System Article
Abi2 Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiEii Dy, R.L., Przybilski, R., Semeijn, K., Salmond, G.P.C., Fineran, P.C., 2014. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res 42, 4590–4605. https://doi.org/10.1093/nar/gkt1419
AbiH Prévots, F., Daloyau, M., Bonin, O., Dumont, X., Tolou, S., 1996. Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. FEMS Microbiol Lett 142, 295–299. https://doi.org/10.1111/j.1574-6968.1996.tb08446.x
AVAST Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
BREX Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam, Y., Afik, S., Ofir, G., Sorek, R., 2015. BREX is a novel phage resistance system widespread in microbial genomes. The EMBO Journal 34, 169–183. https://doi.org/10.15252/embj.201489455
BstA Owen, S.V., Wenner, N., Dulberger, C.L., Rodwell, E.V., Bowers-Barnard, A., Quinones-Olvera, N., Rigden, D.J., Rubin, E.J., Garner, E.C., Baym, M., Hinton, J.C.D., 2020. Prophage-encoded phage defence proteins with cognate self-immunity. bioRxiv 2020.07.13.199331. https://doi.org/10.1101/2020.07.13.199331
Cas Bernheim, A., Bikard, D., Touchon, M., Rocha, E.P.C., 2020. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res 48, 748–760. https://doi.org/10.1093/nar/gkz1091
CBASS Millman, A., Melamed, S., Amitai, G., Sorek, R., 2020. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nature Microbiology 5, 1608–1615. https://doi.org/10.1038/s41564-020-0777-y
DarTG LeRoux, M., Srikant, S., Littlehale, M.H., Teodoro, G., Doron, S., Badiee, M., Leung, A.K.L., Sorek, R., Laub, M.T., 2021. The DarTG toxin-antitoxin system provides phage defense by ADP-ribosylating viral DNA. bioRxiv 2021.09.27.462013. https://doi.org/10.1101/2021.09.27.462013
dCTPdeaminase Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Amitai, G., Sorek, R., 2021. Antiviral defense via nucleotide depletion in bacteria. bioRxiv 2021.04.26.441389. https://doi.org/10.1101/2021.04.26.441389
dGTPase Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Amitai, G., Sorek, R., 2021. Antiviral defense via nucleotide depletion in bacteria. bioRxiv 2021.04.26.441389. https://doi.org/10.1101/2021.04.26.441389
DISARM Ofir, G., Melamed, S., Sberro, H., Mukamel, Z., Silverman, S., Yaakov, G., Doron, S., Sorek, R., 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 3, 90–98. https://doi.org/10.1038/s41564-017-0051-0
Dnd Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J.S., Zhou, X., You, D., Deng, Z., Dedon, P.C., 2007. Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3, 709–710. https://doi.org/10.1038/nchembio.2007.39
DRT Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Druantia Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Dsr Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gabija Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Gao_ApeA Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Her Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Hhe Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Iet Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Mza Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Ppl Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Qat Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_RL Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_TerYP Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Tmn Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Upx Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
GasderMIN Johnson, A.G., Wein, T., Mayer, M.L., Duncan-Lowey, B., Yirmiya, E., Oppenheimer-Shaanan, Y., Amitai, G., Sorek, R., Kranzusch, P.J., 2021. Bacterial gasdermins reveal an ancient mechanism of cell death. bioRxiv 2021.06.07.447441. https://doi.org/10.1101/2021.06.07.447441
Hachiman Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Kiwa Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Lamassu Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Lit Uzan, M., Miller, E.S., 2010. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virology Journal 7, 360. https://doi.org/10.1186/1743-422X-7-360
Nhi Bari, S.M.N., Chou-Zheng, L., Cater, K., Dandu, V.S., Thomas, A., Aslan, B., Hatoum-Aslan, A., 2019. A unique mode of nucleic acid immunity performed by a single multifunctional enzyme. bioRxiv 776245. https://doi.org/10.1101/776245
NixI LeGault, K.N., Barth, Z.K., DePaola, P., Seed, K.D., 2021. A phage parasite deploys a nicking nuclease effector to inhibit replication of its viral host. bioRxiv 2021.07.12.452122. https://doi.org/10.1101/2021.07.12.452122
PARIS Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Pif Cram, D., Ray, A., Skurray, R., 1984. Molecular analysis of F plasmid pif region specifying abortive infection of T7 phage. Mol Gen Genet 197, 137–142. https://doi.org/10.1007/BF00327934
PrrC Uzan, M., Miller, E.S., 2010. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virology Journal 7, 360. https://doi.org/10.1186/1743-422X-7-360
RADAR Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Retron Mestre, M.R., González-Delgado, A., Gutiérrez-Rus, L.I., Martínez-Abarca, F., Toro, N., 2020. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res 48, 12632–12647. https://doi.org/10.1093/nar/gkaa1149 Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A., Oppenheimer-Shaanan, Y., Sorek, R., 2020. Bacterial Retrons Function In Anti-Phage Defense. Cell 183, 1551-1561.e12. https://doi.org/10.1016/j.cell.2020.09.065
Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A., Oppenheimer-Shaanan, Y., Sorek, R., 2020. Bacterial Retrons Function In Anti-Phage Defense. Cell 183, 1551-1561.e12. https://doi.org/10.1016/j.cell.2020.09.065
RexAB Parma, D.H., Snyder, M., Sobolevski, S., Nawroz, M., Brody, E., Gold, L., 1992. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev 6, 497–510. https://doi.org/10.1101/gad.6.3.497
RM Oliveira, P.H., Touchon, M., Rocha, E.P.C., 2014. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Research 42, 10618. https://doi.org/10.1093/nar/gku734
Rst_2TM_1TM_TIR Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_3HP Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_DprA-PPRT Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_DUF4238 Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_gop_beta_cll Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_HelicaseDUF2290 Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_Hydrolase-Tm Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_Old_Tin Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_Retron-Tm Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_TIR Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Septu Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Shedu Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
SspBCDE Wang, S., Wan, M., Huang, R., Zhang, Y., Xie, Y., Wei, Y., Ahmad, M., Wu, D., Hong, Y., Deng, Z., Chen, S., Li, Z., Wang, L., n.d. SspABCD-SspFGH Constitutes a New Type of DNA Phosphorothioate-Based Bacterial Defense System. mBio 12, e00613-21. https://doi.org/10.1128/mBio.00613-21
Stk2 Depardieu, F., Didier, J.-P., Bernheim, A., Sherlock, A., Molina, H., Duclos, B., Bikard, D., 2016. A Eukaryotic-like Serine/Threonine Kinase Protects Staphylococci against Phages. Cell Host & Microbe 20, 471–481. https://doi.org/10.1016/j.chom.2016.08.010
Thoeris Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Viperin Bernheim, A., Millman, A., Ofir, G., Meitav, G., Avraham, C., Shomar, H., Rosenberg, M.M., Tal, N., Melamed, S., Amitai, G., Sorek, R., 2021. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124. https://doi.org/10.1038/s41586-020-2762-2
Wadjet Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Zorya Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120