

Entrez Direct Reference

Searching, Retrieving, and Parsing Data from NCBI

Databases through the Unix Command Line

Introduction
Entrez Direct (EDirect) provides access to the NCBI's suite of interconnected databases from a Unix
terminal window. Search terms are entered as command-line arguments. Individual operations are
connected with Unix pipes to construct multi-step queries. Selected records can then be retrieved in a
variety of formats.

Programmatic Access

EDirect connects to Entrez through the Entrez Programming Utilities interface. It supports searching
by indexed terms, looking up precomputed neighbors or links, filtering results by date or category, and
downloading record summaries or reports.

Navigation programs (esearch, elink, efilter, and efetch) communicate by means of a small
structured message, which can be passed invisibly between operations with a Unix pipe. The message
includes the current database, so it does not need to be given as an argument after the first step.

Accessory programs (nquire, transmute, and xtract) can help eliminate the need for writing custom
software to answer ad hoc questions. Queries can move seamlessly between EDirect programs and Unix
utilities or scripts to perform actions that cannot be accomplished entirely within Entrez.

All EDirect programs are designed to work on large sets of data. Intermediate results are stored on the
Entrez history server. For best performance, obtain an API Key from NCBI, and place the following
line in your .bash_profile and .zshrc configuration files:

 export NCBI_API_KEY=unique_api_key

Each program also has a -help command that prints detailed information about available arguments.

Navigation Functions

Esearch performs a new Entrez search using terms in indexed fields. It requires a -db argument for the
database name and uses -query for the search terms. For PubMed, without field qualifiers, the server
uses automatic term mapping to compose a search strategy by translating the supplied query:

 esearch -db pubmed -query "selective serotonin reuptake inhibitor"

Search terms can also be qualified with a bracketed field name to match within the specified index:

 esearch -db nuccore -query "insulin [PROT] AND rodents [ORGN]"

Elink looks up precomputed neighbors within a database, or finds associated records in other databases,
or uses the NIH Open Citation Collection dataset (see PMID 31600197) to follow reference lists:

 elink -related

 elink -target gene

 elink -cited

 elink -cites

2

Efilter limits the results of a previous query, with shortcuts that can also be used in esearch:

 efilter -molecule genomic -location chloroplast -country sweden -mindate 1985

Efetch downloads selected records or reports in a style designated by -format:

 efetch -format abstract

Individual query commands are connected by a Unix vertical bar pipe symbol:

 esearch -db pubmed -query "tn3 transposition immunity" | efetch -format medline

There is no need to use a script to loop over records in small groups, or write code to retry after a
transient network or server failure, or add a time delay between requests. All of those features are
already built into the EDirect commands.

Accessory Programs

Nquire retrieves data from remote servers with URLs constructed from command line arguments:

 nquire -url http://www.wikidata.org/entity Q22679758

Transmute converts a concatenated stream of JSON objects or other structured formats into XML:

 transmute -j2x

Xtract can use waypoints to navigate a complex XML hierarchy and obtain data values by field name:

 xtract -pattern entities -group P527/mainsnak -block datavalue -element id

The resulting output can be post-processed by Unix utilities or scripts:

 fmt -w 1 | sort -V | uniq

Discovery by Navigation
PubMed related articles are calculated by a statistical text retrieval algorithm using the title, abstract,
and medical subject headings (MeSH terms). The connections between papers can be used for making
discoveries. An example of this is finding the last enzymatic step in the vitamin A biosynthetic pathway.

Lycopene cyclase in plants converts lycopene into β-carotene, the immediate biochemical precursor of
vitamin A. An initial search on the enzyme finds 280 articles. Looking up precomputed neighbors
returns 17,288 papers, some of which might be expected to discuss other enzymes in the pathway:

 esearch -db pubmed -query "lycopene cyclase" | elink -related |

β-carotene is known to be an essential nutrient, required in the diet of herbivores. This indicates that
lycopene cyclase is not present in animals (with a few exceptions caused by horizontal gene transfer),
and that the enzyme responsible for converting β-carotene into vitamin A is not present in plants.

Applying this knowledge, by linking the publication neighbors to their associated protein records and
then filtering those candidates using the NCBI taxonomy, can help locate the desired enzyme.

3

Linking from pubmed to the protein database finds 657,677 protein sequences:

 elink -target protein |

Limiting to mice excludes plants, fungi, and bacteria, which eliminates the earlier enzymes:

 efilter -organism mouse -source refseq |

This matches only 43 sequences, which is small enough to examine by retrieving the individual records:

 efetch -format fasta

As anticipated, the results include the enzyme that splits β-carotene into two molecules of retinal:

 ...
 >NP_067461.2 beta,beta-carotene 15,15'-dioxygenase isoform 1 [Mus musculus]
 MEIIFGQNKKEQLEPVQAKVTGSIPAWLQGTLLRNGPGMHTVGESKYNHWFDGLALLHSFSIRDGEVFYR
 SKYLQSDTYIANIEANRIVVSEFGTMAYPDPCKNIFSKAFSYLSHTIPDFTDNCLINIMKCGEDFYATTE
 ...

XML Data Extraction
The ability to obtain Entrez records in structured format, and to easily extract the underlying data,
allows the user to ask novel questions that are not addressed by existing analysis software.

The xtract program uses command-line arguments to direct the conversion of data in eXtensible
Markup Language format. It allows path exploration, element selection, conditional processing, and
report formatting to be controlled independently.

The -pattern command partitions an XML stream by object name into individual records that are
processed separately. Within each record, the -element command does an exhaustive, depth-first
search to find data content by field name. Explicit paths to objects are not needed.

Format Customization

By default, the -pattern argument divides the results into rows, while placement of data into columns is
controlled by -element, to create a tab-delimited table.

Formatting commands allow extensive customization of the output. The line break between -pattern
rows is changed with -ret, while the tab character between -element columns is modified by -tab.

Multiple instances of the same element are distinguished using -sep, which controls their separation
independently of the -tab command. The following query:

 efetch -db pubmed -id 6271474,6092233,16589597 -format docsum |
 xtract -pattern DocumentSummary -sep "|" -element Id PubDate Name

returns a tab-delimited table with individual author names separated by vertical bars:

 6271474 1981 Casadaban MJ|Chou J|Lemaux P|Tu CP|Cohen SN
 6092233 1984 Jul-Aug Calderon IL|Contopoulou CR|Mortimer RK
 16589597 1954 Dec Garber ED

4

The -sep value also applies to distinct -element arguments that are grouped with commas. This can be
used to keep data from multiple related fields in the same column:

 -sep " " -element Initials,LastName

The -def command sets a default placeholder to be printed when none of the comma-separated fields
in an -element clause are present:

 -def "-" -sep " " -element Year,Month,MedlineDate

Repackaging commands (-wrp, -enc, and -pkg) wrap extracted data values with bracketed XML tags
given only the object name. For example, "-wrp Word" issues the following formatting instructions:

 -pfx "<Word>" -sep "</Word><Word>" -sfx "</Word>"

Element Variants

Derivatives of -element were created to eliminate the inconvenience of having to write post-processing
scripts to perform otherwise trivial modifications or analyses on extracted data. Examples include
positional (-first, -last), numeric (-inc, -sum, -max, -avg), text (-upper, -title, -words), and
sequence (-revcomp, -fasta, -0-based) commands. Substitute for -element as needed.

The original -element prefix shortcuts, "#" and "%", are redirected to -num and -len, respectively.

Exploration Control

Exploration commands provide fine control over the order in which XML record contents are
examined, by separately presenting each instance of the chosen subregion. This limits what subsequent
commands "see" at any one time, and allows related fields in an object to be kept together.

In contrast to the simpler DocumentSummary format, records retrieved as PubmedArticle XML:

 efetch -db pubmed -id 1413997 -format xml |

have authors with separate fields for last name and initials:

 <Author>
 <LastName>Mortimer</LastName>
 <Initials>RK</Initials>
 </Author>

Without being given any guidance about context, an -element command on initials and last names:

 xtract -pattern PubmedArticle -element Initials LastName

will explore the current record for each argument in turn, printing all initials followed by all last names:

 RK CR JS Mortimer Contopoulou King

Inserting a -block command adds another exploration layer between -pattern and -element, and
redirects data exploration to present the authors one at a time:

 xtract -pattern PubmedArticle -block Author -element Initials LastName

5

Each time through the loop, the -element command only sees the current author's values. This restores
the correct association of initials and last names in the output:

 RK Mortimer CR Contopoulou JS King

Grouping the two author subfields with a comma, and adjusting the -sep -and -tab values:

 xtract -pattern PubmedArticle -block Author \
 -sep " " -tab ", " -element Initials,LastName

produces a more traditional formatting of author names:

 RK Mortimer, CR Contopoulou, JS King

Nested Exploration

Exploration command names (-group, -block, and -subset) are assigned to a precedence hierarchy:

 -pattern > -group > -block > -subset > -element

and are combined in ranked order to control object iteration at progressively deeper levels in the XML
data structure. Each command argument acts as a "nested for-loop" control variable, retaining
information about the context, or state of exploration, at its level.

A nucleotide or protein sequence record can have multiple features. Each feature can have multiple
qualifiers. And every qualifier has separate name and value nodes. Exploring this natural data
hierarchy, with -pattern for the sequence, -group for the feature, and -block for the qualifier:

 efetch -db nuccore -id NG_008030.1 -format gbc |
 xtract -pattern INSDSeq -element INSDSeq_accession-version \
 -group INSDFeature -deq "\n\t" -element INSDFeature_key \
 -block INSDQualifier -deq "\n\t\t" \
 -element INSDQualifier_name INSDQualifier_value

keeps qualifiers, such as gene and product, associated with their parent features, and keeps qualifier
names and values together on the same line:

 NG_008030.1
 source
 organism Homo sapiens
 mol_type genomic DNA
 db_xref taxon:9606
 gene
 gene COL5A1
 mRNA
 gene COL5A1
 product collagen type V alpha 1 chain, transcript variant 1
 transcript_id NM_000093.4
 CDS
 gene COL5A1
 product collagen alpha-1(V) chain isoform 1 preproprotein
 protein_id NP_000084.3
 translation MDVHTRWKARSALRPGAPLLPPLLLLLLWAPPPSRAAQP...
 ...

6

Saving Data in Variables

A value can be recorded in a variable and used wherever needed. Variables are created by a hyphen
followed by a name consisting of a string of capital letters or digits (e.g., -KEY). Variable values are
retrieved by placing an ampersand before the variable name (e.g., "&KEY") in an -element statement:

 efetch -db nuccore -id NG_008030.1 -format gbc |
 xtract -pattern INSDSeq -element INSDSeq_accession-version \
 -group INSDFeature -KEY INSDFeature_key \
 -block INSDQualifier -deq "\n\t" \
 -element "&KEY" INSDQualifier_name INSDQualifier_value

This prints the feature key on each line before the qualifier name and value, even though the feature
key is now outside of the visibility scope (which is the current qualifier):

 NG_008030.1
 source organism Homo sapiens
 source mol_type genomic DNA
 source db_xref taxon:9606
 gene gene COL5A1
 mRNA gene COL5A1
 mRNA product collagen type V alpha 1 chain, transcript variant 1
 mRNA transcript_id NM_000093.4
 ...

Variables can be (re)initialized with an explicit literal value inside parentheses:

 -block Author -sep " " -tab "" -element "&COM" Initials,LastName -COM "(,)"

Conditional Execution

Conditional processing commands (-if, -unless, -and, -or, and -else) restrict object exploration by
data content. They check to see if the named field is within the scope, and may be used in conjunction
with string, numeric, or object constraints to require an additional match by value. For example:

 esearch -db pubmed -query "Havran W [AUTH]" |
 efetch -format xml |
 xtract -pattern PubmedArticle -if "#Author" -lt 14 \
 -block Author -if LastName -is-not Havran \
 -sep ", " -tab "\n" -element LastName,Initials[1:1] |
 sort-uniq-count-rank

selects papers with fewer than 14 authors and prints a table of the most frequent collaborators, using a
range to keep only the first initial so that variants like "Beadle, GW" and "Beadle, G" are combined:

 34 Witherden, D
 15 Boismenu, R
 12 Jameson, J
 10 Allison, J
 10 Fitch, F
 ...

Numeric constraints can also compare the integer values of two fields. This can be used to find genes
that are encoded on the minus strand of a nucleotide sequence:

 -if ChrStart -gt ChrStop

7

Biological Data in Entrez
EDirect provides additional functions, scripts, and exploration constructs to simplify the extraction of
complex data obtained from the interconnected Entrez biological databases.

Sequence Qualifiers

The NCBI data model for sequence records is based on the central dogma of molecular biology.
Features contain information about the biology of a given region, including the transformations
involved in gene expression. Each feature can have multiple qualifiers, which store specific details about
that feature (e.g., name of the gene, genetic code used for protein translation, accession of the product
sequence, cross-references to external databases).

As a convenience for exploring sequence records, the -insd helper function generates the appropriate
nested extraction commands from feature and qualifier names on the command line. (Two computed
qualifiers, sub_sequence and feat_location, are also supported.) A search on cone snail venom:

 esearch -db protein -query "conotoxin" -feature mat_peptide |
 efetch -format gpc |
 xtract -insd complete mat_peptide "%peptide" product mol_wt peptide |
 grep -i conotoxin | sort-table -u -k 2,2n

prints the accession number, mature peptide length, product name, calculated molecular weight, and
amino acid sequence for a sample of neurotoxic peptides:

 ADB43131.1 15 conotoxin Cal 1b 1708 LCCKRHHGCHPCGRT
 ADB43128.1 16 conotoxin Cal 5.1 1829 DPAPCCQHPIETCCRR
 AIC77105.1 17 conotoxin Lt1.4 1705 GCCSHPACDVNNPDICG
 ADB43129.1 18 conotoxin Cal 5.2 2008 MIQRSQCCAVKKNCCHVG
 ADD97803.1 20 conotoxin Cal 1.2 2206 AGCCPTIMYKTGACRTNRCR
 AIC77085.1 21 conotoxin Bt14.8 2574 NECDNCMRSFCSMIYEKCRLK
 ADB43125.1 22 conotoxin Cal 14.2 2157 GCPADCPNTCDSSNKCSPGFPG
 ...

Genes in a Region

Records for protein-coding genes on the human X chromosome are retrieved by running:

 esearch -db gene -query "Homo sapiens [ORGN] AND X [CHR]" |
 efilter -status alive -type coding | efetch -format docsum |

Gene names and chromosomal positions are extracted by piping the records to:

 xtract -pattern DocumentSummary -NAME Name -DESC Description \
 -block GenomicInfoType -if ChrLoc -equals X \
 -min ChrStart,ChrStop -element "&NAME" "&DESC" |

with the -if statement eliminating coordinates from pseudoautosomal gene copies present on the Y
chromosome telomeres. Results can now be sorted by position, and then filtered and partitioned:

 sort -k 1,1n | cut -f 2- |
 grep -v pseudogene | grep -v uncharacterized | grep -v hypothetical |
 between-two-genes AMER1 FAAH2

8

to produce an ordered table of known genes located between two markers flanking the centromere:

 FAAH2 fatty acid amide hydrolase 2
 SPIN2A spindlin family member 2A
 ZXDB zinc finger X-linked duplicated B
 NLRP2B NLR family pyrin domain containing 2B
 ZXDA zinc finger X-linked duplicated A
 SPIN4 spindlin family member 4
 ARHGEF9 Cdc42 guanine nucleotide exchange factor 9
 AMER1 APC membrane recruitment protein 1

Taxonomic Lineage

When xtract explores a recursively-defined data structure, -element is blocked from descending into the
internal objects. Recursive data can be fully explored with a double star / child construct:

 efetch -db taxonomy -id 9606 -format xml |
 xtract -pattern Taxon -first TaxId -tab "\n" -element ScientificName \
 -block "**/Taxon" -if Rank -is-not "no rank" -and Rank -is-not clade \
 -tab "\n" -element Rank,ScientificName

which removes the search constraint and visits every child object, regardless of nesting depth, to print
all of the individual internal lineage nodes:

 9606 Homo sapiens
 superkingdom Eukaryota
 kingdom Metazoa
 phylum Chordata
 subphylum Craniata
 ...

SNP-Modified Product Pairs

Single nucleotide polymorphisms in human can represent different substitutions at the same position,
but variation records do not explicitly match a modified CDS to its modified protein product:

 efetch -db snp -id 11549407 -format docsum |
 snp2hgvs | hgvs2spdi | spdi2tbl | tbl2prod

The first scripts convert HGVS data ("NM_000518.5:c.118C>T;...;NP_000509.1:p.Gln40Lys") into the
0-based, sequence-relative convention of SPDI format. The tbl2prod script then translates coding
sequences (after nucleotide modification), and sorts them with protein sequences (after residue
replacement), to produce adjacent matching CDS/protein pairs:

 rs11549407 NM_000518.5:167:C:T MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWT*R...
 rs11549407 NP_000509.1:39:Q:* MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWT*R...
 rs11549407 NM_000518.5:167:C:G MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTER...
 rs11549407 NP_000509.1:39:Q:E MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTER...
 rs11549407 NM_000518.5:167:C:A MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTKR...
 rs11549407 NP_000509.1:39:Q:K MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTKR...
 rs11549407 NM_000518.5:167:C:+ MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR...
 rs11549407 NP_000509.1:39:Q:+ MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR...

The "+" sign indicates the unmodified "wild-type" nucleotide or amino acid.

9

External Data Integration
The nquire program uses command-line arguments to obtain data from external RESTful, CGI, or
FTP servers. Results in various formats can be converted to XML by the transmute program.

JSON Arrays

Human β-globin information from a Scripps Research data integration project (see PMID 23175613):

 nquire -get http://mygene.info/v3 gene 3043 |

contains a multi-dimensional JavaScript Object Notation array of exon coordinates:

 "position": [
 [5225463, 5225726],
 [5226576, 5226799],
 [5226929, 5227071]
],
 "strand": -1,

This can be converted to XML with transmute -j2x (or the json2xml shortcut script):

 transmute -j2x |

with the default "-nest element" argument assigning distinct tag names to each level:

 <position>
 <position_E>5225463</position_E>
 <position_E>5225726</position_E>
 </position>
 ...

JSON Mixtures

A query for the human green-sensitive opsin gene:

 nquire -get http://mygene.info/v3/gene/2652 |
 transmute -j2x |

returns data containing a heterogeneous mixture of objects in the pathway section:

 <pathway>
 <reactome>
 <id>R-HSA-162582</id>
 <name>Signal Transduction</name>
 </reactome>
 ...
 <wikipathways>
 <id>WP455</id>
 <name>GPCRs, Class A Rhodopsin-like</name>
 </wikipathways>
 </pathway>

The parent / star construct is used to visit the individual components of a parent object without
needing to explicitly specify their names. For printing, the name of a child object is indicated by a
question mark:

10

 xtract -pattern opt -group "pathway/*" \
 -pfc "\n" -element "?,name,id"

This displays a table of pathway database references:

 reactome Signal Transduction R-HSA-162582
 reactome Disease R-HSA-1643685
 ...
 reactome Diseases of the neuronal system R-HSA-9675143
 wikipathways GPCRs, Class A Rhodopsin-like WP455

Tables to XML

Tab-delimited files are easily converted to XML with transmute -t2x (or tbl2xml):

 nquire -ftp ftp.ncbi.nlm.nih.gov gene/DATA gene_info.gz |
 gunzip -c | grep -v NEWENTRY | cut -f 2,3 |
 transmute -t2x -set Set -rec Rec -skip 1 Code Name

This takes a series of command-line arguments with tag names for wrapping the individual columns,
and skips the first line of input, which contains header information, to generate a new XML file:

 <Rec>
 <Code>1246500</Code>
 <Name>repA1</Name>
 </Rec>
 <Rec>
 <Code>1246501</Code>
 <Name>repA2</Name>
 </Rec>
 ...

Similarly, transmute -c2x (or csv2xml) will convert comma-separated values (CSV) files to XML.

GenBank Download

Recent GenBank virus data can be downloaded from NCBI servers with nquire -asp. If Aspera
Connect is not installed on your computer, nquire -asp will default to -dwn and use FTP transfer:

 nquire -lst ftp.ncbi.nlm.nih.gov genbank |
 grep "^gbvrl" | grep ".seq.gz" | sort -V |
 tail -n 1 | skip-if-file-exists |
 nquire -asp ftp.ncbi.nlm.nih.gov genbank

GenBank flatfiles can be parsed into XML with transmute -g2x (or gbf2xml):

 gunzip -c *.seq.gz | transmute -g2x |

They can then be filtered by organism name or taxon identifier with xtract -select:

 xtract -pattern INSDSeq -select INSDQualifier_value -equals "taxon:11292" |

and used to obtain feature location intervals and underlying sequences of individual coding regions:

 xtract -insd CDS gene product feat_location sub_sequence

11

Local PubMed Archive
Fetching data from Entrez works well when a few thousand records are needed, but it does not scale for
much larger sets of data, where the time it takes to download becomes a limiting factor.

Local Record Cache

EDirect can now preload over 30 million live PubMed records onto an inexpensive external 500 GB
solid state drive as individual files for rapid retrieval. For example, PMID 12345678 would be stored at:

 /Archive/12/34/56/12345678.xml.gz

using a hierarchy of folders to organize the data for random access to any record.

The local archive is a completely self-contained turnkey system, with no need for the user to download,
configure, and maintain complicated third-party database software.

Set an environment variable in your configuration file(s) to reference your external drive:

 export EDIRECT_PUBMED_MASTER=/Volumes/external_drive_name

Then run archive-pubmed to download the PubMed release files and distribute each record on the
drive. This process will take several hours to complete, but subsequent updates are incremental, and
should finish in minutes.

Retrieving over 125,000 compressed PubMed records from the local archive:

 esearch -db pubmed -query "PNAS [JOUR]" -pub abstract |
 efetch -format uid | stream-pubmed | gunzip -c |

takes about 20 seconds. Retrieving those records from NCBI's network service, with efetch -format xml,
would take around 40 minutes.

Even modest sets of PubMed query results can benefit from using the local cache. A reverse citation
lookup on 191 papers:

 esearch -db pubmed -query "Cozzarelli NR [AUTH]" | elink -cited |

requires 13 seconds to match 7854 subsequent articles. Retrieving them from the local archive:

 efetch -format uid | fetch-pubmed |

takes less than one second. Printing the names of all authors in those records:

 xtract -pattern PubmedArticle -block Author \
 -sep " " -tab "\n" -element LastName,Initials |

allows creation of a frequency table that lists the authors who most often cited the original papers:

 sort-uniq-count-rank

Fetching from the network service would extend the 13 second running time to over 2 minutes.

12

Local Search Index

A similar strategy is used to create a local information retrieval system suitable for large data mining
queries. Run archive-pubmed -index to populate retrieval index files from records stored in the local
archive. The initial indexing will also take a few hours. Since PubMed updates are released once per
day, it may be convenient to schedule reindexing to start in the late evening and run during the night.

For PubMed titles and primary abstracts, the indexing process deletes hyphens after specific prefixes,
removes accents and diacritical marks, splits words at punctuation characters, corrects encoding
artifacts, and spells out Greek letters for easier searching on scientific terms. It then prepares inverted
indices with term positions, and uses them to build distributed term lists and postings files.

For example, the term list that includes "cancer" in the title or abstract would be located at:

 /Postings/TIAB/c/a/n/c/canc.TIAB.trm

A query on cancer thus only needs to load a very small subset of the total index. The underlying
software supports efficient expression evaluation, unrestricted wildcard truncation, phrase queries, and
proximity searches.

The phrase-search script provides access to the local search system.

Names of indexed fields, all terms for a given field, and terms plus record counts, are shown by:

 phrase-search -fields

 phrase-search -terms TITL

 phrase-search -totals PROP

Terms are truncated with trailing asterisks, and can be expanded to show individual postings counts:

 phrase-search -count "catabolite repress*"

 phrase-search -counts "catabolite repress*"

Query evaluation includes Boolean operations and parenthetical expressions:

 phrase-search -query "(literacy AND numeracy) NOT (adolescent OR child)"

Adjacent words in the query are treated as a contiguous phrase:

 phrase-search -query "selective serotonin reuptake inhibitor"

Each plus sign will replace a single word inside a phrase, and runs of tildes indicate the maximum
distance between sequential phrases:

 phrase-search -query "vitamin c + + common cold"

 phrase-search -query "vitamin c ~ ~ common cold"

An exact substring match, without special processing of Boolean operators or indexed field names, can
be obtained with -title (on the article title) or -exact (on the title or abstract):

13

 phrase-search -title "Genetic Control of Biochemical Reactions in Neurospora."

MeSH identifier code, MeSH hierarchy key, and year of publication are also indexed, and MESH field
queries are supported by internally mapping to the appropriate CODE or TREE entries:

 phrase-search -query "C14.907.617.812* [TREE] AND 2015:2019 [YEAR]"

 phrase-search -query "Raynaud Disease [MESH]"

The phrase-search -filter command allows PMIDs to be generated by an EDirect search and then
incorporated as a component in a local query.

Natural Language Processing

NCBI's Biomedical Text Mining Group performs computational analysis to extract chemical, disease,
and gene references from article contents (see PMID 31114887). NLM indexing of PubMed records
assigns Gene Reference into Function (GeneRIF) mappings (see PMID 14728215).

Running archive-pubmed -extras periodically (monthly) will automatically refresh any out-of-date
support files and then index the connections in CHEM, DISZ, and GENE fields:

 phrase-search -terms DISZ | grep -i Raynaud

 phrase-search -counts "Raynaud* [DISZ]"

 phrase-search -query "Raynaud Disease [DISZ]"

Data Analysis and Visualization

All query commands return a list of PMIDs, which can be piped directly to fetch-pubmed to retrieve
the uncompressed records. For example:

 phrase-search -query "selective serotonin ~ ~ ~ reuptake inhibit*" |
 fetch-pubmed |
 xtract -pattern PubmedArticle -num AuthorList/Author |
 sort-uniq-count -n | reorder-columns 2 1 |
 head -n 25 | align-columns -g 4 -a lr

performs a proximity search with dynamic wildcard expansion (matching phrases like "selective
serotonin and norepinephrine reuptake inhibitors") and fetches 12,966 PubMed records from the local
archive. It then counts the number of authors for each paper (a consortium is treated as a single
author), printing a frequency table of the number of papers per number of authors.

The cumulative size of PubMed can be calculated with a running sum of the annual record counts:

 phrase-search -totals YEAR |
 print-columns '$2, $1, total += $1' |

Exponential growth over time will appear as a roughly linear curve on a semi-logarithmic graph:

 print-columns '$1, log($2)/log(10), log($3)/log(10)' |
 xy-plot annual-and-cumulative.png

14

Rapidly Scanning PubMed

If the expand-current script is run, an ad hoc scan can be performed on the nonredundant set of live
PubMed records:

 cat $EDIRECT_PUBMED_WORKING/Current/*.xml |
 xtract -timer -turbo -pattern PubmedArticle -PMID MedlineCitation/PMID \
 -group AuthorList -if "#LastName" -eq 7 -element "&PMID" LastName

finding 1,700,652 articles with seven authors. (This query excludes consortia and additional named
investigators. Author count is now indexed in the ANUM field.)

Note that "MedlineCitation/PMID" uses the parent / child construct to prevent the display of
additional PMID items that might be present later in CommentsCorrections objects.

A precomputed XML size object, inserted before each record, allows xtract -turbo to bypass the
normal pattern-based partition search and utilize up to a dozen CPU cores for data extraction:

 <NEXT_RECORD_SIZE>6374</NEXT_RECORD_SIZE>

User-Specified Term Index

Running custom-index with a PubMed indexer script and the names of the fields it populates:

 custom-index $(which idx-stemmed) STEM

integrates user-specified indices into the local search system. The idx-stemmed script:

 xtract -set IdxDocumentSet -rec IdxDocument -pattern PubmedArticle \
 -wrp IdxUid -element MedlineCitation/PMID -clr -rst -tab "" \
 -group PubmedArticle -pkg IdxSearchFields \
 -block PubmedArticle -stemmed ArticleTitle,Abstract/AbstractText

has reusable boilerplate in its first three lines, and indexes words stemmed by the Porter2 algorithm:

 ...
 <IdxDocument>
 <IdxUid>2539356</IdxUid>
 <IdxSearchFields>
 <STEM pos="126">act</STEM>
 <STEM pos="188">addit</STEM>
 <STEM pos="146">base</STEM>
 ...
 </IdxSearchFields>
 </IdxDocument>
 ...

Scripting
A shell script can be used to repeat the same sequence of operations on a number of input values. The
Unix shell is a command interpreter that supports user-defined variables, conditional statements, and
repetitive execution loops. Scripts are usually saved in a file, and referenced by file name.

Given a tab-delimited file of feature keys and values, where each gene is followed by its coding regions:

15

 gene matK
 CDS maturase K
 gene ATP2B1
 CDS ATPase 1 isoform 2
 CDS ATPase 1 isoform 7

the cat command can pipe the file contents to a shell script that reads the data one line at a time.

Dissecting the script, the first line selects the Bash shell on the user's machine:

 #!/bin/bash

The latest gene name is stored in the "gene" variable, which is first initialized to an empty string:

 gene=""

The while command sequentially reads each line of the input file, IFS indicates tab-delimited fields,
and read saves the first field in the "feature" variable and the remaining text in the "product" variable:

 while IFS=$'\t' read feature product
 do

The statements between the do and done commands are executed once for each input line. The if
statement retrieves the current value stored in the feature variable (indicated by placing a dollar sign ($)
in front of the variable name) and compares it to the word "gene":

 if ["$feature" = "gene"]

If the feature key was "gene", it runs the then section, which copies the contents of the current line's
"product" value into the persistent "gene" variable:

 then
 gene="$product"

Otherwise the else section prints the saved gene name and the current coding region product name:

 else
 echo "$gene\t$product"

separated by a tab character. The conditional block is terminated with a fi instruction ("if" in reverse):

 fi
 done

The resulting output lines, printed by the echo command, have the gene name and subsequent CDS
product names in separate columns on individual rows:

 matK maturase K
 ATP2B1 ATPase 1 isoform 2
 ATP2B1 ATPase 1 isoform 7

In addition to else, the elif command can allow a series of mutually-exclusive conditional tests.

A variable can be set to the result of commands that are enclosed between "$(" and ")" symbols.

16

Python Integration
Controlling EDirect from Python scripts is easily done with assistance from the edirect.py library file,
which is included in the EDirect archive.

At the beginning of your program, import the edirect module with the following commands:

 #!/usr/bin/env python3

 import sys
 import os
 import shutil

 sys.path.insert(1, os.path.dirname(shutil.which('xtract')))
 import edirect

The first argument to edirect.execute is the Unix command you wish to run. It can be provided
either as a string:

 ("efetch -db nuccore -id NM_000518.5 -format fasta")

or as a sequence of strings:

 (('efetch', '-db', 'nuccore', '-id', 'NM_000518.5', '-format', 'fasta'))

An optional second argument accepts data to be passed to the Unix command through stdin. Multiple
steps are chained together by using the result of the previous command as the data argument in the
next command:

 seq = edirect.execute("efetch -db nuccore -id NM_000518.5 -format fasta")
 sub = edirect.execute("transmute -extract -1-based -loc 51..494", seq)
 prt = edirect.execute("transmute -cds2prot -every -trim", sub)

Alternatively, the edirect.pipeline function can execute a string containing several piped commands:

 edirect.pipeline('''efetch -db nuccore -id NM_000518.5 -format gbc |
 xtract -insd CDS gene product feat_location''')

or can accept a sequence of individual command strings to be piped together for execution:

 edirect.pipeline(('efetch -db nuccore -id NM_000518.5 -format gbc',
 'xtract -insd CDS gene product feat_location'))

An edirect.efetch shortcut that uses named arguments is also available:

 edirect.efetch(db="nuccore", id="NM_000518.5", format="fasta")

To run a custom shell script, make sure the execute permission bit is set, supply the full execution path,
and follow it with any command-line arguments:

 db = "pubmed"
 res = edirect.execute(("./datefields.sh", db), "")

17

Programming
A program written in a compiled language is translated into a computer's native machine instruction
code, and will run much faster than an interpreted script. Piping FASTA data to the basecount binary
executable (compiled from the basecount.go source code file, below):

 efetch -db nuccore -id J01749,U54469 -format fasta | basecount

will return rows containing an accession number followed by counts for each base:

 J01749.1 A 983 C 1210 G 1134 T 1034
 U54469.1 A 849 C 699 G 585 T 748

Programs in Google's Go language ("golang") start with package main and then import additional
software libraries (many included with Go, others residing in commercial repositories like github.com):

 package main

 import (
 "eutils"
 "fmt"
 "os"
 "sort"
)

Each compiled Go binary has a single main function, which is where program execution begins:

 func main() {

The fsta variable is assigned to a data channel that streams individual FASTA records one at a time:

 fsta := eutils.FASTAConverter(os.Stdin, false)

The countLetters subroutine will be called with the identifier and sequence of each FASTA record:

 countLetters := func(id, seq string) {

An empty counts map is created for each sequence, and its memory is freed when the subroutine exits:

 counts := make(map[rune]int)

A for loop on the range of the sequence string visits each sequence letter. The map keeps a running
count for each base or residue, with "++" incrementing the current value of the letter's map entry:

 for _, base := range seq {
 counts[base]++
 }

Maps are not returned in a defined order, so map keys are loaded to a keys array, which is then sorted:

 var keys []rune
 for ky := range counts {
 keys = append(keys, ky)
 }
 sort.Slice(keys, func(i, j int) bool { return keys[i] < keys[j] })

18

(The second argument passed to sort.Slice is an anonymous function literal used to control the sort
order. It is also a closure, implicitly inheriting the keys array from the enclosing function.)

The sequence identifier is printed in the first column:

 fmt.Fprintf(os.Stdout, "%s", id)

Iterating over the array prints letters and base counts in alphabetical order, with tabs between columns:

 for _, base := range keys {
 num := counts[base]
 fmt.Fprintf(os.Stdout, "\t%c %d", base, num)
 }

A newline is printed at the end of the row, and then the subroutine exits, clearing the map and array:

 fmt.Fprintf(os.Stdout, "\n")
 }

The remainder of the main function uses a loop to drain the fsta channel, passing the identifier and
sequence string of each successive FASTA record to the countLetters function. The main function then
ends with a final closing brace:

 for fsa := range fsta {
 countLetters(fsa.SeqID, fsa.Sequence)
 }
 }

Save the following script to a file named build.sh, in the same directory as the basecount.go file:

 #!/bin/bash

 if [! -f "go.mod"]
 then
 go mod init "$(basename $PWD)"
 echo "replace eutils => $HOME/edirect/eutils" >> go.mod
 fi

 if [! -f "go.sum"]
 then
 go mod tidy
 fi

 go build

The build script creates module files used to track dependencies and retrieve imported packages. It also
computes the path for finding the local eutils helper library included with EDirect. Set the Unix
execution permission bit for the build script and compile the program by running:

 chmod +x build.sh
 ./build.sh

This will compile all of the "*.go" files in the directory. You can select specific input files, change the
executable program's name, and cross-compile for a different platform, with additional arguments:

 env GOOS=darwin GOARCH=arm64 go build -o basecount.Silicon basecount.go

19

Installation
EDirect consists of a set of scripts and programs that are downloaded to the user's computer. To install
the software, open a terminal window and execute one of the following two commands:

 sh -c "$(curl -fsSL ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh)"

 sh -c "$(wget -q ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh -O -)"

One installation is complete, run the following to set the PATH for the current terminal session:

 export PATH=${PATH}:${HOME}/edirect

Solid-State Drive Preparation
To initialize a solid-state drive for hosting the local archive on a Mac, log into an admin account, run
Disk Utility, choose View -> Show All Devices, select the top-level external drive, and press the Erase
icon. Set the Scheme popup to GUID Partition Map, and APFS will appear as a format choice. Set the
Format popup to APFS, enter the desired name for the volume, and click the Erase button.

To finish the drive configuration, disable Spotlight indexing on the drive with:

 sudo mdutil -i off "${EDIRECT_PUBMED_MASTER}"
 sudo mdutil -E "${EDIRECT_PUBMED_MASTER}"

and turn off FSEvents logging with:

 sudo touch "${EDIRECT_PUBMED_MASTER}/.fseventsd/no_log"

Also exclude the drive from being backed up by Time Machine or scanned by a virus checker.

Documentation
Documentation for EDirect is on the web at:

 http://www.ncbi.nlm.nih.gov/books/NBK179288

Information on how to obtain an API Key is described in this NCBI blogpost:

 https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities

An introduction to shell scripting for non-programmers is at:

 https://missing.csail.mit.edu/2020/shell-tools/

Instructions for downloading and installing the Go compiler are at:

 https://golang.org/doc/install#download

Questions or comments on EDirect may be sent to info@ncbi.nlm.nih.gov.

This research was supported by the Intramural Research Program of the National Library of Medicine
at the NIH.

20

	Introduction
	Programmatic Access
	Navigation Functions
	Accessory Programs
	Discovery by Navigation
	XML Data Extraction
	Format Customization
	Element Variants
	Exploration Control
	Nested Exploration
	Saving Data in Variables
	Conditional Execution
	Biological Data in Entrez
	Sequence Qualifiers
	Genes in a Region
	Taxonomic Lineage
	SNP-Modified Product Pairs
	External Data Integration
	JSON Arrays
	JSON Mixtures
	Tables to XML
	GenBank Download
	Local PubMed Archive
	Local Record Cache
	Local Search Index
	Natural Language Processing
	Data Analysis and Visualization
	Rapidly Scanning PubMed
	User-Specified Term Index
	Scripting
	Python Integration
	Programming
	Installation
	Solid-State Drive Preparation
	Documentation

