorina saxatilis marine snail (Westram et al., 2014) at 2,500 SNPs randomly chosen
among the ones analyzed in Gautier (2015) (but including the ca. 150 outlier SNPs
identified).

� lsa.poolsize: this file contains the haploid pool sizes of the 12 Littorina saxatilis pop-
ulations.

� lsa.ecotype: this file contains the code for the ecotype of the 12 Littorina saxatilis
populations (−1 for the “crab” habitat and 1 for the “wave” habitat).

Note that for Pool–Seq data, the R package poolfstat (Hivert et al., 2018; Gautier et al.,
2022), available from the CRAN repository (https://cran.r-project.org/web/packages/
poolfstat/index.html), provides functions to generate input files in the appropriate format.

2.2.1 The genotyping data file [always required]

The genotyping data file contains allele or read count (for PoolSeq experiment) data for each of
the nsnp markers assayed in each of the npop sampled populations. The genotyping data file
is simply organized as a matrix with nsnp rows and 2 ∗ npop columns. The row field separator
is a space. More precisely, each row corresponds to one marker and the number of columns is
twice the number of populations because each pair of numbers corresponds to each allele (or
read counts for PoolSeq experiment) counts in one population4.

As a schematic example, the genotyping data input file for allele count data should read as
follows:

--- file begins here ---

81 19 86 14 2 98 8 92 32 68 23 77

89 11 81 19 9 91 1 99 27 73 27 73

89 11 91 9 0 0 15 85 77 23 80 20

[...97 more lines...]

--- file ends here ---

In this example, there are 6 populations and 100 SNP markers. At the first SNP, in the first
population, there are 81 copies of the first allele, and 19 copies of the second allele. In the
second population, there are 86 copies of the first allele, and 14 copies of the second allele, etc.
Note that both alleles in the third SNP in the third population have 0 copy. This marker will
be treated as a missing data in the corresponding population. The file named geno.bta14 in
the example directory provides a more realistic example.

Similarly, as a schematic example, the genotyping data input file for allele count data should
read as follows:

--- file begins here ---

71 8 115 0 61 36 51 39 10 91 69 58

82 0 91 0 84 14 24 57 28 80 18 80

93 28 112 30 0 0 0 113 33 68 0 106

[...97 more lines...]

--- file ends here ---

4For now, BayPass is restricted to bi–allelic marker
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In this example, there are also 6 populations and 100 SNP markers. At the first SNP, in
the first population, there are 71 reads of the first allele, and 8 reads of the second allele. In
the second population, there are 115 reads of the first allele, and 0 read of the second allele,
etc. Note that both alleles in the third SNP in the third population have 0 copie. This marker
will be treated as a missing data in the corresponding population. The file named lsa.geno in
the example directory provides a more realistic example.

For Pool–Seq data to be analyzed properly (i.e., not like allele count data), it is necessary to provide a file
with the (haploid) size of each pool (see 2.2.2).

2.2.2 The pool (haploid) size file [only required for Pool–Seq data]

For Pool–Seq experiment, the haploid size (twice the number of pooled individuals for diploid
species) of each population should be provided. As a schematic example, the pool (haploid)
size file should read as follows:

--- file begins here ---

60 75 100 90 80 50

--- file ends here ---

In this example, there are 6 populations with respective haploid sample sizes of 60 (first
population), 75 (second population), 100 (third population), 90 (fourth population), 80 (fifth
population) and 50 (sixth population). The order of the populations in the pool size file must
be the same as in the allele count (and the covariate) data file(s). The file named lsa.poolsize

in the example directory provides a more realistic example.

2.2.3 The covariate data file [required for the covariate modes]

The values of the covariates (e.g., environmental data, phenotypic traits, etc.) for the different
populations should be provided in a file with the format exemplified in the following:

--- file begins here ---

150 1500 800 300 200 2500

181.5 172.6 152.3 191.8 154.2 166.8

1 1 0 0 1 1

0.1 0.8 -1.15 1.6 0.02 -0.5

--- file ends here ---

In this example, there are 6 populations (columns) and 4 covariates (row). The first covariate
might be viewed as a typical environmental covariate, like altitude in meters (the first population
is living at ca. 150m above the sea level, the second at ca. 1,500m, and so on); the second as
a quantitative trait like average population sizes in cm (individuals from the first population
are 181.5 cm tall on average, individuals from the second population 172.6 cm, and so on); the
third covariate as a typical binary trait as the presence (1, for the first, second, fifth and sixth
populations) or the absence (0, for the third and fourth populations); and the last covariate
might be viewed as a synthetic variable like the first principal components of a PCA. The order
of the populations (columns) in the covariate data file must be the same as in the allele count
(and the pool size) data file(s).

The files named bta.pc1 and lsa.ecotype in the example directory provide alternative
real-life examples.
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Note that in most cases, it is (strongly) recommended to scale each covariate (so that µ̂ = 0 and σ̂2 = 1
for each covariable) and this is the default behavior of the program (since version 2.4). The nocovscaling
option allows inactivating covariate scaling (but this is not recommended).

2.2.4 The contrast data file [required to compute contrast (under the core model)]

To perform analysis of association with binary traits, one may compute contrast of standardized
allele frequencies between two groups of populations (Olazcuaga et al., 2020). The group
membership of each population (1 for first group, -1 for the alternative group, and possibly
0 if excluded from the contrast computation) should be provided in a file with the format
exemplified in the following:

--- file begins here ---

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

1 -1 0 0 0 0 0 -1 1 -1 1 -1

--- file ends here ---

In this example, there are 12 populations (columns) and 2 contrasts (row). The first contrast
compare the group of populations #1, #3, #5, #7, #9 and #11 against the group of populations
#2, #4, #6, #8, #10 and #12. The second contrast compare the group of populations #1,
#9 and #11 against the group of populations #2, #8, #10 and #12; the populations #3, #4,
#5, #6 and #7 being excluded from the comparison.

The file lsa.ecotype in the example directory provide a real-life example.

2.2.5 The covariance matrix file [optional, required for the AUX covariate mode]

For some applications (see below), it might be interesting (e.g., to parallelize some analyses) or
required (when using the AUX covariate mode) to provide the population covariance matrix Ω.
As a schematic example, the covariance matrix file reads as follows:

--- file begins here ---

0.098053 0.019595 0.032433 -0.029601 -0.024190 -0.029247

0.019595 0.160147 0.018942 -0.027348 -0.039733 -0.039010

0.032433 0.018942 0.149962 -0.054973 -0.058700 -0.057288

-0.029601 0.027348 0.054973 0.187511 0.221914 0.165862

-0.024190 0.039733 0.058700 0.221914 0.562666 0.260231

-0.029247 0.039010 0.057288 0.165862 0.260231 0.219761

--- file ends here ---

In this example, there are 6 populations. Hence, the population covariance matrix is a 6×6
squared symmetric matrix. The order of the populations (columns and rows) in the matrix Ω
should be the same as the columns in the allele count (and the pool size and the covariate) data
file(s). Note that this file is produced in the appropriate format by the program when running
BayPass under the core model (see 3.3).

The file named omega.bta provides a real-life example.

3 Running BayPass

3.1 Overview of the different models available in BayPass

Directed Acyclic Graphs (DAG) of the different family of models are represented in Figure 1 (see
Gautier (2015) for details). Briefly, three types of (closely related) models might be investigated
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using BayPass, considering either Allele count data (left panel in Figure 1) or Read count data
(right panel in Figure 1) as obtained from Pool–Seq experiments.

3.1.1 The core model

The core model depicted in Figure 1A might be viewed as a generalization of the model proposed
by Nicholson et al. (2002) and was first proposed by Coop et al. (2010). This model is the one
considered by BayPass when no covariate data file is provided and is actually nested in the
others models.

The main parameter of interest is the (scaled) covariance matrix of population allele fre-
quencies Ω resulting from their (possibly unknown and complex) shared history. This matrix
may also be used for demographic inference. Examples on how to represent Ω) are provided
in section 5.1.1. For instance, Ω might be converted (e.g., using the cov2cor() function in R
stats package) into a correlation matrix Σ further interpreted as a similarity matrix. From this
latter matrix, one may define a distance (dissimilarity) matrix (e.g., dij = 1− | ρij | where dij is
the distance between populations i and j and ρij is the element ij of Σ) to perform hierarchi-
cal clustering5 and summarize the history of the population as a bifurcating phylogenetic tree
(without gene flow). A more complex demographic inference based on an interpretation of the
matrix Ω (although estimated in a less accurate way) in terms of an admixture graph has been
proposed by Pickrell and Pritchard (2012).

The core model allows scanning the genome for differentiation (covariate-free) using the
XtX statistics as introduced by Günther and Coop (2013) which is computed by default in
BayPass (e.g., see 5.1.1). The main advantage of this approach is to explicitly account for
the covariance structure in population allele frequencies (via estimating Ω) resulting from the
demographic history of the populations.

In the current implementation of BayPass, the prior distribution for Ω is an Inverse-Wishart: Ω ∼
W−1

J (ρIJ, ρ) (where J is the number of populations). By default ρ = 1 (rather than ρ = J as in Bayenv)
which was found as the most reliable value (Gautier, 2015). Similarly, the hyperparameters aπ and bπ of
the prior β distribution for the overall (across population) SNP allele frequencies are estimated by default.
However, they might be fixed to aπ = bπ = 1 (as in e.g., Bayenv) using fixpibetapar option or to any
other values using further the betapiprior option (3.2).

3.1.2 The standard covariate model and extensions

The standard covariate model is represented in Figure 1B and is the one considered by default
in BayPass when a covariate data file is provided using -efile option (3.2). This model allows
evaluating to which extent a population covariable k is (linearly) associated with each marker i
(which are assumed independent given Ω) by the introduction of the regression coefficients βik

(for convenience the indices k for covariables are dropped in Figure 1B).

In the current implementation of BayPass, the prior distribution for the βik’s is Uniform: βik ∼
Unif (βmin, βmax). By default, βmin = −0.3 and βmax = 0.3 but these values might be changed by the
user with the minbeta and maxbeta options respectively (3.2). Note that in Bayenv (Coop et al., 2010),
βmin = −0.1 and βmax = 0.1.

The estimation of the βik regression coefficients for each SNP i may be performed using two
different approaches (Gautier, 2015):

� Using an Importance Sampling (IS) approximation (default). This also allows estimating
Bayes Factor to evaluate the support in favor of association of each SNP i with a covariable

5For an interesting discussion and examples in R, see http://research.stowers-institute.org/mcm/

efg/R/Visualization/cor-cluster/index.htm
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k, i.e., to compare the model with association (βik ̸= 0) against the null model (βik = 0).
The IS based estimation was initially proposed by Coop et al. (2010) and is based on a
numerical integration that requires the definition of a grid covering the whole support of
the βik prior distribution. In BayPass, the grid consists of nβ (by default nβ = 201)
equidistant points from βmin to βmax (including the boundaries) leading to a lag between
two successive values equal to βmax−βmin

nβ−1
(i.e., 0.003 with default values). Other values for

nβ might be supplied by the user with the -nbetagrid option (3.2).

� Using an MCMC algorithm (activated via the covmcmc option). In this case, the user
should provide the matrix Ω (e.g., using posterior estimates available from a previous
analysis) and it is recommended to consider only one covariable at a time (particularly if
some covariables are correlated).

3.1.3 The auxiliary covariate model

The auxiliary covariate model, represented in Figure 1C and activated with the auxmodel op-
tion, is an extension of the previous model (Figure 1B). It involves the introduction of a Bayesian
(binary) auxiliary variable δik for each regression coefficient βik (Gautier, 2015). The auxiliary
variable actually indicates whether a specific SNP i can be regarded as associated to a given
covariable k (δik = 1) or not (δik = 1). By looking at the posterior distribution of each auxiliary
variable, it is then straightforward to derive a Bayes Factor (BFmc) to compare both models
while dealing with multiple testing issues (Gautier, 2015). In addition, the introduction of a
Bayesian auxiliary variable makes it easier to account for spatial dependency among markers.
In BayPass, the general form of the δik prior distribution is indeed that of an 1D Ising model
with a parametrization analogous to the one proposed in a similar context by Duforet-Frebourg
et al. (2014): π (δk) ∝ P s1(1− P )s0eηbis , where δk is the vector of the nsnp auxiliary variables
for covariable k, s1 and s0 are the number of SNPs associated (i.e. with δik = 1) and not
associated (i.e. with δik = 0) to the covariable6, and η corresponds to the number of pairs
of consecutive markers (neighbors) that are in the same state at the auxiliary variable7 (i.e.,
δi,k = δi+1,k). The parameter P broadly corresponds to the prior proportion of SNP associated
to the covariable. In the BayPass auxiliary model, P is assumed a priori beta distributed:
P ∼ β (aP , bP ). By default, aP = 0.02 and bP = 1.98 (this values might be changed by the
user with the -auxPbetaprior option) which amounts to consider that only a small fraction of
the SNPs ( aP

aP+bP
=1%) are a priori expected to be associated to the covariable while allowing

some uncertainty on this key parameter (e.g., the prior probability of P >10% being equal
to 0.028 with default parameters). The parameter bis, called the inverse temperature in the
Ising (and Potts) model literature, determines the level of spatial homogeneity of the auxiliary
variables between neighbors. In BayPass, bis = 0 by default implying that auxiliary variables
are independent (no spatial dependency). Note that bis = 0 amounts to assume the δik follows
a Bernoulli distribution with parameter P . Conversely, bis > 0 leads to assume that the δik
with similar values tend to cluster according to the underlying SNP positions (the higher the
bis, the higher the level of spatial homogeneity). In biological terms, SNP associated to a given
covariable might be expected to cluster due to Linkage Disequilibrium with the underlying
(possibly not genotyped) causal variant(s). In practice, bis = 1 is commonly used and a value
of bis ≤ 1 is recommended.

6s1 =
nsnp∑
i=1

δik = 1 and s0 =
nsnp∑
i=1

δik = 0

7η =
∑
i∼j

1δik=δjk
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In technical terms, the overall parametrization of the Ising prior assumes no external field and no weight
(as in the so-called compound Ising model) between the neighboring auxiliary variables. In the current
implementation of the BayPass auxiliary covariate model (when bis > 0), the information about between
SNPs distances is therefore not accounted for. Only the relative position of markers are considered. For
the applications where this modeling might be relevant (whole genome scan), this corresponds to assuming
a relative homogeneity in marker spacing as measured by genetic (rather than physical) distances (which
might be unavailable, in practice).

3.2 Detailed overview of all the options

BayPass is a command-line executable. The ASCII hyphen-minus (“-”) is used to specify
options. As specified below, some options take integer or float values and some options do not.
Here is an example call of the program:

baypass -gfile data.geno -efile env.data -outprefix ana1

The full list of the options accepted by BayPass is printed out using the command: baypass -help

as follows:

Version 2.41

Usage: BayPass [options]

Options:

I) General Options:

-help Display the help page

-gfile CHAR Genotyping Data File (always required)

-efile CHAR Covariate file: activate Covariate Mode (def="")

-nocovscaling Inactivate default scaling of pop. covariates (not recommended)

-contrastfile CHAR Contrast to be computed (def="")

-poolsizefile CHAR Name of the Pool Size file => activate PoolSeq mode (def="")

-outprefix CHAR Prefix used for the output files (def="")

II) Model Options:

-omegafile CHAR Omega matrix file => inactivate estim. of omega (def="")

-rho INT Rho parameter of the Wishart prior on omega (def=1)

-nicholsonprior A nicholson prior is assumed for Omega (i.e., Omega is diagonal)

-setpibetapar Inactivate estimation of the Pi beta priors parameters

-betapiprior FLOAT2 Pi Beta prior parameters (if -setpibetapar) (def=1.0 1.0)

-minbeta FLOAT Lower beta coef. for the grid (def=-0.3)

-maxbeta FLOAT Upper beta coef. for the grid (def= 0.3)

I.1) IS covariate mode (default covariate mode):

-nbetagrid INT Number of grid points (IS covariate mode) (def=201)

I.2) MCMC covariate mode:

-covmcmc Activate mcmc covariate mode (desactivate estim. of omega)

-auxmodel Activate Auxiliary variable mode to estimate BF

-isingbeta FLOAT Beta (so-called inverse temperature) of the Ising model (def=0.0)

-auxPbetaprior FLOAT2 auxiliary P Beta prior parameters (def=0.02 1.98)

III) MCMC Options:

-nthreads INT Number of threads (def=1)

-nval INT Number of post-burnin and thinned samples to generate (def=1000)

-thin INT Size of the thinning (record one every thin post-burnin sample) (def=20)

-burnin INT Burn-in length (def=5000)

-npilot INT Number of pilot runs (to adjust proposal distributions) (def=20)

-pilotlength INT Pilot run length (def=500)

-accinf FLOAT Lower target acceptance rate bound (def=0.25)

-accsup FLOAT Upper target acceptance rate bound (def=0.40)

-adjrate FLOAT Adjustement factor (def=1.25)

-d0pi FLOAT Initial delta for the pi all. freq. proposal (def=0.5)

-upalphaalt Alternative update of the pij

-uppibetaparslc Activate slice-sampling algo. to sample the Pi beta parameters

-d0pij FLOAT Initial delta for the pij all. freq. proposal (alt. update) (def=0.05)

-d0yij INT Initial delta for the yij all. count (PoolSeq mode) (def=1)

-d0cj FLOAT If nicholsonprior is set for Omega, initial delta for the cj (def=0.05)

-seed INT Random Number Generator seed (def=5001)

-print_omega_samples Print post-burnin and thinned samples of Omega in a file

In this menu, each option is followed by i) the kind of argument (if any) required (e.g., INT
for integer, FLOAT for real, FLOAT2 for a pair of space separated real numbers); ii) a brief
description of its function; and iii) the default value.

In the following, we detailed all the options of BayPass:

-help

This option prints out the help menu (see above). Note that this option is dominating
all the other options, i.e. if -help is used in conjunction with any other option of the
program, the help menu is displayed. No argument is required for this option.
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A.2) Read count data (Pool–Seq)
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B) Standard covariate model (STD)
B.1) Allele count data
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B.2) Read count data (Pool–Seq)
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C) Auxiliary variable covariate model (AUX)
C.1) Allele count data
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C.2) Read count data (Pool–Seq)
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Figure 1: Directed Acyclic Graphs of the different hierarchical Bayesian models available in BayPass (see 3.1).
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-gfile

This option (mandatory) gives the name of the genotyping input file. See 2.2.1 for a
description of the corresponding input file format. The required argument must be a
character string (name of the input file) without space (e.g., -gfile data.geno if the
input file is named “data.geno”).

-efile

This option gives the name of the covariate input file. See 2.2.3 for a description of
the corresponding input file format. The required argument must be a character string
(name of the input file) without space (e.g., -efile data.env if the input file is named
“data.env”).

-nocovscaling

This option inactivates scaling of the covariables in the covariate input file (See 2.2.3).
No argument is required for this option. This is usually not recommended.

-contrastfile

This option gives the name of the covariate input file. See 2.2.4 for a description of the
corresponding input file format. The required argument must be a character string (name
of the input file) without space (e.g., -contrastfile data.contrast if the input file is
named “data.env”).

-poolsizefile

This option gives the name of the input file containing the haploid sample size of each
population. See 2.2.2 for a description of the corresponding input file format. The required
argument must be a character string (name of the input file) with no space (e.g., -

poolsizefile data.poolsize if the input file is named “data.poolsize”). Note that this
option automatically activates the Pool–Seq mode, i.e., the PoolSeq version of the different
models are considered (as represented in Figures 1A2, B2 and C2).

-outprefix

This option allows adding a prefix to all the output files. The required argument must
be a character chain without space. For instance, if using -outprefix ana1, the name
of all the output files will begin by “ana1_”. By default, no prefix is added.

-omegafile

This option gives the name of the input file for the population covariance matrix (Ω
in 3.1.1 and Figure 1). See 2.2.5 for a description of the corresponding input file format.
The required argument must be a character string (name of the input file) with no space
(e.g., -omegafile matrix.dat if the input file is named “matrix.dat”). This option inac-
tivates the estimation of Ω and is mandatory in the covariate models involving estimation
of the regression coefficients via MCMC, i.e., both the standard model (see 3.1.2) with the
-covmcmc option and the auxiliary variable model with the -auxmodel option (see 3.1.3).

-rho
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This option allows specifying the value of ρ for the Inverse-Wishart prior ofΩ (see Figure 1
and 3.1.1). The required argument must be a positive integer. By default, -rho 1 (i.e.,
ρ = 1).

-nicholsonprior

This option allows specifying a diagonal matrix prior for the matrix Ω. This amounts
to assume a star-shaped phylogeny for the populations under study as in the model by
Nicholson et al. (2002). Estimation of the diagonal elements ofΩ is performed as described
in Gautier et al. (2010). See also Dickson et al. (2020) for a GWAS application using this
model. No argument is required for this option.

-setpibetapar

This option allows inactivating the estimation of the two (hyper–)parameters aπ and bπ
of the prior β distribution for the overall (across population) SNP allele frequencies (see
Figure 1 and 3.1.1) (and set them to the values specified with the -betapiprior option).
No argument is required for this option.

-betapiprior

This option allows specifying the values of the two (hyper–)parameters aπ and bπ (respec-
tively) of the prior β distribution for the overall (across population) SNP allele frequencies
(see Figure 1 and 3.1.1). The required argument must be two positive real numbers. By
default -betapiprior 1.0 1.0 (i.e., aπ = bπ = 1).

-minbeta

This option allows specifying the lower bound of the Uniform prior distribution on the
regression coefficients (see Figure 1 and 3.1.2). The required argument must be a real
number (lower than maxbeta defined below). By default -minbeta -0.3 (i.e., βmin =
−0.3).

-maxbeta

This option allows specifying the upper bound of the Uniform prior distribution on the
regression coefficients (see Figure 1 and 3.1.2). The required argument must be a real
number (greater than minbeta defined above). By default -maxbeta 0.3 (i.e., βmax =
0.3).

-nthreads

This option gives the number of threads to be used for parallel computations. By default,
-nthreads 1 (i.e., a single core is used hence no parallelization).

-nval

This option gives the number of post–burn–in (and thinned MCMC) samples recorded
from the posterior distributions of the parameters of interest. The required argument
must be a positive integer. By default, -nval 1000 (i.e., 1,000 post burn-in and thinned
samples are generated). Note that with default values, the total number of iterations of
the MCMC sampler run after the burn-in period is equal to 25,000 (since by default, the
thinning rate is equal to 25, see -thin option)
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-thin

This option gives the size of the thinning (i.e., the number of iterations between any two
records from the MCMC). The required argument must be a positive integer. By default,
-thin 25 (i.e., the size of the thinning is 25).

-burnin

This option gives the length of the burn-in period (i.e., the number of iterations before
the first record from the MCMC). The required argument must be a positive integer. By
default, -burnin 5000 (i.e., 5,000 iterations are run during the burn–in period).

-npilot

This option gives the number of pilot runs (i.e., the number of runs used to adjust
the parameters of the MCMC proposal distributions of parameters updated through a
Metropolis-Hastings algorithm). The targeted acceptance rates are defined with the -

accinf and -accsup options (by default, these are set to 0.25 and 0.40 respectively).
The required argument must be a positive integer. By default, -npilot 20 (i.e., 20 pilot
runs are performed).

-pilotlength

This option gives the number of iterations of each pilot run (see npilot option above).
The required argument must be a positive integer. By default, -pilotlength 500 (i.e.,
each pilot run consist of 500 iterations).

-accinf

This option gives the lower bound of the targeted acceptance rates to adjust the param-
eters of the MCMC proposal distributions of parameters updated through a Metropolis-
Hastings algorithm, during the pilot runs. For instance, in the case of a uniform proposal
distribution of the form Unif(x − δ, x + δ) (where x represents the current value of the
parameter of interest and δ specifies the size of the support), if acceptance rates are be-
low this lower bound after a pilot run, then δ is increased (e.g., multiplied by a factor
defined with the adjrate parameter and set to 1.25 by default). The required argument
must be a positive real number (< 1 and lower than accsup defined below). By default,
-accinf 0.25 (i.e., acceptance rates should be at least equal to 25%).

-accsup

This option gives the upper bound of the targeted acceptance rates to adjust the param-
eters of the MCMC proposal distributions of parameters updated through a Metropolis-
Hastings algorithm, during the pilot runs. For instance, in the case of a uniform proposal
distribution of the form Unif(x − δ, x + δ) (where x represents the current value of the
parameter of interest and δ specifies the size of the support), if acceptance rates are above
this upper bound after a pilot run, then δ is decreased (e.g., divided by a factor defined
with the adjrate parameter and set to 1.25 by default). The required argument must
be a positive real number (≤ 1 and greater than accinf defined above). By default,
-accsup 0.40 (i.e., acceptance rates should be less than 40%).

-adjrate
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This option gives the factor used to adjust the parameters of the MCMC proposal dis-
tributions of parameters updated through a Metropolis-Hastings algorithm, during the
pilot runs. For instance, in the case of a uniform proposal distribution of the form
Unif(x − δ, x + δ) (where x represents the current value of the parameter of interest
and δ specifies the size of the support), if acceptance rates are below (respectively above)
the lower (respectively upper) bound of the targeted regions (as defined above with the
-accinf and -accsup options) after a pilot run, then δ is multiplied (respectively, di-
vided) by this factor. The required argument must be a real number > 1. By default,
-adjrate 1.25.

-d0pi

This option gives the initial value of the δπ, which is half the window width from which
proposal values of the overall SNP allele frequencies πi (see Figure 1) are drawn uniformly
around the current value πi in the Metroplis–Hastings update. The value of δπ is even-
tually adjusted for each locus during the pilot runs (see options -npilot, -pilotlength,
-accinf, -accsup and -adjrate). The required argument must be a positive real num-
ber. By default, -d0pi 0.5 (i.e., δp = 0.5).

-upalphaalt

This option activates an alternative Metropolis–Hastings algorithm for the population
SNP allele frequencies αij (see Figure 1). By default, the proposal is the same as the one
described by Coop et al. (2010) (Appendix A). Briefly, denoting αi. as the vector of allele
frequencies for SNP i in each population, the vector α⋆cdt

i evaluated in a given Metropolis–
Hastings update is sampled from the following multivariate Gaussian distribution: α⋆cdt

i ∼
MNV (α⋆

i,Γσ
2
i ) where Γ is obtained by a Choleski decomposition of the matrix Ω (i.e.,

Ω = tΓΓ ). The alternative proposal activated with the -upalphaalt option is defined
on a SNP by population basis and is a uniform distribution centered on the current values
of the parameters (i.e., α⋆cdt

ij ∼ Unif(α⋆
ij − λα

ij, α
⋆
ij − λα

ij)). The algorithm is slower than
the default one but may perform better, in particular when sample sizes are heterogeneous
across samples. No argument is required for this option.

-uppibetaparslc

This option activates a slice-sampler algorithm for the parameters aπ and bπ that specify
the Beta prior distribution on the across-population SNP allele frequencies πi (see Fig-
ure 1). Although this algorithm is similar than the default Metropolis-Hastings one in
terms of speed, it does not require any adjustment of proposal parameters and may have
better convergence properties. No argument is required for this option.

-d0pij

This option gives the initial value of the δα used in the proposal distribution of the
population SNP allele frequencies αij in the Metroplis–Hastings updates. Following the
notations used above (see -upalphaalt option), δα = σ2

i for the default algorithm and
δα = λα

ij for the alternative algorithm. The value of δα is adjusted for each locus (and
population, in the case of the alternative algorithm) during the pilot runs (see options -
npilot, -pilotlength, -accinf, -accsup and -adjrate). The required argument must
be a positive real number. By default, -d0pij 0.05 (i.e., σ2

i = 0.05 for the default
algorithm and λα

ij = 0.05 for the alternative algorithm).
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-d0yij

This option gives, in the Pool–Seq mode, the initial value of the δy used in the proposal
distribution of the population SNP allele count Yij in the Metroplis–Hastings updates.
The value of δy is eventually adjusted for each locus and each population during the
pilot runs (see options -npilot, -pilotlength, -accinf, -accsup and -adjrate). The
required argument must be a positive integer number lower than the haploid pool sizes.
By default, -d0yij 1 (i.e., δy = 1).

-seed

This option gives the initial seed of the (pseudo-)Random Number Generator. The re-
quired argument must be a positive integer number. By default, -seed 5001.

-print_omega_sample

This option allows printing the nval (as defined with option -nval) post-burnin and
thinned MCMC samples of the matrixΩ. If activated, an output file with suffix“omegasamples.out”
is produced.

3.3 Format of the output files

While running, BayPass prints on some basic information on the console about analysis pro-
gression. As the analysis runs, more detailed information is written in the log file named
(outprefix_)baypass.log. At the end of the analysis BayPass produces several output files
which may vary according to the considered options (see 3.2). In addition, the name of these dif-
ferent output files may be preceded by the prefix defined with the -outprefix option (see 3.2).

In the following, all the output files that may be generated by BayPass are detailed:

� (outprefix_)summary_pij.out (default mode) or (outprefix_)summary_yij_pij.out

(Pool–Seq mode) for allele or read count data respectively

These files contain for each locus (MRK column) within each population (POP column), the
mean (M_P column) and the standard deviation (SD_P column) of the posterior distribution
of the α⋆

ij parameter (see Figure 1) that is closely related to the frequency of the reference
allele8 except that its support is on the real line (hence possible values < 0 or > 1). It
also contains the posterior mean (M_Pstd column) and the standard deviation (SD_Pstd
column) of the standardized allele frequency αstd (αstd = Γ−1α⋆). In the Pool–Seq mode
(i.e., in the (outprefix_)summary_yij_pij.out file), the columns M_Y and SD_Y report
the posterior means and the posterior standard-deviations of allele counts of each SNP
within each population.

� (outprefix_)summary_pi_xtx.out

This file contains for each locus (MRK column), the mean (M_P column) and the standard
deviation (SD_P column) of the posterior distribution of the (across populations) frequency
πi of the SNP reference allele (see Figure 1). In addition, this file contains for each
SNP, the posterior mean (M_XtX column) and standard deviation (SD_XtX column) of
the XtX statistics introduced by Günther and Coop (2013) to identify outlier loci in
genome–scan of adaptive differentiation (see 3.1.1). The last two columns (named XtXst

and log10(1/pval)) respectively contains the XtX⋆ calibrated estimator of the XtX

8αij = 1 ∧ (0 ∨ α⋆
ij)
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statistic and its corresponding p–value (on a − log10 scale) assuming a χ2 distribution
with npop degrees of freedom (Olazcuaga et al., 2020). It should be noticed that these p–
values are computed bilaterally9 to allow the identification of SNPs under either balancing
(unexpected low XtX value) or positive (unexpected high XtX value) selection.

� (outprefix_)summary_lda_omega.out

This file contains the posterior means and posterior standard deviations of each element
of the npop×npop scaled population allele frequencies covariance matrix Ω (M_omega_ij
and SD_omega_ij columns respectively) as described in Figure 1 (see also 3.1.1), and its
inverse Λ = Ω−1 (M_lambda_ij and SD_lambda_ij columns respectively).

� (outprefix_)mat_omega.out

This file contains the posterior means of the elements of Ω in a matrix format. Note that
this file is in the format required by the -omegafile option of BayPass.

� (outprefix_)omegasamples.out (if the -print_omega_samples option is activated)

This file contains the nval post-burnin and thinned MCMC samples of the matrix Ω. The
Ω samples are printed one after the other (i.e., the file has npop × nval rows and npop
columns)

� (outprefix_)summary_beta_params.out

This file contains the posterior mean (Mean column) and standard deviation (SD column)
of the two parameters (aπ and bπ) of the Beta prior distribution assumed for the (across
populations) frequencies of the SNP reference allele (see Figure 1).

� (outprefix_)summary_contrast.out (if the contrastfile options is activated)

This file contains for each locus (MRK column), the posterior mean (M_C2 column) and the
standard deviation (SD_C2 column) of the C2 contrast statistic. The last two columns
(named C2_std and log10(1/pval)) respectively contains the (more useful in practice)
calibrated estimator of the C2 statistic and its corresponding p–value (on a − log10 scale)
assuming a χ2 distribution with 1 degree of freedom (Olazcuaga et al., 2020).

� (outprefix_)summary_betai_reg.out

This file is only produced the standard covariate mode (see Figure 1B and 3.1.2), i.e., when
the Importance Sampling algorithm is used to estimate the Bayes Factor (column BF(dB)).
Bayes Factors measures the support of the association of each SNP with each population
covariable and the corresponding regression coefficients βi (column Beta_is) and are given
in dB units (i.e., 10 × log10(BF)). The file also contains the empirical Bayesian P–value
(eBPis) in the log10 scale i.e. eBPis = −log10(1 − 2 | 0.5 − Φ(µ̂β/σ̂β) |) (where Φ(x)
represents the cumulative distribution function for the standard normal distribution) and
thus allowing to evaluate the support in favor of a non-null regression coefficient (e.g.,
eBPis > 3). The file finally provides for each covariable and each SNP, the posterior

9as p = 1 − 2 | Φχ2
J

(
X̂tX

)
− 0.5 | where Φχ2(J) represents the cumulative density function of the χ2

distribution with J degrees of freedom. If computed unilaterally as p = 1−Φχ2
J

(
X̂tX

)
(resp. p = Φχ2

J

(
X̂tX

)
)

to detect SNPs subjected to positive (resp. balancing) selection, the presence of the two modes of selection
would indeed result in a (not well behaved) U-shaped p–value distribution.
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mean and standard deviation of i) the Spearman’s rank correlation coefficient (columns
M_Spearman and SD_Spearman respectively); and ii) the Pearson correlation coefficient
(columns M_Pearson and SD_Pearson respectively) between the scaled allele frequencies

α̃⋆
i =

{
α⋆
ij−πi√
π(1−πi)

}
(1..J)

and the given covariable after rotation of both vectors by Γ−1 (see

Günther and Coop, 2013) where Γ is obtained by a Choleski decomposition of the matrix
Ω (i.e., Ω = tΓΓ).

� (outprefix_)summary_betai.out (generated with the -covmcmc option)

This file is produced in place of the (outprefix_)summary_betai_reg.out described
above when the -covmcmc option is activated (see 3.1.2). Under the standard model
(default), the file contains for each SNP, the posterior mean µ̂β (M_Beta column) and
the standard deviation σ̂β (SD_Beta column) of the regression coefficient βi together
with the adjusted δβ parameter (DeltaB column) of the proposal distribution and the
post-burn–in acceptance rate (AccRateB column). The file also contains an approxi-
mate Bayesian P–value (eBPmc)10 to evaluate the support for a non-null regression coef-
ficient (e.g., eBPmc > 3). Under the model with auxiliary variables (-auxmodel option,
see 3.1.3), the file contains for each SNP, the posterior mean (M_Beta column) and the
standard deviation (SD_Beta column) of the regression coefficient βi; the posterior mean
of the auxiliary variable (column PIP11); and the estimated Bayes Factor (column BF(dB))
in dB units (i.e., 10×log10(BF)) comparing the models with (βi ̸= 0) and without (βi = 0)
association of the SNP with the given covariable.

� (outprefix_)summary_Pdelta.out (covariate model with auxiliary variable, i.e. -auxmodel
option, see 3.1.3)

This file contains the posterior mean (M_P column) and the standard deviation (SD_P col-
umn) of the parameter P (see Figure 1C and 3.1.3) corresponding to the overall proportion
of SNPs associated with each given covariable.

� (outprefix_)covariate.std

This file contains the scaled covariables (not printed with option nocovscaling).

� (outprefix_)DIC.out

This files contains the average deviance (bar(D) column), the effective number of param-
eters of the models (pD column) and the Deviance Information Criterion (DIC column)
as defined in Spiegelhalter et al. (2002) and that might be relevant for model comparison
purposes. In addition, the logarithm of the pseudo-marginal likelihood of the model is
also provided (LPML column).

4 Miscellaneous R functions

The baypass_utils.R file in the utils directory contains R functions (R Core Team, 2015)
that may be helpful to interpret some of the results obtained with BayPass. To use these
functions, one may simply need to source the corresponding files and ensure that the packages

10eBPmc = − log10(1− 2 | 0.5−Φ(µ̂β/σ̂β) |) where Φ(x) represents the cumulative distribution function for
the standard normal distribution

11In the model averaging literature, the posterior mean of δi actually corresponds to the Posterior Inclusion
Probability of the SNP i
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mvtnorm (Genz et al., 2015), geigen (Hasselman, 2015) and data.table (Barrett et al., 2024)
are installed. Although not required by these functions, the packages corrplot (Wei, 2013)
and ape (Paradis et al., 2004) may be useful for the visualization of the Ω matrix (see 5).

4.1 The R function simulate.baypass()

4.1.1 Description

The R function simulate.baypass() allows simulating either allele or read count data under
the core inference model (Figure 1A) and possibly under the STD covariate model (Figure 1B).
It produces several objects and output files in a format directly appropriate for analyses with
BayPass and Bayenv212. In practice, this function is useful to generate POD for calibration
of the XtX differentiation measure (or any other measures). More broadly, because the Ω
matrix capture the demographic history of the populations, this function might also be viewed
as a simulator of population genetics data.

4.1.2 Usage

simulate.baypass(omega.mat,nsnp=1000,beta.coef=NA,beta.pi=c(1,1),

pop.trait=0,sample.size=100,pi.maf=0.05,suffix="sim",

print.sim.params.values=FALSE,output.bayenv.format=FALSE,

remove.fixed.loci=FALSE,coverage=NA)

4.1.3 Arguments (in alphabetic order)

� beta.pi (def=c(1,1))

A vector with two elements giving the parameters aπ and bπ respectively, for the Beta
distribution of the πi (“ancestral”) allele frequencies.

� beta.coef (def=NA; required for simulation under the STD covariate model)

A vector giving the values of the regression coefficients (βi in Figure 1) for the simulated
associated SNPs (the number of the simulated associated SNPs is equal to the dimension
of the vector).

� coverage (def=NA; required to activate simulation of read count data)

Either a single value or a matrix giving the total read counts. In the latter case, the
vector of total read counts for each simulated SNP are sampled with replacement from
the row of the matrix. The number of columns of the matrix must equal the number of
populations, but no restriction are set for the number of rows. For instance, if the matrix
has only one row, all the SNPs will have the same read counts within a given population.

� omega.mat (always required)

A positive definite and symmetric matrix of rank npop corresponding to the covariance
matrix of population allele frequencies (Ω in Figure 1). This may directly be obtained
from the BayPass output file mat_omega.out (see 3.3) using e.g.:
omega.mat=as.matrix(read.table("mat_omega.out")).

12 For analyses with Bayenv2, make sure fixed loci have been removed, i.e., remove.fixed.loci=TRUE
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� output.bayenv.format (def=FALSE)

A logical indicating whether simulated data should also be written in Bayenv2 format.

� print.sim.params.values (def=FALSE)

A logical indicating whether simulated parameter values (i.e., πi’s; αij’s,. . .) should be
printed.

� nsnp (def=1000)

A single number giving the number of neutral SNPs to simulate.

� pi.maf (def=0.05)

A single value giving the MAF threshold on the simulated πi (“ancestral”) allele frequen-
cies. In the simulation procedure, the πi’s are sampled from the Beta distribution with
parameters specified by the beta.pi argument. For a given SNP i, if πi <pi.maf (resp.
πi > 1−pi.maf) then πi is set equal to pi.maf (resp. 1−pi.maf). Setting pi.maf= 0
inactivates MAF filtering.

� pop.trait (def=0; required for simulation under the STD covariate model)

A vector of length npop giving each population-specific covariable values (the ordering of
the populations is assumed to be the same as in the omega.mat matrix). By default all
values are set to 0 (meaning that the associated SNPs behave neutrally irrespective of
their values at the regression coefficients).

� remove.fixed.loci (def=FALSE)

A logical indicating wether or not the monomorphic SNPs (in the observed simulated
data) should be discarded.

� sample.size (def=100)

If simulating allele count data, either a single value or a matrix giving the total allele
counts (e.g., twice the number of genotyped individuals for autosomal SNPs in a diploid
species). In the latter case, the vector of total allele counts for each simulated SNP are
sampled with replacement from the matrix rows. The number of columns of the matrix
must equal the number of populations, but there is no restriction for the number of rows.
For instance, if the matrix has only one row, all the SNPs will have the same allele counts
within a given population.

If simulating read count data, either a single value or a vector of length npop giving the
pool haploid sample sizes of each population.

� suffix (def=“sim”)

A character string giving the suffix of the output files generated by the function.

4.1.4 Values

The function produces a list with the following components:
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� omega.sim

The matrix used for simulations (declared with omega.mat)

� alpha.sim

A matrix with nsnp rows and npop columns giving the (unbounded) allele frequencies for
each simulated SNPs within each population (i.e., α⋆

ij in Figure 1).

� pi.sim

A vector of length nsnp giving the simulated “ancestral” allele frequencies of each SNP
(i.e., πi in Figure 1).

� N.sim

A matrix with nsnp rows and npop columns giving the total allele counts for each simu-
lated SNP within each population.

� Y.sim

A matrix with nsnp rows and npop columns giving the allele counts for the reference allele
for each simulated SNP within each population.

� N.pool (read count data only)

A matrix with nsnp rows and npop columns giving the total read counts for each simulated
SNP within each population.

� Y.pool (read count data only)

A matrix with nsnp rows and npop columns giving the read counts for the reference allele
for each simulated SNP within each population.

� betacoef.sim (simulation under the STD covariate model only)

A vector of length nsnp giving the regression coefficients of each simulated SNP.

In addition, the following output files are printed out (the extension .suffix is the one
defined with the suffix argument):

� G.suffix

The allele count data file in BayPass format (see 2.2).

� Gpool.suffix (when simulating read count data)

The read count data file in BayPass format (see 2.2).

� bayenv_freq.suffix

The allele count data file in Bayenv2 format12.

� bayenv_freq_pool.suffix (when simulating read count data)

The read count data file in Bayenv2 format12.
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� alpha.suffix

The matrix of (unbounded) allele frequencies (nsnp rows and npop columns) for each
simulated SNP within each population (i.e., α⋆

ij in Figure 1).

� pi.suffix

The vector of simulated “ancestral” allele frequencies for each simulated SNP (i.e., πi in
Figure 1).

� betacoef.suffix (when simulating under the STD covariate model)

The regression coefficients of each simulated SNP.

� pheno.suffix (when simulating under the STD covariate model)

The covariate data file in BayPass format (see 2.2).

� poolsize.suffix (when simulating read count data)

The haploid pool size data file in BayPass format (see 2.2).

4.1.5 Examples

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#load the bovine covariance matrix

om.bta <- as.matrix(read.table("examples/omega.bta"))

#simulate allele count data for 1000 SNPs

simu.res <- simulate.baypass(omega.mat=om.bta)

#simulate allele count data for 1000 neutral SNPs and

#100 associated SNPs with varying regression coefficients

simu.res <- simulate.baypass(omega.mat=om.bta,beta.coef=runif(100,-0.2,0.2),

pop.trait=rnorm(18))

#simulate read count data for 1000 SNPs

simu.res <- simulate.baypass(omega.mat=om.bta,coverage=50)

4.2 The R function plot.omega()

4.2.1 Description

This function performs an eigen-decomposition of the scaled covariance matrix of the population
allele frequencies (Ω in Figure 1) to allow representation in a two-dimension plot. This actually
corresponds to a (between population) PCA–like analysis.

4.2.2 Usage

plot.omega(omega,PC=c(1,2),pop.names=paste0("Pop",1:nrow(omega)),

main=expression("SVD of "*Omega),col=rainbow(nrow(omega)),

pch=16,pos=2)

4.2.3 Arguments

� omega.mat (always required)

A positive definite and symmetric matrix of rank npop corresponding to the covariance
matrix of population allele frequencies (Ω in Figure 1)
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� PC

A vector with two elements correspond to the two Principal Components to be plotted
(by default the first two PCs are plotted)

� pop.names

A vector of length npop with the names of the populations (should be of the same size as
the matrix rank)

� main

Title of the plot

� col

The colors for points and text representing populations. Multiple colors can be specified
so that each point can be given its own color. If there are fewer colors than points they
are recycled in the standard fashion

� pch

Plotting characters or symbols

4.2.4 Values

The function returns a plot and a list containing i) a matrix of the npop PC’s (matrix named
“PC”); ii) a vector with the npops eigenvalues (vector named “eig”); and iii) a vector with the
percentage of variance explained by each PC (vector named “pcent.var”)

4.2.5 Example

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#load the bovine covariance matrix

om.bta <- as.matrix(read.table("examples/omega.bta"))

pops=c("AUB","TAR","MON","GAS","BLO","MAN","MAR","LMS","ABO",

"VOS","CHA","PRP","HOL","JER","NOR","BRU","SAL","BPN")

om.bta.svd=plot.omega(omega=om.bta,pop.names=pops)

4.3 The R function fmd.dist()

4.3.1 Description

This function computes the metric proposed by Förstner and Moonen (2003) to evaluate the
distance between two covariance matrices (FMD distance).

4.3.2 Usage

fmd.dist(mat1,mat2)

4.3.3 Arguments

� mat1 and mat2

Two positive-definite (symmetric) matrices
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4.3.4 Values

The function returns a numeric value corresponding to the FMD distance between the two
matrices.

4.3.5 Example

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#load the bovine covariance matrix

om.bta <- as.matrix(read.table("examples/omega.bta"))

#create a dummy diagonal covariance matrix

#this might be obtained from a star-shaped phylogeny with

#branch length (Fst) equal to 0.1

star.bta<-diag(0.1,nrow(om.bta))

#compute the fmd.dist between the two matrices

fmd.dist(om.bta,star.bta)

4.4 The R function geno2YN()

4.4.1 Description

This function reads the allele (or read) count data file in the BayPass format and extract both
the counts for the reference allele and total counts.

4.4.2 Usage

geno2YN(genofile)

4.4.3 Arguments

� genofile

A character string giving the name of the allele (or read) count data file in the BayPass
format

4.4.4 Values

The function produces a list containing the two following matrices:

� YY

A matrix with nsnp rows and npop columns containing allele (or read) counts for the
reference allele.

� NN

A matrix with nsnp rows and npop columns containing the total allele (or read) counts.

4.4.5 Example

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#load the bovine BTA 14 data

counts.obj <- geno2YN("examples/geno.bta14")
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4.5 The R function simulate.PCcorrelated.covariate()

4.5.1 Description

This function simulates covariate values for each population that are correlated to a given
Principal Component of the matrix Ω (see Frachon et al., 2018, for an application).

4.5.2 Usage

simulate.PCcorrelated.covariate(omega,axis=1,targeted.rho=0.1,tol=0.01)

4.5.3 Arguments

� omega (always required)

A positive definite and symmetric matrix of rank npop corresponding to the covariance
matrix of population allele frequencies (Ω in Figure 1)

� axis

The Principal Component number which the simulated covariate should be correlated
with

� targeted.rho

The (targeted) Pearson correlation coefficient between the PC and the simulated covariate

� tol

The accepted tolerance for the realized Pearson correlation coefficient between the PC
and the simulated covariate. Simulations are performed until max(−1, ρ − τ) < ρ̂ <
min(1, ρ+τ) where ρ is the targeted correlation (defined by the argument targeted.rho);
τ is the tolerance (defined by the argument tau); and ρ̂ is the realized Pearson correlation
coefficient between the PC and the covariate.

4.5.4 Values

This function returns a vector of length npop containing the simulated covariate values.

4.5.5 Example

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#load the bovine covariance matrix

om.bta <- as.matrix(read.table("examples/omega.bta"))

sim.cov0.5<-simulate.PCcorrelated.covariate(omega=om.bta,targeted.rho=0.5)

4.6 The R function compute genetic offset()

4.6.1 Description

The R function compute_genetic_offset() allows to compute the so-called Genetic Offset
(GO) between environmental conditions, defined by a vector of covariable values (e.g., bio-
climatic covariables), from the relationship between the genomic composition of populations
and their local environment inferred under the GEA model. Following the geometric definition
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proposed by Gain et al. (2023), GO computation relies on the matrix of the estimated SNP
regression coefficients associated with each covariable (i.e., environmental effect size) as:

gGO =
1

nsnp

(e− e⋆)′ B′B (e− e⋆)

where nsnp is the number of genotyped SNPs; e and e⋆ are the vectors of m environmental
covariable values for the two compared environments; and B is the nsnp×m matrix of the SNP
regression coefficients (i.e., the entry βjk corresponds to the regression coefficient associated
with environmental variable k on population allele frequencies at SNP j). With BayPass,
the regression coefficients may, for example, be obtained either under the IS approximation
(standard model) or with an MCMC algorithm (-covmcmc option) as discussed in Camus et al.
(2024).
The compute_genetic_offset() function can then be used either i) directly on the output
files obtained from a BayPass analysis or; ii) with a custom matrix of regression coefficients as
obtained when combining sub-data sets analyses (see 6.3) or with another GEA method. The
minimal requirements to run the function are:

� some estimates of regression coefficients (either a file path or a matrix)

� the covariable values used in the original GEA (e.g., the one provided with -efile option
in BayPass) which is needed to properly scale the vector of covariables specifying the
target environments (e⋆). By default, these vectors of covariable values (associated with
the populations used for the GEA) are each used in turn as the reference environment
(e). This default behavior may be changed by giving a vector for one or several other
reference environments (refenv argument).

� a vector (or matrix) of covariable values specifying the target environment(s).

The function then computes the Genetic Offset statistics between each reference and target
environments.

4.6.2 Usage

compute_genetic_offset(beta.coef=NULL,regfile="summary_betai.out",covfile="cov.baypass",

newenv=NULL,refenv=NULL,scalecov=TRUE,candidate.snp=NULL,

compute.rona=FALSE)

4.6.3 Arguments

� beta.coef (def=NULL)

A nsnp × ncov matrix of regression coefficients (i.e., estimated environmental effects). If
NULL (default), the user must provide a BayPass output file with the regfile argument
(summary_betai_reg.out or summary_betai.out)

� regfile (def="summary_betai.out")

File name (or full path) of the BayPass output file with estimates of the regression
coefficients i.e. *summary_betai_reg.out (when estimated with the IS algorithm) or
*summary_betai.out (when estimated with the MCMC algorithm) (see 3.3). This option
is disregarded if beta.coef is not NULL.
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� covfile (def=NULL)

The BayPass covariate file that was used for the GEA (i.e. provided with -efile

argument). This information may be used to properly scale the vector of covariables for
the target environments (see scalecov and newenv options below).

� newenv (def=NULL)

Either a vector of ncov (if only one target environment) or a ncov × nenv matrix for nenv

target environments.

� refenv (def=NULL)

Either a vector of ncov (for only one target environment) or a ncov × nrefenv matrix for
nrefenv reference environments. By default, the reference environments are those corre-
sponding to the population environment used in the GEA and provided with covfile

argument.

� scalecov (def=TRUE)

If TRUE all covariable are scaled with respect to the mean and variance of the original
covariable values (provided with covfile argument)

� candidate.snp (def=NULL)

A logical vector of length nsnp or a vector of SNP indexes to be kept for GO estimation
(i.e., other SNP are disregarded). If NULL (default), all SNPs are considered in the
computation.

� compute.rona (def=NULL)

If TRUE, the RONA statistic (Rellstab et al., 2016) is computed as:

RONA = gGO =
1

nsnp

nsnp∑
s=1

| bs (e− e⋆) |

where bs is the row vector of the ncov regression coefficients associated with the covariables
for SNP s (i.e., row s of matrix B)

4.6.4 Values

The function produces a list with the following components:

� go

A matrix with the GO estimates between all reference (rows) and target environments
(columns)

� BtB.eigenvalues

A vector with the eigenvalues of the B′B matrix

� BtB.eigenvectors

The eigenvector matrix of the B′B matrix.

28



� covimp

A vector containing covariable importance computed for each covariable k as τk =
np∑
p=1

λpu
2
kp

(Gain et al., 2023) where ukp is the kth element of the pth eigenvector of B′B.

� rona (if compute.rona=TRUE)

A matrix with the RONA estimates between all reference (rows) and target environments
(columns)

4.6.5 Examples

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#assuming:

# i) pc5.baypass is the name of the file used when running baypass

# ii) target.envs is a vector of length ncov or a matrix with ncov columns (ncov=nb. of covariables)

# iii) ref.envs is a vector of length ncov or a matrix with ncov columns (ncov=nb. of covariables)

#using MC estimates of the Beta

go.mc=compute_genetic_offset(regfile="summary_betai.out.bz2",

covfile="pc5.baypass",newenv=target.envs)

#using IS estimates of the Beta

go.is=compute_genetic_offset(regfile="summary_betai_reg.out.bz2",

covfile="pc5.baypass",newenv=target.envs)

#using a matrix of Beta coef (dimension nsnp x ncov) named beta.matrix

go =compute_genetic_offset(beta.coef=beta.matrix,

covfile="pc5.baypass",newenv=target.envs)

#using a given set of reference environments and MC estiamtes

go.mc=compute_genetic_offset(regfile="summary_betai.out.bz2",

covfile="pc5.baypass",newenv=target.envs,refenv=ref.envs)

4.7 The R function concatenate res()

4.7.1 Description

The R function concatenate_res() allows combining output results obtained from the analyses
of sub-data sets. This function was specially designed for the analysis of large data sets using the
sub-sampling approach detailed in 6.3. It is further assumed that the sub-data sets were gener-
ated automatically with the functions pooldata2genobaypass() (countdata2genobaypass())
from the R package poolfstat (Gautier et al., 2022) i.e. that the input files for each sub-
datasets indexed from 1 to nsubsets have the following characteristics:

� a common prefix for the SNP information data files that contain the chromosome (or scaf-
fold) id and position of each SNP in the first and second column(e.g., snpdet.sub when
using default value of pooldata2genobaypass()) hereafter referred to as snpdet_prefix

� a common prefix for all the BayPass output files of the form [anaprefix]_[index] i.e.
BayPass was run with option -outprefix [anaprefix]_[numsubdata] to allow speci-
fying both the sub-dataset [numsubdata] and the type of analysis, where i) [anaprefix]
to allow specifying the type of analysis (e.g., [anaprefix]=core); and ii) [numsubdata]
to allow specifying the index of each sub-dataset (from 1 to nsubsets)

The function then returns a data frame including the statistics for all SNPs ordered by chro-
mosome and position.

29



4.7.2 Usage

concatenate_res(dir="./",anaprefix="ana",nsubsets=2,

snpdet_prefix="./detsnp.",extension=".bz2",

retrieve_pi_xtx=TRUE,retrieve_bfis=TRUE,retrieve_c2=FALSE)

4.7.3 Arguments

� dir (def="./"; i.e. current directory)

Path to the directory containing BayPass output files.

� anaprefix (def="ana")

Prefix of all the BayPass output files (named [anaprefix] above)

� extension (def=""; i.e. no extension)

Extension of all the files (may allow parsing gzipped or bzipped files). It is assumed that
all the files have the same extension (if any).

� nsubsets (def="2")

Number of sub-data files.

� snpdet_prefix (def="./detsnp.")

Prefix of all the SNP information files. Note that they may be in a different directory. In
this case, the path must be included in the prefix.

� retrieve_pi_xtx (def=TRUE)

If TRUE retrieve estimates of π (overall allele frequency), and XtX and XtX′ statistics
for each and every SNPs

� retrieve_bfis (def=TRUE)

If TRUE retrieve BFis estimates (Bayes Factor estimated using the Importance Sampling
approximation, 3.1.1) for each and every SNPs and all the covariables (named from one
to ncov)

� retrieve_c2 (def=TRUE)

If TRUE retrieve the C2 contrast estimates for each and every SNPs and all the contrasts
(named from one to ncontrasts)

4.7.4 Values

The function produces a data frame with nsnp rows. The first two columns are the chro-
mosome and position followed by i) the estimates of π and the XtX and XtX′ statisitcs (if
retrieve_pi_xtx=TRUE); ii) the BFis estimates for the ncov covariables (if retrieve_bfis=TRUE);
and iii) the C2 estimates for the ncontrasts contrasts (if retrieve_c2=TRUE);
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4.7.5 Examples

Assume that the original data set consists of i) a Pool-Seq read count data file named genofile

for 1,000,000 SNPs; ii) a pool haploid sample size named poolsize; iii) a covariate file named
envfile; and iv) a contrast data file named cfile. All these files are assumed to be in
BayPass format (see 2.2). Further assume that the original data set was sub-sampled into
20 sub-datasets of 50,000 SNPs each using the pooldata2genobaypass() function from the R
package poolfstat (Gautier et al., 2022) as follows:

require(poolfstat)

mydata=genobaypass2pooldata(genobaypass.file="genofile",poolsize.file="poolsize")

pooldata2genobaypass(pooldata=mydata,prefix="mydata",subsamplesize=5e4)

leading to 20 sub-data sets named mydata.genobaypass.sub.1 to mydata.genobaypass.sub.20
and their corresponding SNP information files named mydata.snpdet.sub.1 to mydata.snpdet.sub.20.
Then we assume that BayPass was run on all the sub-datasets i, and that to save disk space,
both input and output files were gzipped using e.g. the following options:

baypass -gfile mydata.genobaypass.sub.${i} -poolsizefile poolsize -efile envfile \

-contrastfile cfile -outprefix core_${i}

gzip core_${i}*out mydata.genobaypass.sub.${i} mydata.snpdet.sub.${i}

After completion of the runs, all the results may then simply be combined within R into a single
(large) ordered object using concatenate_res() function as:

all.res=concatenate_res(anaprefix = "core",nsubsets=20,snpdet_prefix = "./mydata.snpdet.sub",

retrieve_pi_xtx=TRUE,retrieve_bfis=TRUE,retrieve_c2=TRUE)

5 Worked Examples

For illustration purposes, in the following different types of analyses based on the example files
included in the example directory (see 2.2) are detailed step by step.

5.1 Cattle allele count data

5.1.1 Analysis under the core model mode

The following command allows analyzing the data under the core model (this should take from
3 to 4 min on a standard computer):

baypass -gfile geno.bta14 -outprefix anacore

To visualize the results, one may open an R session and proceed as follows:

#source the baypass R functions (check PATH)

source("utils/baypass_utils.R")

#upload the estimated Omega matrix

omega=as.matrix(read.table("anacore_mat_omega.out"))

pop.names=c("AUB","TAR","MON","GAS","BLO","MAN","MAR","LMS","ABO",

"VOS","CHA","PRP","HOL","JER","NOR","BRU","SAL","BPN")

dimnames(omega)=list(pop.names,pop.names)

# Visualization of the matrix

# Using SVD decomposition

plot.omega(omega=omega,pop.names=pop.names)

# as a correlation plot

require(corrplot)
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cor.mat=cov2cor(omega)

corrplot(cor.mat,method="color",mar=c(2,1,2,2)+0.1,

main=expression("Correlation map based on"~hat(Omega)))

# as a heatmap and hierarchical clustering tree (using the average agglomeration method)

hclust.ave <- function(x) hclust(x, method="average")

heatmap(1-cor.mat,hclustfun = hclust.ave,

main=expression("Heatmap of "~hat(Omega)~"("*d[ij]*"=1-"*rho[ij]*")"))

#Compare the estimates of Omega obtained with whole genome data

#and with the BTA14 SNPs only (included in the example file)

wg.omega <- as.matrix(read.table("examples/omega.bta")) #check the PATH

plot(wg.omega,omega) ; abline(a=0,b=1)

fmd.dist(wg.omega,omega)

#Estimates of the XtX differentiation measures (using the calibrated XtXst estimator)

anacore.snp.res=read.table("anacore_summary_pi_xtx.out",h=T)

#check behavior of the p-values associated to the XtXst estimator

hist(10**(-1*anacore.snp.res$log10.1.pval.),freq=F,breaks=50)

abline(h=1)

layout(matrix(1:2,2,1))

plot(anacore.snp.res$XtXst)

plot(anacore.snp.res$log10.1.pval.,ylab="XtX P-value (-log10 scale)")

abline(h=3,lty=2) #0.001 p--value theshold

If the p–values are not well behaved13, one may rather consider calibrating the XtX statistics
with PODs (see 5.3). In addition, it should be noticed that for the XtX statistics, the p-values
are computed assuming a bilateral test (see 3.3). Hence, one may check the XtX value to
distinguish positive (high XtX) from balancing (small XtX) selection.

5.1.2 Analysis under the IS covariate mode (MCMC is run under the core model)

In this example, an association analysis with the SMS Morphological Score available for the
18 cattle breeds (see Gautier, 2015) is carried out under the STD covariate model by estimat-
ing SNP-specific Bayes Factor and empirical Bayesian P-value (and the underlying regression
coefficient) using an Importance Sampling algorithm (see 3.1.2):

baypass -gfile geno.bta14 -efile bta.pc1 -outprefix anacovis

In other words, the parameters of interest are sampled by running the core model as above
(5.1.1). Hence, providing the same seed and the same options were used, the same estimates for
Ω (e.g., files anacovis_mat_omega.out and anacore_mat_omega.out) and other parameters
in common are obtained than under the previous analysis (5.1.1). If covariables are available,
one may then consider this mode as the default mode.

Continuing the above example in R, one may plot the Importance Sampling estimates of
the Bayes Factor, the empirical Bayesian P-value and the underlying regression coefficient as
follows:

covis.snp.res=read.table("anacovis_summary_betai_reg.out",h=T)

graphics.off()

layout(matrix(1:3,3,1))

plot(covis.snp.res$BF.dB.,xlab="SNP",ylab="BFis (in dB)")

plot(covis.snp.res$eBPis,xlab="SNP",ylab="eBPis")

plot(covis.snp.res$Beta_is,xlab="SNP",ylab=expression(beta~"coefficient"))

Recall that in the example, only a subset of SNPs mapping to BTA14 are considered. To
improve precision, one may rather provide the program with the more accurate estimate of Ω
relying on the complete data set (with 40 times as many SNPs):

13e.g., see the following URL: http://varianceexplained.org/statistics/

interpreting-pvalue-histogram/
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baypass -gfile geno.bta14 -efile bta.pc1 \

-omegafile omega.bta -outprefix anacovis2

The resulting Importance Sampling estimates of the Bayes Factor, the empirical Bayesian
P-value and the underlying regression coefficient might be plotted as follows:

covis2.snp.res=read.table("anacovis2_summary_betai_reg.out",h=T)

graphics.off()

layout(matrix(1:3,3,1))

plot(covis2.snp.res$BF.dB.,xlab="SNP",ylab="BFis (in dB)")

plot(covis2.snp.res$eBPis,xlab="SNP",ylab="eBPis")

plot(covis2.snp.res$Beta_is,xlab="SNP",ylab=expression(beta~"coefficient"))

5.1.3 Analysis under the MCMC covariate mode (MCMC is run under the STD model)

In this example, the association study with the breed SMS Morphological Score is carried out
under the STD covariate model to estimate the empirical Bayesian P-value and the underlying
regression coefficient (Gautier, 2015). Although one may also estimate Ω under the STD model,
this option has been inactivated in BayPass. As a consequence, an estimate of Ω (e.g., as
obtained by a first analysis under the core model or IS covariate mode) must be provided.

baypass -gfile geno.bta14 -efile bta.pc1 \

-covmcmc -omegafile omega.bta -outprefix anacovmcmc

The resulting estimates of the empirical Bayesian P-values, the underlying regression coef-
ficients (posterior mean) and the XtX (corrected for the coveriable effect) might be plotted as
follows:

covmcmc.snp.res=read.table("anacovmcmc_summary_betai.out",h=T)

covmcmc.snp.xtx=read.table("anacovmcmc_summary_pi_xtx.out",h=T)$M_XtX

graphics.off()

layout(matrix(1:3,3,1))

plot(covmcmc.snp.res$eBPmc,xlab="SNP",ylab="eBPmc")

plot(covmcmc.snp.res$M_Beta,xlab="SNP",ylab=expression(beta~"coefficient"))

plot(covmcmc.snp.xtx,xlab="SNP",ylab="XtX corrected for SMS")

5.1.4 Analysis under the AUX covariate mode: MCMC is run under the AUX model

In this example, the association study with the breed SMS Morphological Score is carried out
under the AUX covariate model to estimate the Bayes Factor (and the underlying regression
coefficient). Although one may also estimate Ω under the AUX model, this option has been
inactivated in BayPass. As a consequence, an estimate of Ω (e.g., as obtained by a first
analysis under the core model or the IS covariate mode) must be provided.

baypass -gfile geno.bta14 -efile bta.pc1 \

-auxmodel -omegafile omega.bta -outprefix anacovaux

The resulting estimates of the Bayes Factor, the underlying regression coefficients (posterior
mean) and the corrected XtX might be plotted as follows:

covaux.snp.res=read.table("anacovaux_summary_betai.out",h=T)

covaux.snp.xtx=read.table("anacovaux_summary_pi_xtx.out",h=T)$M_XtX

graphics.off()

layout(matrix(1:3,3,1))

plot(covaux.snp.res$BF.dB.,xlab="SNP",ylab="BFmc (in dB)")

plot(covaux.snp.res$M_Beta,xlab="SNP",ylab=expression(beta~"coefficient"))

plot(covaux.snp.xtx,xlab="SNP",ylab="XtX corrected for SMS")
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To refine the association signal, one may further introduce spatial dependency among SNPs
by setting bis = 1 in the Ising prior (Figure 1C) :

baypass -gfile geno.bta14 -efile bta.pc1 -auxmodel \

-isingbeta 1.0 -omegafile omega.bta -outprefix anacovauxisb1

The resulting estimates of the Posterior Inclusion Probability (i.e., the posterior mean of
the auxiliary variable δi) under the AUX models without and with SNP spatial dependency
may be plotted as follows:

covauxisb1.snp.res=read.table("anacovauxisb1_summary_betai.out",h=T)

graphics.off()

layout(matrix(1:2,2,1))

plot(covaux.snp.res$PIP,xlab="SNP",ylab=expression(delta[i]),main="AUX model")

plot(covauxisb1.snp.res$PIP,xlab="SNP",ylab=expression(delta[i]),

main="AUX model with isb=1")

When including SNP spatial dependency in the model (i.e., bis > 0), it may be worth filtering
the data set for SNPs displaying low polymorphism across the population (as evaluated by the
parameter π in Figure 1). Indeed, nearly fixed SNPs (e.g., π < 0.05 or π > 0.95) are not
expected to be associated with any covariable even if they are neighboring strongly associated
SNPs.

5.2 Littorina Pool–Seq read count data

5.2.1 Analysis under the IS covariate mode

The Littorina Pool–Seq data set may be analyzed in a similar fashion as the cattle data set above
except that one needs to specify the (haploid pool) size file using the -poolsizefile option to
activate the Pool–Seq mode. Because the haploid pool sizes are relatively large (n = 100), one
may also increase the initial δ of the yij proposal distribution (as a rule of thumbs, one may
set it to a fifth of the minimum pool size). Here is an example of a command to run BayPass
under the IS covariate mode (MCMC run under the core model):

baypass -gfile lsa.geno -efile lsa.ecotype \

-poolsizefile lsa.poolsize -d0yij 20 -outprefix lsacovis

5.2.2 Contrast Analysis to identify SNPs associated with population ecotypes

The population ecotype being a binary trait (either “crab” or “wave”), one may rely on the C2

statistic (Olazcuaga et al., 2020) to identify SNPs associated with the population ecotype rather
than relying on the (parametric) models used to estimate Bayes Factor. Here is an example of
a command to run BayPass to estimate both the C2 contrast statistic and the BFis14:

baypass -gfile lsa.geno -poolsizefile lsa.poolsize -d0yij 20 \

-contrastfile lsa.ecotype -efile lsa.ecotype \

-outprefix lsacontrast

The resulting C2 contrasts (and BF) might then be plotted (and compared) as follows:

14The estimations of the C2 and BFis may be done separately but their joint estimation adds almost no extra
computational cost and is strictly equivalent. Indeed, in both cases the model parameters are sampled under
the core model
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lsa.ecotype.bf=read.table("lsacontrast_summary_betai_reg.out",h=T)$BF.dB.

lsa.ecotype.C2=read.table("lsacontrast_summary_contrast.out",h=T)

#check the behavior of the p-values associated to the C2

hist(10**(-1*lsa.ecotype.C2$log10.1.pval.),freq=F,breaks=50)

abline(h=1)

plot(lsa.ecotype.bf,lsa.ecotype.C2$log10.1.pval.,

xlab="BF",ylab="C2 p-value (-log10 scale)")

abline(h=3,lty=2) #0.001 p--value theshold

abline(v=20,lty=2) #BF threshold for decisive evidence (according to Jeffreys’ rule)

5.3 Calibrating statistics with the simulation and analysis of PODs (pseudo-
observed data sets)

As described in Gautier (2015) and mentioned above, pseudo-observed data sets (PODs) might
be considered to calibrate the XtX or C2 estimates most particularly if their derived p-values
are not well behaved13 (and/or the number of analyzed SNPs is small).

For instance, to produce a (small) POD sample with 1,000 SNPs (continuing the cattle
example in 5.1.1) we may rely on the simulate.baypass() function (see 4):

#get estimates (post. mean) of both the a_pi and b_pi parameters of

#the Pi Beta distribution

pi.beta.coef=read.table("anacore_summary_beta_params.out",h=T)$Mean

#upload the original data to obtain total allele count

bta14.data<-geno2YN("geno.bta14")

#Create the POD

simu.bta<-simulate.baypass(omega.mat=omega,nsnp=1000,sample.size=bta14.data$NN,

beta.pi=pi.beta.coef,pi.maf=0,suffix="btapods")

Then, one may analyze the newly created POD (data file named“G.btapods”in the example)
giving another prefix for the output files:

baypass -gfile G.btapods -outprefix anapod

Continuing the above example in R, calibration of the XtX and visualization of the results
might be done as follows:

#######################################################

#Sanity Check: Compare POD and original data estimates

#######################################################

#get estimate of omega from the POD analysis

pod.omega=as.matrix(read.table("anapod_mat_omega.out"))

plot(pod.omega,omega) ; abline(a=0,b=1)

fmd.dist(pod.omega,omega)

#get estimates (post. mean) of both the a_pi and b_pi parameters of

#the Pi Beta distribution from the POD analysis

pod.pi.beta.coef=read.table("anapod_summary_beta_params.out",h=T)$Mean

plot(pod.pi.beta.coef,pi.beta.coef) ; abline(a=0,b=1)

#######################################################

#XtX calibration

#######################################################

#get the pod XtX

pod.xtx=read.table("anapod_summary_pi_xtx.out",h=T)$M_XtX

#compute the 1% threshold

pod.thresh=quantile(pod.xtx,probs=0.99)

#add the thresh to the actual XtX plot

plot(anacore.snp.res$M_XtX)

abline(h=pod.thresh,lty=2)

Similarly, when considering analysis of association with population-specific covariable under
the core model, one may also calibrate of the different measures (BFis, regression coefficients,
correlation coefficients, etc.) by analyzing a POD together with the covariables, i.e., with the
previous cattle example (5.1.2):
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baypass -gfile G.pods -efile bta.pc1 -omegafile omega.bta \

-outprefix podcovis

More generally, the PODs distribution may also be used to compute empirical P–values and
to derive from them q-values to control for multiple testing (see the qvalue package, Storey
and Tibshirani, 2003).

6 Some general advice

6.1 Checking convergence by running several independant runs

As for any MCMC analysis, it is recommended to run several independent MCMC (e.g., from
3 to 5), using different seeds for the random number generators (see -seed option in 3.2).
Comparing the estimates of parameters like Ω and statistics like XtX or BF across runs al-
lows ensuring (empirically) that the chains properly converged. For large enough data sets,
estimations are generally reproducible for most parameters and statistics. Yet, for measures
like the BFis that are based on an Importance Sampling approximation (see 3.1.1), single run
estimations may be unstable (in particular when the number of populations is small), it is then
recommended to use as an estimate the median computed over several different independent
runs (for a real life example see Gautier et al., 2018).

6.2 To sample or not to sample the regression coefficients in association

analysis (i.e., BFis or BFmc)?

For association analyses, the advantages of sampling the regression coefficients (i.e., using the
STD or AUX models) rather than relying on the Importance Sampling (IS) approximation
are discussed in Gautier (2015). Yet, the IS approximation is more computationally efficient,
since only parameter samples drawn from the core model are required (i.e., the regression
coefficients are not sampled) allowing estimation of Bayes Factor (BFis) at almost no extra
computational costs when running the core model (which is needed to estimate the Ω matrix).
As a consequence also, jointly analyzing several covariables is strictly equivalent to carrying
out separate analyses for each covariable in turn. In other words, the Bayes Factors (BFis)
estimated for each covariable are associated to a single-covariate regression model while in the
case of the STD or AUX models (that involve the sampling of the regression coefficients) the
estimated Bayes Factors (BFmc) would correspond to a multiple-covariate regression model if
the covariate file include several covariables. Finally, from a practical point of view, using the
STD or AUX models with data sets containing a small number of populations (e.g., < 8) is not
recommended since some identifiability issues may arise.

6.3 Dealing with large data sets

When dealing with very large data sets (> 106 SNPs), one may adopt a sub-sampling strategy
that consists in analyzing pseudo-“independant” sub-data sets of ca. 50,000 to 100,000 SNPs
(e.g., Frachon et al., 2018; Gautier et al., 2018). With nsnp SNPs, these sub-data sets can
be generated for instance by sampling one every k SNPs in an ordered map then leading to
k sub-data sets of ca. Nsnps

k
SNPs (the first sub-data set containing SNP numbers 1, k +

1, 2k+1, . . .; the second sub-data sets containing SNP numbers 2, k+2, 2k+2, . . .; and so on).
The function pooldata2genobaypass() (or countdata2genobaypass()) available from the R
package poolfstat (https://cran.r-project.org/web/packages/poolfstat/index.html)
may be used to easily generate such sub-data sets. The k sub-data sets may then be analyzed
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separately (or in parallel on a computer grid). After comparing the different estimated Ω
matrices15 and ensuring that they are similar16, the various SNP specific statistics may be
combined. Such a sub-sampling approach has several advantages.

From a computational point of view, BayPass is not scaling linearly with the number of
threads (e.g., Table 1). It is thus (far) more efficient to analyze the k sub-data sets each on
a single thread rather than the whole data sets in k threads. From a more general point of
view, the sub-sampling approach allows comparing results across (pseudo-independant) sub-
data sets, each having, in addition, a lower level of background LD (if a thinning approach has
been performed to generate the sub-data sets).

7 Credits

BayPass makes use of several functions and subroutines that were previously developed by
other authors. These include:

� the Fortran code for the multiple streams MT19937 Mersenne–Twister (parallel) Random
Number Generator was adapted from the subroutines available in the mt_stream_f90-

1.11.tar.gz program written by Ken-Ichi Ishikawa and available under the New BSD Li-
cense17 at http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/PRNG/mt_stream_f90-1.
11/).

� Various functions and subroutines for random number generations that were adapted
from the Alan Miller Fortran module random.f90 available at: http://jblevins.org/

mirror/amiller/ available under the GNU GPL license.

� the Wishart sampler utilities derived from the fortran wishart library written by John
Burkhardt and available at http://people.sc.fsu.edu/~%20jburkardt/f_src/wishart/
wishart.html under the GNU GPL license.

� the kracken(3f) Fortran module developped by John S. Urban to parse command line ar-
guments (available at http://home.comcast.net/~urbanjost/LIBRARY/libCLI/arguments/
krackenhelp.html) under the GNU GPL license.
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BayPass is a free software under the GPL- and BSD-compatible CeCILL-B licence (see http:
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15e.g., using the FMD distance (see 4) or by directly comparing the matrix elements
16This is generally the case unless the number of SNPs per sub-sample is too small
17http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/PRNG/mt_stream_f90-1.11/LICENSE
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10 Contact

If you have any question, please feel free to contact me. However, I strongly recommend you
read carefully this manual first.
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