
Instruction Manual for “ChromoPainterV2: a

copying model for exploring admixture in

population data”

Garrett Hellenthal

August 11, 2014

Contents

1 Introduction 2

2 Getting Started 3

3 Changes from previous version 3

4 Input Format 5
4.1 haplotype infile (’-g’ switch) . 5
4.2 recom rate infile (’-r’ switch) . 6
4.3 label infile (’-t’ switch) . 7
4.4 population list infile (’-f’ switch) 8

5 Output 10
5.1 .samples.out . 11
5.2 .chunkcounts.out . 11
5.3 .chunklengths.out . 11
5.4 .priorprobs.out . 12
5.5 .regionchunkcounts.out . 12
5.6 .regionsquaredchunkcounts.out . 12
5.7 .EMprobs.out . 13
5.8 .mutationprobs.out . 13
5.9 .copyprobsperlocus.out . 13

6 List of Options 14

7 Examples of Usage 15

8 Suggestions/Warnings for Running ChromoPainterv2 16
8.1 running ChromoPainterv2 with fineSTRUCTURE 17
8.2 running ChromoPainterv2 with GLOBETROTTER 18

1

9 Computational Complexity 19

10 Citation 19

1 Introduction

ChromoPainterv2 updates the previous program ChromoPainter [1] that explores
ancestry using Single-Nucleotide-Polymorphism (SNP) data of haplotypes sam-
pled from multiple populations. These updates largely involve making the pro-
gram easier to use, and making the input and output from ChromoPainterv2
compatible with companion program GLOBETROTTER [2] that identifies, dates
and describes past itermixing (i.e. “admixture”) events.

In particular, ChromoPainterv2 takes as input: (1) the SNP data for a set
of admixed “recipient” chromosomes, (2) the SNP data for a set of “donor”
chromosomes (e.g. thought to represent the sources of admixture or ancestry in
the recipient chromosomes), and (3) a genetic-map representing the recombi-
nation distance between each pair of contiguous SNPs. (Note that (3) is only
necessary if the data is not specified as “unlinked” using the ’-u’ switch, which
we highly recommend to substantially increase power.) It then uses a Hidden
Markov Model (HMM) analagous to that described in [3] in a manner that
intuitively forms each recipient chromosome as a mosaic of the donor chromo-
somes (see [1] for details), capturing which donors are essential to explain the
recipient DNA. One attractive feature of ChromoPainterv2 is that it deals with
an arbitrarily large set of donor chromosomes, so that it requires no a priori
information about the important donors (i.e. ancestral populations) involved in
the ancestral history of the recipient population.

When painting a set of recipient chromosomes conditional on a set of donor
chromosomes, ChromoPainterv2 provides the following as output for each recip-
ient individual (individuals may be either haploid or diploid):

1. stochastic sample realizations of the HMM denoting which donors the re-
cipient chromosome copies from at each SNP – we refer to this as “painted
chromosomes”

2. the total expected length of genetic material genome-wide copied from
each donor

3. the total expected number of “chunks” genome-wide copied from each
donor, where a “chunk” refers to a set of contiguous SNP(s) copied intact
from the same donor source – this is of particular use for input in compan-
ion program fineSTRUCTURE [1] that clusters individuals into genetically
homogeneous groups

The program is flexible in that it allows the user to change emission and tran-
sition probabilities for each donor population. It can also use an Expectation-
Maximization (E-M) algorithm to re-estimate the proportion of genetic material

2

copied from each donor, by using the previous estimates as a new prior under
the model and iterating.

2 Getting Started

After extracting the .tar file, compile in the following manner:

gcc -o ChromoPainterv2 ChromoPainterv2.c -lm -lz

To compile, note that you must have “zlib” installed (e.g. sudo apt-get install
zlib1g-dev).

The basic command line is as follows:

./ChromoPainterv2 -g [haplotype infile] -r [recom rate infile] -f
[population list infile] [start ind] [end ind] -t [label infile] -o [output filename]

The user-input file haplotype infile provides the genetic variation informa-
tion at all SNPs in the donor and recipient haplotypes (which can be in any
order). The user-input file recom rate infile provides the genetic distance be-
tween each pair of contiguous SNPs in haplotype infile. The user-input file
label infile provides population labels for all individuals in haplotype infile, and
population list infile provides information on which populations to use as donors
and/or recipients (as well as how many recipient individuals to paint, by speci-
fying start ind and end ind). The user-input name output filename denotes the
prefix of the output files. See section “Input Format” below for details on the
format of each of the four input files and section “Output” for details on the
files output by the program.

Type “./ChromoPainterv2 -h” or “./ChromoPainterv2 –help” to get a brief
description of all command line options.

3 Changes from previous version

The new updates for ChromoPainterv2 involve making the program easier to use,
and making the input and output from ChromoPainterv2 compatible with com-
panion program GLOBETROTTER [2] that identifies, dates and describes past
itermixing (i.e. “admixture”) events. There are the following specific changes:

1. The haplotype infile (’-g’ switch) format has changed slightly (see Section
4.1). Compared to the input file for the previous version of ChromoPainter,
the first row has been removed, the second row now lists the total number
of haplotypes in the file (rather than the total number of individuals) and
the fourth row of “SSSSS...” has been removed. In contrast to the original
version, donor and recipient haplotypes can be in any order. (Though –
as before – every two consecutive rows should contain the DNA from the
two haplotypes of a single individual, if dealing with diploids.)

3

2. There is a new (required) input file label infile (’-t’ switch) to specify the
individual and population labels for each individual in haplotype infile (see
Section 4.3). (NOTE: this is the same file described as input.file.ids in
the instructions for the GLOBETROTTER program.)

3. The population labels supplied by the user in label infile (’-t’ switch) will
be used to concatonate individuals into populations automatically, i.e. so
that individuals can be listed in any order in haplotype infile (’-g’ switch)
and label infile, e.g. irrespective of population label. (This is in contrast
to the previous version of ChromoPainter, where the haplotypes from the
same donor population had to be listed together in consecutive rows in
haplotype infile, and listed before the recipient haplotypes.)

4. In label infile (’-t’ switch), you can also now specify whether to exclude
any individuals from analysis, rather than having to make new input files
every time you want to remove individuals for e.g. quality control reasons.

5. The format for population list infile (’-f’ switch) (called donor list infile in
the instructions for the previous version of ChromoPainter) has changed
slightly (see Section 4.4). In particular, matching the labels provided in
label infile (’-t’ switch), you now specify which population you wish to use
as donors and/or recipients (and no longer need to specify the number of
haplotypes in each). This allows the flexibility of excluding populations,
and/or for altering donor and recipient populations, without having to
make a new haplotype infile (’-g’ switch) as in the previous version.

6. You can now specify how many recipient individuals to paint (i.e. rather
than painting all of them), as part of the new ’-f’ switch (see Section
4.4). (In the previous version, this convenience was only allowed when
specifying each individual to copy from every other individual by using
the ’-a’ switch.)

7. When using the ’-a’ switch specifying that each individual should copy
from every other, and when also providing a label infile (’-t’ switch), you
can now specify that you only want individuals with the populations labels
specified in population list infile, (’-f’ switch) to copy from one another.
This is useful if you want to perform analyses (for example, that will sub-
sequently use fineSTRUCTURE) on only a subset of populations contained
in your haplotype infile (’-g’ switch), without having to make a new such
file.

8. We have removed the ’-c’ switch from the previous version that allows you
to “self-copy” from members of your own population, as now you simply
should specify a recipient population as a donor as well in file popula-
tion list infile (’-f’ switch) if you want to “self-copy”. (As before, an indi-
vidual will not copy from themself.) For the same reason, when specifying
the ’-m’ switch, you no longer input the mutation rate for the recipient
population (i.e. if it is a donor as well) from the command line as in the

4

previous version, as you now input this value into population list infile
instead.

9. The output file with suffix .prop.out has now been changed to .prior-
probs.out. This is to avoid confusion that these are inferred proportions,
as they instead – as before – reflect the prior probability of copying from
each donor population in the final ChromoPainterv2 run (i.e. last E-M it-
eration).

10. All output files (see Section 5) now contain labels for individuals based on
those provided by the user in label infile (’-t’ switch). (As a consequence,
we have removed the ’-y’ switch from the previous version that allows you
to alter the labels in output files, which was only applicable when using
the ’-a’ switch in the previous version.)

11. The default value for the “switch parameter” (’-n’ switch) is now 400,000
divided by J , with J the total number of donor haplotypes. (This differs
from the previous version in that J used to be the total number of hap-
lotypes in haplotype infile. Though as before we recommend inferring the
“switch parameter” using E-M iterations.)

4 Input Format

There are four types of input file, all required except for in specific situations
as described below: the haplotype infile (always required; specified with the ’-
g’ switch), the recom rate infile (specified with the ’-r’ switch), the label infile
(specified with the ’-t’ switch), and the population list infile (specified with the
’-f’ switch). See the text below and the files provided with this program for
examples of each type of input file.

For most analyses, we recommend having a single label infile, in addition to
one haplotype infile and recom rate infile per chromosome. Ideally you then only
ever have to alter your population list infile, which is relatively easy to toggle,
to perform different analyses (e.g. to specify different donor and/or recipient
populations when painting) using your data.

4.1 haplotype infile (’-g’ switch)

The file containing the genetic variation information for the donor and recipient
chromosomes (i.e. haplotype infile) should be in a format very similar to PHASE
format [4, 5]:

• The first line of the file contains the total number of donor and recipient
haplotypes.

• The second line contains the number of SNPs.

5

• The third line contains the letter “P” followed by a vector of the basepair
positions of each SNP, in monotonically increasing order. The basepair
positions do not strictly need to be in monotonically increasing order if you
are including genetic information from multiple chromosomes, as specified
in recom rate infile below. However, within each chromosome, basepairs
must be in order.

• The remaining lines of the file contain the genetic variation information of
each donor and recipient haplotype, with each row a new haplotype and
each column the allelic type at each biallelic SNP, in the same order as
the “positions” line. The accepted allelic type values are “0”, “1”, “A”,
“G”, “C”, or “T”. There should be NO missing values!! There should
be no spaces between columns for the genotype rows. If individuals are
diploid, each pair of 2 contiguous rows should be the two haplotypes of a
single individual.

For example, consider a file with 10 haplotypes (which may be for e.g. 2
donor individuals and 3 recipient individuals, assuming diploidy), with genetic
information collected at 6 SNPs with basepair positions at 100, 200, 300, 400,
500, and 600. The haplotype infile might look like the following:

10
6
P 100 200 300 400 500 600
010101
011101
111101
001101
011000
001100
001001
001011
001001
001111

The first haplotype’s allele types across the 6 SNPs is 010101. The second haplo-
type’s allele types across the 6 SNPs is 011101. (If diploid, these two haplotypes
are the genetic information for individual 1.) Etc...

If a label infile is specified (which must be true if not specifying the ’-a’
switch), individuals should be ordered in consecutive rows as corresponding to
label infile (see Section 4.3).

4.2 recom rate infile (’-r’ switch)

The file format of recom rate infile is as follows. There should be a header line
followed by one line for each SNP in haplotype infile. Each line should contain

6

two columns, with the first column denoting the basepair position values given
in haplotype infile, in the same order. The second column should give the genetic
distance per basepair between the SNP at the position in the first column of
the same row and the SNP at the position in the first column of the subsequent
row. The last row should have a “0” in the second column (though this is not
required – this value is simply ignored by the program). Genetic distance should
be given in Morgans, or at least the relevant output files assume this value is in
Morgans.

If you are including genetic information from multiple chromosomes, put a
“-9” (or any value < 0) next to the last basepair position of the preceeding chro-
mosome. For example, to specify one chromosome with SNPs at basepairs 100
and 300 with recombination rate 0.01 Morgan per basepair between them, and
a second chromosome with SNPs at basepairs 250 and 450 with recombination
rate 0.02 Morgan per basepair between them, the recom rate infile should look
as follows:

start.pos recom.rate.perbp
100 0.01
300 -9
250 0.02
450 0

In general, specifying “-9” (or any value < 0) in the second column indicates
that the recombination rate is infinite between the SNP at the position in the
first column of the same row and the SNP at the position in the first column
of the subsequent row. In this case, the position in the subsequent row can be
less than the position specified in the row containing the “-9”. Within a chro-
mosome, however, basepairs must always be given in monotonically increasing
order. (Note: In contrast to ChromoPainterv2, for companion program GLOBE-
TROTTER – used to identify and date admixture events – currently there must
be only one recom rate infile per chromosome.)

Note that the recom rate infile does not need to be specified if the switch
’-u’ is specified, indicating that SNPs are unlinked. With the exception of being
able to specify “-9” as described above to indicate multiple chromosomes, any
recom rate information from a provided recom rate infile will be ignored if the
’-u’ switch is used.

Note also that, in order to allow numerical stability in C, the minimum
allowed recombination rate is 1×10−15 Morgan per basepair. Any values
below this in the second column of recom rate infile will be fixed automatically
to this value.

4.3 label infile (’-t’ switch)

The file label infile provides the population and identifier labels for each in-
dividual in haplotype infile. This file is not required if you paint a subset of

7

haplotypes (or individuals) using every other haplotype (or individual) using
the ’-a’ switch. (However, if you do specify it when using the ’-a’ switch, it will
use the individual labels from label infile in all output files, which may be conve-
nient. By providing label infile when using the ’-a’ switch, you can also use the
’-f’ switch file to analyse only a subset of populations in your haplotype infile.
See Section 4.4.) You can also use this file to identify individuals to exclude
from analysis. Note that this is the same file described as input.file.ids in the
instructions for the GLOBETROTTER program.

The format of label infile is one row per individual, with three columns giving
the individual identifier (column 1), the individual’s population label (column
2) and an indicator for whether or not to exclude the individual from an analy-
sis (column 3 – use a “0”, i.e. “zero”, to exclude the given individual; all other
values in this column will be ignored). Note that the population labels given
in column 2 of label infile must match those given in population list infile (see
Section 4.4). Any individuals with population labels not containined in popula-
tion list infile will be ignored in analysis.

An example for label infile with 5 individuals might look like:

Individual1 Pop1 1
Individual2 Pop1 0
Individual3 Pop2 1
Individual4 Pop1 1
Individual5 Pop2 1

The above specifies to remove Individual2 from analysis, so that there are two
individuals from Pop1 with individual identifiers Individual1 and Individual4, and
two individuals from Pop2 with individual identifiers Individual3 and Individual5
in this analysis. Again note that the haplotype information provided in the
corresponding haplotype infile must match exactly the order of this file, so that
the initial row(s) of haplotype infile (ignoring the three header rows in that file)
must contain the haplotype(s) of Individual1, the next row(s) the haplotype(s)
of Individual2 (even though this individual is excluded from analysis), the next
row(s) the haplotype(s) of Individual3, etc.

4.4 population list infile (’-f ’ switch)

The file population list infile provides information on the populations to be used
as donors and/or recipients when running ChromoPainterv2. This file is not re-
quired if you paint a subset of haplotypes (or individuals) using every other
haplotype (or individual) using the ’-a’ switch (and will be ignored in that case,
unless you also specify a label infile using the ’-t’ switch – see below).

With the ’-f’ switch, you also specify which recipient individuals to paint.
For example, specifying ’-f [population list infile] 5 20’ will paint recipient in-
dividuals 5-20, inclusive, selecting these 16 individuals based on their ordering

8

in label infile (as always ignoring any individuals marked for exclusion by ’0’ in
label infile, so that the 5th through 20th non-excluded recipient individuals will
be painted). Use ’-f [population list infile] 0 0’ to paint all recipient individuals.
When specifying to copy each individual using all other individuals as donors
with the ’-a’ switch, any ’-f’ switch values are ignored.

There should be one row in population list infile for each donor population
and one for each recipient population. There are 2-4 columns per row. The
first column gives the donor population label, and the second column specifies
whether that population is a donor (“D”) or recipient (“R”). If you wish to spec-
ify a population as both, it should be listed in two different rows, one with a
second column containing “D” and the other with the second column containing
“R”.

The third and fourth columns are optional and can be empty, unless either
the ’-p’ or ’-m’ switches are specified (these columns will be ignored for any
recipient populations). The optional third column gives the a priori probability
of copying from each donor population. (The default is equally likely to copy
from each donor chromosome, so that a priori a recipient haplotype is more
likely to copy from donor populations with more chromosomes.) The optional
fourth column (which must be provided only if the ’-m’ switch is used) gives
the mutation (or emission) probability from each donor population; i.e. the
probability of a mutation given the recipient is copying from the given donor
population at a SNP. (The default is that mutation probabilities are the same
across all donor populations, with rate as described in [1]. Use “-9” to specify
this default mutation rate for any given population, i.e. row.) If the ’-m’ switch
is specified but the ’-p’ switch is not, column 3 must still be entered though it
is not used.

For example, consider the following population list infile example consisting
of three populations:

Pop1 D 0.5 0.0002
Pop2 R 0.3 0.0004
Pop3 D 0.2 0.0001

In this example, any individuals with labels Pop1 or Pop3 specified in la-
bel infile (given they are not excluded by specifying a “0” in label infile) will be
used as donors to paint any individuals with label Pop2 in label infile. (Note that
you can specify as many donor and recipient populations as you like.) The out-
put files for .chunkcounts.out, .chunklengths.out, .priorprobs.out, .regionchunkcounts.out,
and .regionsquaredchunkcounts.out described below will then contain columns
representing the amount of genetic material each individual (rows in those out-
put files) copy from each of Pop1 and Pop3. If you also wish Pop2 to “self-copy”,
i.e. so that individuals from Pop2 can be painted using any other individuals
with label Pop2 (excluding themself), you should add a fourth row (in any or-

9

der) to the above with “Pop 2 D ...”.

If the ’-p’ switch is specified, then the a priori probability of copying from
each Pop1 haplotype will be 0.5/n1, with n1 the number of haplotypes included
in the analysis with label Pop1, and the a priori probability of copying from
each Pop3 haplotype will be 0.2/n3, with n3 the number of haplotypes included
in the analysis with label Pop3. (Note that if you allow self-copying, individu-
als from e.g. Pop1 will still copy each other individual from Pop1 with a priori
probability 0.5/n1, so that the total a priori probability of copying from Pop1
is 0.5(n1− 1)/n1 for Pop1 recipient individuals compared to 0.5 for other recip-
ient individuals.) If the ’-m’ switch is used, then the probability of mutation at
any SNP given you copy from a Pop1 haplotype is 0.0002 and the probability
of mutation given you copy from a pop3 haplotype is 0.0001. These columns
will be ignored for Pop2, as it is specified as a recipient here. (Note again that
you can use the above population list infile example without specifying the ’-p’
and/or ’-m’ switches; in this case columns 3 and 4 will be ignored.)

The third column of population list infile, if specified using ’-p’, should sum
to 1. If it does not (as is the case in the example above), ChromoPainterv2 will
rescale these values to sum to 1.0, so that the user-input values are proportional
numbers. Furthermore, in order to allow numerical stability in c, no value in
the third column can be below 1 × 10−15 times the corresponding number of
haplotypes in the second column. Values below this threshold will be set auto-
matically to the threshold value.

Note: When specifying the ’-a’ switch so that all individuals copy from ev-
ery other individual, if you specify a label infile (’-t’ switch, see Section 4.3) and
a population list infile, ChromoPainterv2 will only include individuals with popu-
lation labels (as specified in label infile) contained in population list infile. So for
example, if you specify ’-t’, ’-f’, and ’-a’ using the above population list infile
example, each individual with population label Pop1, Pop2 and Pop3 will be
painted using all other individuals from these three populations as donors (ex-
cluding themself, as always), and individuals from any other populations will
be ignored. (Note that whether populations are specified as recipients “R” or
as donors “D” in population list infile is ignored if using the ’-a’ switch in this
manner.) As usual any individuals that are specified to be excluded from anal-
ysis (i.e. with a “0” in the third column of label infile) will NOT be included as
either a donor or recipient, even if from one of these three populations.

5 Output

There are several output files for ChromoPainterv2.

10

5.1 .samples.out

The first line of the output file with suffix .samples.out contains information on
the input files and commands used to run ChromoPainterv2. The subsequent
lines contain stochastically-derived samples indicating which donor haplotypes
each recipient haplotypes copies at each SNP under the model. Recipient hap-
lotypes appear in the order specified in haplotype infile and label infile. Each
recipient haplotype has one row denoting the haplotype index label (either “1”
or “2”, depending on ploidy) and individual identifier, followed by s rows corre-
sponding to the number of “painted chromosome” samples requested using the
’-s’ switch (default is s = 10).

If there are L total SNPs, each “painted chromosome” row has L + 1 columns,
with the first column corresponding to the sample number (=1,...,s) and the
subsequent columns denoting the index of the donor haplotype copied at each
SNP, with SNPs ordered as in haplotype infile and recom rate infile. For D hap-
lotypes contained in haplotype infile, these index labels are 1,...,D corresponding
to the row in haplotype infile (ignoring the initial three header rows) containing
the haplotype used to paint that particular SNP for that particular sample.
(I.e. the first haplotype row listed in haplotype infile has label “1”, the second
haplotype row listed in haplotype infile has label “2”, etc....)

5.2 .chunkcounts.out

The output file with suffix .chunkcounts.out contains a matrix with donor pop-
ulations as columns and recipient individuals as rows (this may be one “pop-
ulation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected number
of “chunks” (i.e. blocks of contiguous SNPs) that the given recipient individual
copies from each donor population across all SNPs under the model (after i E-M
iterations as specified by the ’-i’ switch). A “chunk” can intuitively be thought
of as analagous to a segment of DNA that is most closely related ancestrally to
the single copied donor relative to all other donors, with left and right endpoints
marked by ancestral recombinations. However, imperfections of the model and
other issues caution against strictly interpretating “chunks” in this manner. If
the unlinked switch ’-u’ is specified (indicating that each SNP is independent
from all other SNPs), a “chunk” corresponds to a single SNP.

5.3 .chunklengths.out

The output file with suffix .chunklengths.out contains a matrix with donor pop-
ulations as columns and recipient individuals as rows (this may be one “pop-
ulation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected total ge-
netic length of DNA that the given recipient individual copies from each donor
population across all SNPs under the model (after i E-M iterations as specified

11

by the ’-i’ switch). These entries are given in cM assuming recom rate infile
provides basepair values in Morgans; more generally the sum across columns in
each row of the .chunklengths.out matrix should be a factor of 100 larger than the
total sum of genetic distances across all basepairs provided in recom rate infile
(if recipient individuals are diploid, it will be a factor of 200 greater, as genetic
lengths are summed across the recipient individual’s two haplotypes). This file
is filled with zeros if the unlinked switch ’-u’ is specified.

5.4 .priorprobs.out

The output file with suffix .priorprobs.out contains a matrix with donor popu-
lations as columns and recipient individuals as rows (this may be one “popu-
lation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected proportion
of “chunks” (i.e. blocks of contiguous SNPs, or single SNPs if the ’-u’ switch
is specified) used as a prior for specifying the probability each recipient indi-
vidual copies from each donor population across all SNPs under the model (at
the ith E-M iteration as specified by the ’-i’ switch). If the ’-i’ switch is not
specified, this will simply return the user-specified prior probabilities in popula-
tion list infile (or default values corresponding to an equal proportion of copying
from each donor chromosome if the ’-p’ switch is not specified). Note that the
values in this file are the ones used as a priori copying proportions for the re-
sults generated in the output files with suffixes .samples.out, .chunkcounts.out,
chunklengths.out, .regionchunkcounts.out, .regionsquaredchunkcounts.out, muta-
tionprobs.out, and .copyprobsperlocus.out. Furthermore, in order to allow nu-
merical stability in c, no value can be below 1× 10−15 times the corresponding
number of haplotypes from that donor population. Values below this threshold
will be set automatically to the threshold value during each iteration of the E-M
algorithm.

5.5 .regionchunkcounts.out

The output file with suffix .regionchunkcounts.out contains values very similar
to those described for the output file with suffix .chunkcounts.out. The only dif-
ference is that, rather than tabulating the expected number of “chunks” copied
from each donor population across all SNPs in haplotype infile, it tabulates val-
ues only across the maximum number of “regions” across all SNPs such that
each region contains k chunks (with k specified by the ’-k’ switch; default is
k=100). The second column gives the number of regions of size k. For use in
fineSTRUCTURE as described in Lawson et al [1].

5.6 .regionsquaredchunkcounts.out

The output file with suffix .regionsquaredchunkcounts.out contains values cor-
responding to .regionchunkcounts.out, but where expected number of “chunks”
copied per donor population have been squared within each k-chunk “region”

12

(with k specified by the ’-k’ switch; default is k=100) and summed across re-
gions. The second column gives the number of regions of size k. For use in
fineSTRUCTURE as described in Lawson et al [1].

5.7 .EMprobs.out

The output file with suffix .EMprobs.out gives for each individual the expected
log-likelihood value from the model under values of “donor copying proportions”,
“mutation (emission) probability” and “switch rate” (or “recombination rate
scaling constant” Ne from [1]) at each E-M iteration. For each individual, there
is one line denoting the individual label, followed by i lines corresponding to the
number of E-M iterations specified by the ’-i’ switch. Each of these i lines gives
the E-M iteration number, the expected log-likelihood value of the individual’s
SNP data under the model (there is one value for each haplotype if individuals
are diploid), and the values of switch rate (Ne) and (global) mutation rate used
to calculate the expected log-likelihood at the given E-M step. (Note that Ne

here should not be interpreted as “effective population size”. Loosely
speaking, it might be related to “effective population size” divided
by the total number of donor haplotypes. But caution should be
exercised with any such interpretation!)

5.8 .mutationprobs.out

The output file with suffix .mutationprobs.out contains a matrix with donor pop-
ulations as columns and recipient individuals as rows (this may be one “pop-
ulation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected number of
SNPs that the given recipient individual copies from each donor population with
error (i.e. emission) across all SNPs under the model (after i E-M iterations as
specified by the ’-i’ switch).

5.9 .copyprobsperlocus.out

The output file with suffix .copyprobsperlocus.out contains for each recipient hap-
lotype the expected probability you copy from each donor population at each
SNP. The first column gives the basepair position and each subsequent column
gives the probability you copy from each donor population as specified in the
first row header. Recipient haplotypes are stacked on top of one another. For
example, if there are L SNPs, following the initial header line the next L+1 rows
will correspond to recipient haplotype 1 (as ordered by row in haplotype infile).
The first line in these L + 1 rows gives the haplotype and individual identi-
fier, and the remaining L rows give the probabilities per SNP. The next L + 1
rows correspond to recipient haplotype 2. Etc. Note that basepairs are
listed in reverse order relative to the basepairs in haplotype infile and
recom rate infile.

13

6 List of Options

The list of ChromoPainterv2 options that can be specified at the command line
are as follows:

-g <haplotype infile> (REQUIRED; no default)

-r <recom rate infile> (REQUIRED; no default – unless using ’-u’ switch)

-t <labels infile> (REQUIRED; no default – unless using ’-a’ switch)

-f <population list infile> < f1 > < f2 > (REQUIRED; no default – unless
using ’-a’ switch), plus specifying to paint recipient individuals f1 through
f2 using all donor haplotypes (use ’-f <population list infile> 0 0’ to paint
all recipient inds)

-i <int> number of E-M iterations for estimating parameters (default=0;
with the exception of file with suffix priorprobs.out, the main output files
all contain values generated after this number of E-M steps) – you can
specify any subset of ’-in’, ’-ip’, ’-im’, or ’-iM’ below to maximize over
(with the exception that ’-im’ and ’-iM’ cannot both be specified)

-in maximize over average switch rate parameter (i.e. Ne in [1]) using E-M

-ip maximize over copying proportions using E-M

-im maximize over mutation (emission) probabilities using E-M, such that
each donor population has its own mutation probability

-iM maximize over global mutation (emission) probability using E-M, such
that each donor haplotype has the same mutation probability

-s <int> number of samples per recipient haplotype (default=10)

-n <double> average switch rate parameter start-value (i.e. as step 0 of
the E-M; default=400000/J where J is the total number of donor haplo-
types included in analysis – note that J might differ among individuals if
allowing self-copying via use of ’-f’ switch)

-p specify to use prior copying probabilities supplied in population list infile
(i.e. as step 0 of the E-M; default is to assume each donor haploytype is
copied a priori with equal probability)

-m specify to use donor population mutation (emission) probabilities supplied
in population list infile (i.e. as step 0 of the E-M; default is to use the same
mutation probability for each donor population equal to fixed estimate in
[3])

14

-M <double> specify to use a global mutation (emission) probability that
is the same for all donors (i.e. as step 0 of the E-M; default equal to fixed
estimate in [3]) (Note: entering ’-M 0’ leads to the default value
being used; to make a very small mutation rate, enter a very
small number >0.)

-k <double> specify number of expected chunks to define a ’region’ (de-
fault=100 – only necessary for use in fineSTRUCTURE applications)

-j specify that individuals are haploid (default is to assume individals are
diploid, including donor haplotypes if ’-a’ switch is used)

-u specify that SNPs are unlinked

-a < a1 > < a2 > paint individuals a1 through a2 (as ordered by row in
haplotype infile) using every other individual (use ’-a 0 0’ to paint all inds)

-b print-out zipped file with suffix .copyprobsperlocus.out containing prob
each recipient copies each donor at every SNP (note: though zipped, file
can be quite large with many SNPs and many donor populations)

-o <outfile-prefix> (default = ’haplotype infile’)

–help print help menu (which lists these options)

7 Examples of Usage

Included are samples of a haplotype infile (“BrahuiYorubaSimulationChrom22.haplotypes”),
recom rate infile (“BrahuiYorubaSimulationChrom22.recomrates”), label infile
(“BrahuiYorubaSimulation.idfile.txt”), and population list infile (“BrahuiYorubaSim-
ulation.poplist.txt”). This example is for a simulated population (with label
BrahuiYorubaSimulation) that consists of 20 individuals simulated as descen-
dants of an admixture event occuring 30 generations ago, with 80% of the
DNA contributed by the Brahui and 20% contributed by the Yoruba (this is
the simulation described in Figure 1 of [2]). To run the copying model using
default parameters, painting the 40 recipient haplotypes with label BrahuiY-
orubaSimulation using 2892 donor haplotypes from 93 populations (as defined in
population list infile) and output summaries grouped by population label, type:

./ChromoPainterv2 -g example/BrahuiYorubaSimulationChrom22.haplotypes
-r example/BrahuiYorubaSimulationChrom22.recomrates
-t example/BrahuiYorubaSimulation.idfile.txt
-f example/BrahuiYorubaSimulation.poplist.txt 0 0
-o example/BrahuiYorubaSimulationChrom22

The output files “example/BrahuiYorubaSimulationChrom22.samples.out”, “ex-
ample/BrahuiYorubaSimulationChrom22.chunkcounts.out”,
“example/BrahuiYorubaSimulationChrom22.chunklengths.out”,

15

“example/BrahuiYorubaSimulationChrom22.priorprobs.out”,
“example/BrahuiYorubaSimulationChrom22.regionchunkcounts.out”,
“example/BrahuiYorubaSimulationChrom22.regionsquaredchunkcounts.out”,
“example/BrahuiYorubaSimulationChrom22.mutationprobs.out”,
“example/BrahuiYorubaSimulationChrom22.copyprobsperlocus.out.gz” (an empty
file), and “example/BrahuiYorubaSimulationChrom22.EMprobs.out” will be gen-
erated. If you re-run the same command line, the file
“example/BrahuiYorubaSimulationChrom22.samples.out” will change because
the sampling of painted chromosomes is stochastic, but the values in all other
output files should remain the same.

Alternatively, to estimate the switch parameter and global mutation (emis-
sion) rate over 10 E-M iterations when painting only 18 recipient haplotypes
from recipient individuals 2 through 10, and output 3 painting samples instead
of the default 10, type:

./ChromoPainterv2 -g example/BrahuiYorubaSimulationChrom22.haplotypes
-r example/BrahuiYorubaSimulationChrom22.recomrates
-t example/BrahuiYorubaSimulation.idfile.txt
-f example/BrahuiYorubaSimulation.poplist.txt 2 10
-o example/BrahuiYorubaSimulationChrom22 -i 10 -in -iM -s 3

The same output files as before will be generated, but now – in addition to the
output in “example/BrahuiYorubaSimulationChrom22.samples.out” – the out-
put files “example/BrahuiYorubaSimulationChrom22.chunkcounts.out”, “exam-
ple/BrahuiYorubaSimulationChrom22.chunklengths.out”,
“example/BrahuiYorubaSimulationChrom22.priorprobs.out”,
“example/BrahuiYorubaSimulationChrom22.mutationprobs.out”,
“example/BrahuiYorubaSimulationChrom22.regionchunkcounts.out”, and “ex-
ample/BrahuiYorubaSimulationChrom22.regionsquaredchunkcounts.out” will con-
tain different values than before, as they are all now based on using 10 steps of
the E-M algorithm to re-estimate copying proportions under the model. In addi-
tion, the output file “example/BrahuiYorubaSimulationChrom22.EMprobs.out”
will be different because it contains the expected log-likelihood values for the
SNP data of each individual’s haplotype under the model at each step of the
E-M.

8 Suggestions/Warnings for Running ChromoPainterv2

When running ChromoPainterv2 to paint a given set of recipient haplotypes
conditional on a set of donor haplotypes, we suggest the following protocol:

1. Do NOT use the ’-u’ switch if you can avoid it, as you lose vital linkage
disequilibrium information!!!

16

2. As we note in Sections 8.1-8.2, we recommend initially running the model
using some number of E-M iterations (e.g. ’-i 10’) to estimate parame-
ters such as the recombination scaling constant (using ’-in’) and mutation
(emission) probabilities (using ’-iM’ or ’-im’). Check the .EMprobs.out
output files to see if all parameter values have converged across E-M iter-
ations in order to determine how many iterations to use. If the values
have not moved at all from the starting values, the algorithm is
likely to be stuck in a local maxima, and you should try different
starting values (in practice this happens if the starting values are
too high or too low, perhaps by orders of magnitude). If dividing
the data into chromosomes to run in parallel, you may want to average
parameter estimates across the genome or some subset of chromosomes (if
it is sensible to assume these parameters are constant, which it often is)
and then re-run each region using these fixed parameter values (i.e. using
the ’-n’, ’-m’, ’-p’ and/or ’-M’ switches and ’-i 0’) to get final estimates.

3. If you want to estimate local ancestry along recipients’ genomes, you likely
want to use E-M iterations and ’-ip -b’ (which will infer proportions of
ancestry using E-M and produce the output file .copyprobsperlocus.out.gz
giving SNP-by-SNP results, respectively), again checking the .EMprobs.out
file to assess convergence. However, we note that we have NOT exten-
sively tested ChromoPainterv2’s accuracy in inferring local ancestry. Chro-
moPainterv2 was originally intended to summarize genome-wide data in
populations by tabulating how closely related they are to other popula-
tions (e.g. produce the vectors provided in the .chunkcounts.out and .chun-
klengths.out files). It is these summaries that are exploited in companion
programs fineSTRUCTURE and GLOBETROTTER rather than the local
ancestry inference on its own. (E.g. the painting samples from the .sam-
ples.out file are first “cleaned” using the .chunklengths.out results before
using local inference to infer dates of admixture using GLOBETROTTER,
as described in [2]. Note in Section 8.2 that this is done withOUT using
the ’-ip’ switch, but instead assuming that a recipient copies each donor
haplotype with equal probability a priori.)

4. Depending on the study aim, it may be worthwhile to explore a variety of
applications, such as allowing self-copying (i.e. specifying a population as
a donor and recipient in population list infile) versus not.

8.1 running ChromoPainterv2 with fineSTRUCTURE

When intending to use ChromoPainterv2 followed by fineSTRUCTURE [1] to
cluster individuals into genetically homogeneous groups, we recommend the
following procedure:

1. run ChromoPainterv2 twice, both times using the ’-a’ switch:

(a) For some number of individuals and genetic regions (e.g. we use four
chromosomes in practice, and maybe 1/10th of the total sample size),

17

use 10 E-M iterations to infer the switch rate and global mutation
rate using ’-i 10 -in -iM’ (but otherwise default options). Take the
final estimated values of each from the .EMprobs.out output files and
average to get a single final estimate for the switch and global muta-
tion rates. (In practice, we first weight-average values of each across
chromosomes, weighting by the number of SNPs, and then average
across individuals.)

(b) Run ChromoPainterv2 on all individuals and chromosomes using the
fixed estimated values from (a) for the switch rate (using ’-n’) and
global mutation rate (using ’-M’), without performing any additional
E-M iterations (i.e. ’-i 0’, which is the default).

2. For each individual, sum the .chunkcounts.out, .regionchunkcounts.out, and
.regionsquaredchunkcounts.out output files from 1(b) across chromosomes.
If necessary, then combine files across individuals, so that there is a single
.chunkcounts.out, .regionchunkcounts.out, and .regionsquaredchunkcounts.out
containing results for all individuals. (There are programs available at
www.paintmychromosomes.com to assist with this summation and com-
bining across files.)

3. Run fineSTRUCTURE using the combined .chunkcounts.out, .regionchunkcounts.out,
and .regionsquaredchunkcounts.out files from 2, as described in the fineSTRUC-
TURE instructions and at www.paintmychromosomes.com.

8.2 running ChromoPainterv2 with GLOBETROTTER

When intending to use ChromoPainterv2 followed by GLOBETROTTER [2] in
order to identify, date and describe admixture events in the ancestral history of
a given population, we recommend the following procedure:

1. Select a “target” population you wish to detect and describe admixture in,
as well as a set of “surrogate” populations you wish to use to describe the
DNA of the ancestral source groups involved in the putative admixture
event(s).

2. Run ChromoPainterv2 twice to paint “target” and “surrogate” individuals
using the same set of “donor” haplotypes (in practice these donors might
be all individuals from e.g. the surrogate and/or target populations), both
times using the ’-f’ and ’-t’ switches:

(a) For some number of “surrogate” and “target” individuals and genetic
regions (e.g. we use four chromosomes in practice, and maybe 1/10th
of the total sample size), use 10 E-M iterations to infer the switch
rate and global mutation rate using ’-i 10 -in -iM’ (but otherwise
default options). Take the final estimated values of each from the
.EMprobs.out output files and average to get a single final estimate

18

for the switch and global mutation rates. (In practice, we first weight-
average values of each across chromosomes, weighting by the number
of SNPs, and then average across individuals.)

(b) Run ChromoPainterv2 on all “surrogate” and “target” individuals and
chromosomes using the fixed estimated values from (a) for the switch
rate (using ’-n’) and global mutation rate (using ’-M’), without per-
forming any additional E-M iterations (i.e. ’-i 0’, which is the default).
For the “target” individuals, for each chromosome extract 10 painting
samples for each haplotype (i.e. using ’-s 10’, which is the default),
generating one .samples.out file per chromosome that contains the 10
painting samples for each of the target individuals’ haplotypes.

3. For each “surrogate” and “target” individual, sum the .chunklengths.out
output files from 2(b) across chromosomes. If necessary, then combine files
across individuals, so that there is a single .chunklengths.out file containing
results for all “surrogate” and “target” individuals, in arbitrary order
so not e.g. based on the ordering in label infile. (There are programs
available at www.paintmychromosomes.com to assist with this summation
and combining across files.)

4. Run GLOBETROTTER using the .samples.out files from 2(b) for all target
individuals and the combined .chunklengths.out file from 3, as described
in the GLOBETROTTER instructions.

9 Computational Complexity

The computational complexity of ChromoPainterv2 is o((i + 1)LDR) for i E-M
iterations, L SNPs, D donor haplotypes, and R recipient haplotypes. When
using the ’-a a1 a2’ switch, the complexity is ≈ o(2iLH(a2 − a1 + 1)) where H
is the total number of haplotypes in the file (if using ’-a 0 0’, the complexity
is ≈ o(iLH2)). As an example, when using i=10, D=264, R=48, and L=9118,
it took ChromoPainterv2 ≈2-3 hours to run on a 2.8GHz Intel Core 2 Duo with
8Gb RAM.

10 Citation

When making use of ChromoPainterv2 (and/or companion program fineSTRUC-
TURE), please cite the following paper:

Lawson, D., Hellenthal, G., Myers, S., and Falush, D (2012) “Inference of pop-
ulation structure using dense haplotype data” PLoS Genet 8(1):e1002453

19

If using companion program GLOBETROTTER, please also cite:

Hellenthal, G., Busby, G.B.J., Band, G., Wilson, J.F., Capelli, C., Falush, D.
and Myers, S. (2014) “A Genetic Atlas of Human Admixture History” Science
343:747-751

Questions? Bugs? Contact Garrett Hellenthal at ghellenthal@gmail.com. Though
I have tried implementing rigorous checks for input-file format errors, if a “Seg-
mentation Fault” occurs when running ChromoPainterv2, a likely explanation is
that one of the input files is somehow incorrect. Another possible explanation
is that the command line input is incorrect. If you encounter such a problem
(or any other bug!), please email me so I can ammend the program.

References

[1] D.J. Lawson, G. Hellenthal, S. Myers, and D. Falush. Inference of population
structure using dense haplotype data. PLoS Genet, 8(1):e1002453, 2012.

[2] G. Hellenthal, G.B.J. Busby, G. Band, J.F. Wilson, C. Capelli, D. Falush,
and S. Myers. A genetic atlas of human admixture history. Science, 343:747–
751, 2014.

[3] N. Li and M. Stephens. Modeling linkage disequilibrium and identifying re-
combination hotspots using single-nucleotide polymorphism data. Genetics,
165(4):2213–33, 2003.

[4] M. Stephens, N.J. Smith, and P. Donnelly. A new statistical method for hap-
lotype reconstruction from population data. Am J Hum Genet, 68(4):978–89,
2001.

[5] M. Stephens and P. Donnelly. A comparison of bayesian methods for hap-
lotype reconstruction from population genotype data. Am J Hum Genet,
73(5):1162–9, 2003.

20

