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Abstract

We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast
enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov
models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine
the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to
produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every
column and character of the alignment—previously available only with alignment programs which use computationally-
expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an
unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark
reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination
with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to
that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments
can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.
sourceforge.net/.
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Introduction

The field of biological sequence alignment is very active, with

numerous new alignment programs developed every year in

response to increasing demand driven by rapidly-dropping

sequencing costs. The list of approximately 60 sequence alignment

programs on the wikipedia compilation provides a lower bound on

the number of available tools and illustrates the confusing choice

facing biologists who seek to select the ‘‘best’’ program for their

studies. Nevertheless, the ClustalW program [1,2], published in

1994, remains the most widely-used multiple sequence alignment

program. Indeed, in a recent review of multiple sequence alignment

[3], the authors remark that ‘‘to the best of our knowledge, no

significant improvements have been made to the [ClustalW]

algorithm since 1994 and several modern methods achieve better

performance in accuracy, speed, or both.’’ Therefore, it is natural to

ask, ‘‘Why do alignment programs continue to be developed, and

why are new tools not more widely adopted by biologists?’’.

A key issue in understanding the popularity of ClustalW is to

recognize that it is difficult to benchmark alignment programs.

Alignments represent homology relationships among the nucleo-

tides, or amino acids, of the genomes of extant species, and it is

impossible to infer the evolutionary history of genomes with

absolute certainty. Comparisons of alignment programs therefore

rely on databases of structural alignments for proteins and RNA or

on gene loci or simulated data for DNA. Each type of benchmark is

vulnerable to manipulation and furthermore may not represent the

problem setups which are most relevant to biologists. The result is

that biologists are confronted with many programs and publica-

tions, but it is frequently unclear which approach will give the best

results for the everyday problems which they seek to address.

Adding to the difficulty of selecting software tools is the blur

between programs and ideas. Developers of alignment programs

make choices about the objective functions to optimize, the

statistical models to use, and the parameters for these models, but

the relative impact of individual choices is rarely tested [4].

Discordance among programs is frequently noted [5], but the

different architectures of individual programs, and in some cases

the lack of open software, makes it difficult to explore novel

combinations of existing ideas for improving alignments.

In lieu of these issues, biologists have favored the conservative

approach of using the tried and trusted ClustalW program,

although they frequently use it in conjunction with software which

allows for manual editing of alignments [6]. The rationale behind

alignment-editing software is that trained experts should be able to

correct alignments by visual inspection and that effort is better

expended on manually correcting alignments than searching for

software that is unlikely to find the ‘‘correct’’ alignment anyway.

Although manual editing approaches may be cumbersome, they

have been used for large alignments (e.g., [7]).

PLoS Computational Biology | www.ploscompbiol.org 1 May 2009 | Volume 5 | Issue 5 | e1000392



We therefore approached the alignment problem with the

following goals in mind:

1. An approach which seeks to maximize the expected alignment

accuracy. Our approach seeks to find the alignment with

minimal expected distance to the true alignment of the input

sequences, where the true alignment is treated as a random

variable, with the probability of each true alignment deter-

mined under a statistical model. Explicitly incorporating a

statistically-motivated objective function, this ‘‘expected accu-

racy’’ approach to alignment allows us to visualize alignments

according to estimates of different quality measures, including

their expected accuracy, sensitivity, specificity, consistency and

certainty. We therefore offer biologists a way to compare

alignments that allows them to quantitatively judge differences

in alignment quality when they are performing manual edits.

2. A method which is robust to variation in evolutionary

parameters. We sought a method which is robust to

phenomena such as sequences of differing evolutionary

distances and base composition. While ‘‘phylogenetic align-

ment’’ methods seek to accomplish this by explicitly modeling

alignments on trees [8–11], a computationally-costly proce-

dure, we use only pairwise comparisons of sequences and allow

the pairwise model to vary for each pair considered.

3. Robust results when faced with the wide range of alignment

problems encountered today. We sought to create a single

program which is capable of achieving high accuracies on

protein, RNA and DNA sequences without additional input

from, e.g., database homology searches. We additionally

sought to make our approach fast enough for large-scale

problems such as aligning many sequences or orthologous

regions of genomes. (When aligning genomic-size sequences,

we assume that the sequences are collinear; we do not attempt

to solve the problem of resolving duplications or inversions.)

4. Creation of a modular code base so that future improvements

in one aspect of alignment could easily be incorporated into

our approach. In particular, we aimed to create a collaborative

infrastructure so that ‘‘bioinformaticians with expertise in

developing software for comparing genomic DNA sequences

[can] pool their ideas and energy to produce a compact tool set

that serves a number of needs of biomedical researchers’’ [12].

The ‘‘distance-based’’ approach to sequence alignment, pro-

posed in [13] and implemented in the protein alignment program

AMAP [14], offers a useful framework for these goals. Much as

distance-based phylogenetic reconstruction methods like Neigh-

bor-Joining build a phylogeny using only pairwise divergence

estimates, a distance-based approach to alignment builds a

multiple alignment using only pairwise estimations of homology.

This is made possible by the sequence annealing technique [14]

for constructing multiple alignments from pairwise comparisons.

We have implemented our approach in FSA, a new alignment

program described below. We give an overview of the structure of

FSA and explain the details of its components below. Text S1

contains detailed instructions for using the FSA program and

webserver as well as FSA’s companion programs for comparing

alignments and working with whole-genome alignments.

Methods

Overview
Figure 1 shows an overview of the components of the FSA

alignment algorithm, described in detail below.

The input to FSA is a set of protein, RNA or DNA sequences.

These sequences are assumed to be homologous, although FSA is

robust to non-homologous sequence. The output of FSA is a

global alignment of the input sequences which is a (local) optima of

the expected accuracy under FSA’s statistical model.

FSA first performs pairwise comparisons of the input sequences

to determine the posterior probabilities that individual characters

are aligned (note, however, that it does not yet actually align any

sequences). While the number of possible pairwise comparisons is

quadratic in the number of sequences being aligned, giving

unfavorable runtimes for datasets of many sequences, FSA

overcomes this problem by reducing the number of pairs of

sequences that are compared. This is accomplished using a

randomized approach inspired by the Erdös-Rényi theory of

random graphs, thereby drastically reducing the computational

cost of multiple alignment.

After obtaining pairwise estimates of homology at the single-

character level, FSA uses the sequence annealing technique [14] to

construct a multiple alignment. This approach to alignment seeks

to maximize the expected accuracy of the alignment using a

steepest-ascent (greedy) algorithm.

The architecture of FSA reflects the inherent modularity of the

distance-based approach to alignment. FSA’s inference engine

uses the flexible HMMoC code-generation tool [15] and has been

parallelized with a separate module, alignments of long sequences

are anchored with candidate matches found by the MUMmer

suffix trie matching tool [16] or the exonerate homology-search

program [17], and FSA’s sequence annealing algorithm improves

on the original algorithm and implementation in AMAP [14]. The

stand-alone visualization tool uses statistical information produced

by FSA, but otherwise is completely independent.

Each of these components can be improved independently of

the others, allowing for rapid future improvements in distance-

based alignment. For example, FSA’s entire statistical model could

easily be altered to incorporate position-specific features or

completely replaced with a discriminative or hybrid generative-

discriminative model.

Author Summary

Biological sequence alignment is one of the fundamental
problems in comparative genomics, yet it remains
unsolved. Over sixty sequence alignment programs are
listed on Wikipedia, and many new programs are
published every year. However, many popular programs
suffer from pathologies such as aligning unrelated
sequences and producing discordant alignments in protein
(amino acid) and codon (nucleotide) space, casting doubt
on the accuracy of the inferred alignments. Inaccurate
alignments can introduce large and unknown systematic
biases into downstream analyses such as phylogenetic tree
reconstruction and substitution rate estimation. We
describe a new program for multiple sequence alignment
which can align protein, RNA and DNA sequence and
improves on the accuracy of existing approaches on
benchmarks of protein and RNA structural alignments and
simulated mammalian and fly genomic alignments. Our
approach, which seeks to find the alignment which is
closest to the truth under our statistical model, leaves
unrelated sequences largely unaligned and produces
concordant alignments in protein and codon space. It is
fast enough for difficult problems such as aligning
orthologous genomic regions or aligning hundreds or
thousands of proteins. It furthermore has a companion GUI
for visualizing the estimated alignment reliability.

Fast Statistical Alignment
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Core components
The components described here correspond roughly to the

simplest mode of operation for FSA, outlined in bold in Figure 1.

Input and output. FSA accepts FASTA-format input files

and produces alignments in multi-FASTA or Stockholm format.

The server also outputs PHYLIP and ClustalW formatted files.

Estimating posterior probabilities of alignment.

Distance-based alignment, relying on pairwise estimations of

homology, operates on the posterior probability distributions that

characters in two sequences are aligned. FSA uses the standard

three or five-state pair hidden Markov model (Pair HMM) shown in

Figure 2 to infer these posterior probabilities of alignment, as well as

posterior probabilities that characters are unaligned or gapped. The

structure of the Pair HMM and its parameters can be controlled

through the command-line options (see Text S1 for details).

The standard Forward-Backward algorithm on a Pair HMM

has time complexity O L2
� �

for two sequences of length L.

Merging probabilities. After calculating the posterior

probabilities of alignment for characters in all sequence pairs,

P xi*yj X ,Yj
� �

that individual characters xi and yj are aligned

and P xi*{ X ,Yjð Þ that a character xi is gapped to sequence Y ,

FSA sorts these probabilities according to a weighting function

which gives a hill-climbing procedure which is a steepest-ascent

algorithm in the weighting function (Text S1, ‘‘The mathematics

of distance-based alignment’’).

Sequence annealing. After estimating these posterior

probabilities and sorting them, FSA creates a multiple alignment

with the sequence annealing technique [14]. Sequence annealing

attempts to find the alignment with the minimum expected

distance to the truth (A), computed for two sequences X and Y as

Aoptimal~ argmin
A�

E d A�, Að Þ½ �P A X,Yjð Þ:

The distance d A�, Að Þ between two alignments is defined as the

number of positions for which they make different homology

statements, where the homology statement for xi is either of the

form xi*yj (xi is homologous to yj ) or xi*{ (xi is not homologous

Figure 1. Overview of the components constituting the FSA alignment program. The algorithms that are used in each component are
highlighted in the accompanying boxes. The bold arrows show the simplest mode of use for FSA, where posterior probabilities are calculated directly
using default parameters for all pairs of sequences and the optional steps of anchor finding and iterative refinement are omitted.
doi:10.1371/journal.pcbi.1000392.g001
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to any position in y) [14]. As a simple count of differing statements of

homology (and non-homology), this distance has an intuitive

biological interpretation. When one of the alignments is the true

alignment, this distance can be thought of as the ‘‘evolutionary

correctness’’ of the other, where the correctness of the alignment for

each sequence position is equally weighted.

The alignment with the minimum expected distance to the truth

is equivalent to the alignment with the maximum expected

accuracy,

Aoptimal~ argmax
A�

E Acc A�, Að Þ½ �P A X,Yjð Þ,

where we define the accuracy Acc A�, Að Þ of an alignment A�
with respect to a reference, ‘‘true’’ alignment A as the fraction of

positions for which they make identical homology statements. In

contrast with traditional measures of sensitivity and specificity,

accuracy takes into account all positions, rather than just those

that are predicted to have a homolog. (Note that it linearly

penalizes incorrectly-placed gaps.)

The posterior probabilities over alignments P A X ,Yjð Þ used in

the optimization are given by FSA’s statistical model (a Pair

HMM). FSA extends this definition of an optimal pairwise

alignment to an optimal multiple alignment by taking sum-of-

pairs over all sequences.

Using this expected accuracy as an objective function for a

greedy maximization, sequence annealing begins with the null

alignment (all sequences unaligned) and merges single columns

(aligns characters) according to the corresponding expected

increase in E Acc A�, Að Þ½ �P A datajð Þ, the similarity to the truth

under FSA’s statistical model. Whereas progressive alignment

methods take large steps in alignment space by aligning entire

sequences at each step, the distance-based approach takes the

smallest-possible steps of aligning single characters.

‘‘The mathematics of distance-based alignment’’ in Text S1

gives an in-depth discussion of the objective function and how it

Figure 2. The default Pair HMM used by FSA. By default FSA uses a Pair HMM with two sets of Insert (I) and Delete (D) states to generate a two-
component geometric mixture distribution. FSA can optionally use a three-state HMM, which has only one set of Insert and Delete states. M is a
Match state emitting aligned characters.
doi:10.1371/journal.pcbi.1000392.g002
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arises naturally from FSA’s representation of an alignment as a

partially ordered set (POSET) or directed acyclic graph (DAG).

Inferring indel events. In FSA’s definition of an alignment,

an alignment consists solely of a specification of homology. This

definition differs from the standard definition of a multiple

alignment, which implies an evolutionary history of substitution

and indel events. For example, FSA (internally) considers the two

alignments shown in Figure 3 to be equivalent.

This is problematic for comparative genomics analyses which

use an alignment to infer evolutionary parameters such as indel

frequencies across a clade. In order to output a single global

alignment from which such evolutionary parameters can be

inferred, we choose a topological ordering of the alignment

POSET which corresponds to a maximum-parsimony interpreta-

tion of indel events. FSA outputs the global alignment with the

minimum number of ‘‘gap openings’’ across the individual

sequences (the right-hand alignment in Figure 3). As proved in

Text S1, FSA can accomplish this in time linear in the number of

sequences and sequence length.

Optional components
Selection of a subset of pairs for alignment

speedup. FSA can efficiently align hundreds or even

thousands of sequences. By default it performs exhaustive

distance-based alignment, which requires an all-pairs comparison

of the N sequences, costing O N2:L2
� �

. However, this prohibitive

computational cost can be sharply reduced by only performing

pairwise comparisons on a subset of all possible N: N{1ð Þ=2
sequence pairs.

In order to ensure a complete alignment, where no sequence is

left unaligned, each sequence must be connected to every other

sequence by a series of pairwise comparisons. For N input

sequences, a minimum of N{1ð Þ pairwise comparisons are

necessary to give a complete alignment; this corresponds to

building a spanning tree on the sequences. While this is sufficient

to give a complete alignment on the input sequences, the results

will depend heavily on which N{1ð Þ pairwise comparisons are

used to construct the alignment and many choices may give poor

alignments. Developing a good theory of which pairs to use to

construct the best alignment with the fewest comparisons—how to

select a randomized subset of pairs for comparison which falls

between the extremes of N{1ð Þ and N: N{1ð Þ=2 pairs—remains

an open problem.

We therefore chose to use a completely-randomized approach

inspired by results from the theory of Erdös-Rényi random graphs.

By the Erdös-Rényi theory, a random graph will almost surely be

connected if the edge-creation probability satisfies

pw 1zeð Þlog N=N, which is very low for large N (e is a small

positive number). Guided by this result, FSA performs fast

alignments by first constructing a spanning tree on the input

sequences and then performing each possible pairwise comparison

with some probability p proportional to the connectedness

threshold. The savings are dramatic—for N~1,000 sequences,

the Erdös-Rényi threshold probability is 0.007, corresponding to

an algorithm which is over 100 times as fast as an all-pairs

comparison—and we have observed little loss of accuracy from

considering only a subset of pairs.

This speedup reduces the time complexity of both inference and

sequence annealing. The cost of inference is reduced to

O N:log N:L2
� �

and the ‘‘worst average case’’ runtime of

sequence annealing to O N:log N:L2:log2 N:Lð Þ
� �

, where we

align N sequences of length L by making O N:log Nð Þ pairwise

comparisons (Text S1, ‘‘The mathematics of distance-based

alignment’’).

Finding anchors. FSA can align megabase-long sequences

using an ‘‘anchor annealing’’ strategy. Analogously to other

genome alignment programs such as MAVID [18], MLAGAN

[19], CHAOS/DIALIGN [20] and Pecan [21], FSA uses long

matches to anchor regions of the alignment and performs

inference with dynamic programming in between anchors. FSA’s

basic anchoring mode uses the fast suffix trie matching program

MUMmer [16] to find candidate anchors and can find anchors in

Figure 3. Two alignments (left and right) which make the same homology statements and therefore are both represented by the
same POSET (center). ‘‘The mathematics of distance-based alignment’’ in Text S1 discusses this view of alignments as POSETs. The alignment on
the right minimizes the number of gap-open events and as such is appropriate for analyses such as inferring parsimonious indel frequencies across a
clade. Alignments are displayed with TeXshade [63].
doi:10.1371/journal.pcbi.1000392.g003
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either nucleotide or protein space (by translating the sequence in

all frames). FSA requires that anchors be maximal unique matches

in both sequences (‘‘MUMs’’). The restriction to unique matches

helps to prevent false-positive anchors due to, e.g., repetitive

sequence; for example, a microsatellite can appear as a candidate

anchor only if it appears exactly once, with identical copy number,

in each sequence.

FSA utilizes its distance-based approach to find a consistent set

of anchors across all sequences simultaneously, thereby making

maximal use of additional constraints from other sequences. This

‘‘anchor annealing’’ strategy is conceptually similar to the

procedures used in programs for aligning long sequences such as

CHAOS/DIALIGN, MAVID, Pecan and TBA, which return

partially-ordered sets of anchors, thereby permitting constraints to

be projected across multiple sequences.

As with sequence annealing, this ‘‘anchor annealing’’ can be

accomplished efficiently with a greedy algorithm based on the

Pearce-Kelly algorithm. FSA uses the same code for both sequence

and anchor annealing, although the objective function is different:

Anchor ‘‘scores’’ correspond to p-values under a null model rather

than probabilities of homology, and so there are no ‘‘gap’’

probabilities P xi*{ X ,Yjð Þ or P {*yj X ,Yj
� �

which contribute

to the anchor-annealing analog of the expected accuracy E Acc½ �.
Rather than aligning entire anchors across the multiple alignment

in order to find a consistent set of anchors, FSA finds a set of anchor

centroids which are consistent across all sequences and then prunes

the resulting anchors at a pairwise level. The result is a set of anchors

between pairs of sequences whose centroids are consistent across all

sequences and which are non-overlapping between pairs of

sequences. This heuristic approach permits FSA to quickly find

consistent anchors across many sequences.

After finding a consistent set of anchors across the multiple

alignment, FSA assumes that these anchors are correctly aligned

with probability ,1 and then aligns the regions between anchors

using dynamic programming. When anchored alignment is

performed, the posterior probabilities that individual characters

are aligned, which FSA uses to inform construction of the multiple

alignment, are conditioned on the set of anchors chosen.

Therefore, if all anchors correspond to true homology then these

probabilities will be correctly estimated despite the anchoring

heuristic; however, if incorrect anchors are chosen, then individual

probabilities of alignment can be similarly incorrect.

While FSA’s restriction of candidate anchors from MUMmer to

MUMs produces a very specific set of anchors, the restriction can

be too stringent to obtain sensitive alignments of diverged or very

long sequences, for which there are few unique exact matches. To

address this potential problem, FSA can use the fast homology-

search program exonerate [17] to find inexact matches to use as

anchors as well. Furthermore, when performing whole-genome

alignment, homologous genomic regions are typically first

identified with a program such as Mercator [22] and then each

region is aligned with a nucleotide-level alignment program. FSA

can use the seed matches, frequently coding genes, which define

the homologous genomic regions to inform its anchor annealing.

Because FSA uses the fast tool MUMmer to find anchors, it can

rapidly align closely-related sequences, such as mitochondrial

DNA, for which anchors span most of the alignment, making

costly dynamic programming largely unnecessary.

The Pair HMM and parameter estimation. The distinct

functional constraints acting on biological sequences give rise to

very different patterns of molecular evolution, each implying

distinct parameterizations of an appropriate model for alignment.

For example, if substitutions or indels are more frequent in one

lineage than in the others, then using a single model for all

sequences (which does not reflect these differing constraints) can

give misleading results. Nonetheless, sequence alignment

algorithms traditionally use a single model for all sequences.

In order to overcome these difficulties, FSA uses ‘‘query-specific

learning,’’ wherein a different model is learned for each pairwise

comparison (the ‘‘query’’). This is done in a completely

unsupervised framework: FSA uses an unsupervised Expectation

Maximization (EM) algorithm to estimate transition (gap) and

emission (substitution) probabilities of the Pair HMM on the fly.

Despite its unsupervised nature, FSA’s query-specific learning

needs remarkably little sequence data to effectively learn

parameters. Standard alignment algorithms estimate parameters

from thousands or tens of thousands of pairs of aligned sequences;

in contrast, we empirically observe good results with as little input

data as two unaligned DNA or RNA sequences of length 60

nucleotides or four unaligned protein sequences of length 266 amino

acids. These figures correspond to observing each of the

independent parameters of a substitution matrix four times.

While FSA learns distinct transition parameters for every pair of

query sequences regardless of the sequence composition, it uses

different learning strategies for nucleotide and amino acid

emission matrices. Because a pair emission matrix over aligned

nucleotides has only (4221) = 15 free parameters, FSA can learn a

different emission distribution for every pairwise comparison of all

but the shortest RNAs or DNAs (this allows FSA to learn a

different model for each pair of unanchored subsequences when

performing anchored aligment). In contrast, emission matrices

over aligned amino acids have (20221) = 3,999 free parameters,

thereby preventing FSA from learning independent models for

each pair of proteins. FSA therefore learns a single emission matrix

using an all-pairs comparison for protein sequences.

Because FSA uses unsupervised learning on very sparse data,

overfitting is a serious concern. FSA attempts to prevent overfitting

by (1) using a weak Dirichlet regularizer (prior) when estimating

both transition and emission probabilities, and (2) terminating

parameter learning before the EM algorithm converges. By default

the Dirichlet emission priors are scaled such that total number of

pseudocounts for aligned characters is equal to the number of free

parameters in a symmetric pair emission matrix. As is the case for

other machine-learning algorithms, it can be shown that

termination before convergence of query-specific learning is

equivalent to a form of regularization (likelihood penalty).

If there is insufficient sequence data for effective learning, then

FSA does not estimate parameters and instead uses default

parameters to construct an alignment. The default parameters

values, as well as seeds used for the learning algorithm, are

discussed in Text S1.

Parallelization mode. While FSA can align hundreds or

thousands of sequences on a single computer, it can handle truly

large-scale problems by running in a parallelized mode on a

computer cluster. FSA’s distance-based approach to alignment

gives the multiple alignment a natural independence structure:

each pairwise alignment is independent of all other pairs, allowing

dramatic runtime reduction by distributing the individual pairwise

computations to different processors.

Two factors were considered for the parallelization of FSA : (1)

communication overhead between nodes, and (2) workload

distribution over the different processors. For example, distributing

jobs in very small batches may reduce processor idle time but lead

to high overhead; in contrast, using large batches may increase idle

time but minimize overhead. FSA’s parallelization mode uses the

‘‘Fixed-Size Chunking’’ strategy described in [23], whereby each

of the P processors runs on chunks of N: N{1ð Þ= 2:Pð Þ pairwise

comparisons.

Fast Statistical Alignment
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While the pairwise comparisons can be naturally parallelized,

sequence annealing does not have the same obvious independen-

cies. Therefore, even when running in parallelized mode, FSA

performs sequence annealing on a single node. The parallelization

of the annealing step is a future aim for this project. A schematic of

the current parallelization strategy is given in Figure 4.

Iterative refinement. As a greedy algorithm, sequence

annealing is only guaranteed to find a local optima of the

expected accuracy. FSA therefore uses an iterative refinement

strategy after sequence annealing terminates to locally improve the

alignment. For each round of iterative refinement, FSA looks at

every character’s position in the multiple alignment and sees

whether the objective function can be improved by moving it to

another position (without violating the consistency constraints of

the multiple alignment). FSA assembles a list of such candidate

character shifts, orders the list by the expected change in the

objective function, and then performs the shifts. Iterative

refinement terminates when there are no candidate shifts which

improve the objective function.

Visualization. FSA’s included GUI permits the user to

visually assess alignment quality under FSA’s statistical model

according to estimates of different measures, including expected

accuracy, sensitivity, specificity, consistency and certainty. This

permits biologists and bioinformaticians to incorporate reliability

measures into downstream analyses, such as evolutionary rate

measurements and phylogenetic reconstruction. Incorporating

such information can produce distinctly different results. For

example, over-aligned non-conserved sequence can cause a

systematic bias towards long branch lengths; this can be

ameliorated by incorporating the expected accuracy statistics

produced by FSA into reconstruction algorithms. Figure 5 shows a

sample protein alignment colored by the expected alignment

accuracy under FSA’s statistical model as well as the true accuracy

(based on a reference structural alignment).

Figure 4. Schematic overview of FSA’s parallelization strategy on a computer cluster. For large input sizes, a disk-based database may be
used to store some of the primary data structures and reduce memory usage.
doi:10.1371/journal.pcbi.1000392.g004

Figure 5. The Java GUI allows users to visualize the estimated alignment accuracy under FSA’s statistical model. FSA’s alignment is
colored according the expected accuracy under FSA’s statistical model (top) as well as according to the ‘‘true’’ accuracy (bottom) given from a
comparison between FSA’s alignment and the reference structural alignment. It is clear from inspection that accuracies estimated under FSA’s
statistical model correspond closely to the true accuracies. Sequences are from alignment BBS12030 in the RV12 dataset of BAliBASE 3 [24].
doi:10.1371/journal.pcbi.1000392.g005

Fast Statistical Alignment
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FSA’s GUI can color alignments according to five different

measures of alignment quality, which are approximated under its

statistical model. Characters xi in a multiple alignment can be

colored according to:

N Accuracy: The expected accuracy with which xi is aligned to

other characters or gaps.

N Sensitivity: The expected sensitivity with which xi is aligned to

other characters.

N Specificity: The expected specificity with which xi is aligned to

other characters.

N Certainty: The certainty with which xi is aligned correctly

(whether there is a good alternate choice).

N Consistency: The consistency of the many pairwise compar-

isons used to construct the multiple alignment and the implied

optimality of the alignment of xi to other characters or gaps in

the multiple alignment.

See Text S1 for detailed descriptions of how these measures are

defined and calculated using FSA’s statistical model.

The GUI also provides a visual and statistical guide when

manually editing alignments.

Results

We benchmarked FSA against databases of multiple alignments

compiled from reference structural alignments, including protein

databases (BAliBASE 3 [24] and SABmark 1.65 [25]), small RNA

databases (BRAliBase 2.1 [26]), large RNA databases (Consan

mix80 [27]), and both mammalian [28] and fly [29,30] simulated

DNA alignments.

Alignment programs are commonly used to detect homology

among input sequences. We conducted a series of false-positive

experiments to test whether commonly-used alignment programs

can reliably identify homologous and non-homologous sequence.

Surprisingly, we found that for most alignment programs, aligned

sequences are not necessarily homologous, indicating that

biologists should use caution when interpreting the multiple

alignments produced by many commonly-used tools.

We additionally performed a simple test of the consistency of

common programs when aligning coding sequence: We aligned

1,502 genes orthologous across seven species of yeast in both

nucleotide and protein space and compared the resulting

alignments. Many programs gave surprisingly discordant results,

indicating that at least one of these two alignments produced by

commonly-used programs is incorrect.

Protein sequence
Table 1 shows benchmarks of FSA and other alignment

programs, including AMAP [14], ClustalW [1,2], DIALIGN

[31,32], MAFFT [33], MUMMALS [34], MUSCLE [35],

Probalign [36], ProbCons [37], T-Coffee [38], and SeqAn::T-

Coffee [39], against the BAliBASE 3 [24] and SABmark 1.65

databases [25]. FSA in maximum-sensitivity mode had accuracy

similar to those of the better-performing programs on BAliBASE 3

and had accuracy superior to that of any other program on

SABmark 1.65 when run in default mode. FSA had higher positive

predictive values than any other tested program on all datasets.

Remarkably, FSA was the only tested program which achieved a

mis-alignment rate ,50% on the standard SABmark 1.65

datasets; all other programs produced more incorrect than correct

homology statements.

In order to test the robustness of alignment programs to

incomplete homology, we modified the BAliBASE 3 database such

that every alignment included a single false-positive, an unrelated

(random) sequence. This is a realistic setup for biologists who

might want to decide whether a sequence is orthologous to a

particular protein family. With the exception of FSA, the tested

alignment programs suffered a false-positive rate increased by over

25% on this BAliBASE 3+fp dataset, indicating that they aligned

the random sequence with the homologous set. In contrast, FSA

left the random sequence unaligned and had an essentially-

unchanged false-positive rate.

RNA sequence
Table 2 shows benchmarks of FSA and the other tested

alignment programs against the BRAliBase 2.1 [26] and Consan

mix80 [27] databases. FSA outperformed all other programs on

both datasets.

BRAliBase 2.1 was assembled from the RFAM [40] RNA

database and consists of small RNAs (average length of ,150 nt).

FSA gave improved performance even on this high-identity

dataset where most programs did relatively well.

Table 1. Benchmarks against protein structural databases.

Program BAliBASE 3 BAliBASE 3+fp SABmark 1.65

(Acc/Sn/PPV) (Acc/Sn/PPV) (Acc/Sn/PPV)

AMAP 0.70/0.62/0.83 0.73/0.61/0.80 0.57/0.43/0.46

ClustalW 0.66/0.63/0.62 0.59/0.63/0.53 0.38/0.44/0.30

DIALIGN 0.68/0.63/0.68 0.68/0.62/0.63 0.48/0.41/0.34

FSA 0.71/0.62/0.85 0.75/0.62/0.84 0.59/0.38/0.52

FSA (–maxsn) 0.73/0.68/0.76 0.74/0.68/0.72 0.52/0.45/0.39

MAFFT 0.74/0.71/0.71 0.68/0.71/0.61 0.44/0.49/0.35

MUMMALS 0.74/0.70/0.73 0.69/0.70/0.64 0.49/0.52/0.38

MUSCLE 0.70/0.67/0.66 0.63/0.66/0.57 0.40/0.46/0.32

Probalign 0.76/0.72/0.73 0.71/0.71/0.65 0.49/0.50/0.37

ProbCons 0.74/0.70/0.72 0.69/0.70/0.64 0.47/0.50/0.37

T-Coffee 0.72/0.67/0.71 0.67/0.67/0.63 0.45/0.46/0.35

SeqAn::T-Coffee 0.73/0.69/0.70 0.67/0.69/0.61 0.43/0.47/0.34

Comparisons of the accuracies (Acc), sensitivities (Sn) and positive predictive
values (PPV) of FSA and other alignment methods on the BAliBASE 3 [24] and
SABmark 1.65 [25] databases. Probalign has the highest accuracy on the
commonly-used BAliBASE 3 dataset and FSA in default mode has superior
accuracy on the BAliBASE 3+fp and SABmark 1.65 datasets (note that only FSA
and AMAP explicitly attempt to maximize the expected accuracy). FSA has
higher positive predictive values than any other program on all datasets and
can additionally achieve high sensitivity when run in maximum-sensitivity
mode. The BAliBASE 3+fp dataset, which mirrors BAliBASE 3 but includes a
single non-homologous sequence in each alignment, was designed to test the
robustness of alignment programs to incomplete homology. Traditional
alignment programs, designed to maximize sensitivity, suffer greatly-increased
mis-alignment when even a single non-homologous sequence is introduced; in
contrast, FSA is robust to the non-homologous sequence and has an
unchanged positive predictive value. Remarkably, FSA was the only tested
program with a mis-alignment rate of ,50% on the SABmark 1.65 dataset; the
majority of the homology statements made by other programs were incorrect.
Because the SABmark 1.65 dataset contains many sequences of only partial or
even no homology, a method such as FSA which is robust to non-homologous
sequence performs better under our accuracy criterion than a program such as
MUMMALS despite the fact that MUMMALS has significantly-higher sensitivity
on this dataset. The BAliBASE 3 dataset consisted of full-length sequences in all
reference sets RV11, RV12, RV20, RV30, RV40 and RV50; we created the BAliBASE
3+fp dataset from the same reference sets by adding a single false-positive, a
random sequence, to each alignment. The SABmark 1.65 dataset consisted of
the Twilight Zone and Superfamilies datasets.
doi:10.1371/journal.pcbi.1000392.t001
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The Consan mix80 dataset of alignments of Small and Large

Subunit ribosomal RNAs, assembled from the European Ribo-

somal RNA database [41], was created for training RNA

structural alignment programs and provides a test of alignment

programs on difficult, large-scale alignments. The four alignments

contain from 107 to 254 sequences, each 1–4 kilobases in length,

with average percentage identity less than ,50%. Two tested

alignment programs, ProbConsRNA [42] and SeqAn::T-Coffee,

were unable to align these large datasets. This dataset demon-

strates that FSA’s alignment speedup options, including perform-

ing inference only on a subset of all possible pairs (–fast) and

anchoring alignments instead of using the full dynamic program-

ming matrix (–anchored), are effective heuristics for large datasets.

DNA sequence
Table 3 shows benchmarks of FSA and other genomic

alignment programs, including CHAOS/DIALIGN [20], DIA-

LIGN-TX [31,32], MAVID [18], MLAGAN [19], Pecan [21]

and TBA [28], on simulated alignments of both mammalian and

Drosophila DNA sequences. FSA produced higher-accuracy

alignments than the other programs on the two Drosophila datasets

and only Pecan gave better alignments of the mammalian

sequences.

The simulated alignments of nonfunctional DNA sequences

from nine mammals (human, chimp, baboon, mouse, rat, cat, dog,

cow, and pig) were created by Blanchette et al. [28]. The

simulated alignments of DNA from the twelve species of Drosophila

described in [43] were created with two simulation programs,

DAWG [29] and simgenome [30]. As described in [30], the

simulated Drosophila genomic alignments were created by param-

eterizing the DAWG and simgenome programs using whole-

genome alignments produced by Pecan for [43]. Although two

authors (RKB and IH) of this manuscript contributed to the

simgenome program, simgenome was developed prior to FSA and

did not influence or contribute to the methodology described here

for FSA.

FSA’s strong performance on all three datasets of simulated long

DNA sequences indicate that it is a useful and accurate tool for

genomic alignment.

Unrelated sequence
In order to further test the appropriateness of using popular

alignment programs to detect homology between sequences, we

conducted a large-scale random-sequence experiment. We

generated datasets of random sequences to simulate unrelated

protein, short DNA, and genomic (long) DNA sequences. The

results, shown in Table 4 and Table 5, clearly demonstrate that

while for most alignment programs, aligned sequences are not

necessarily homologous, FSA leaves random sequences largely

unaligned.

Concordance between amino acid and nucleotide
alignments

Biologists commonly align coding regions in both amino acid

and nucleotide space, but there have been few studies of the

effectiveness of alignment programs across the two regimes. We

tested the consistency of alignment programs on coding sequence

by aligning all 1,502 genes in Saccharomyces cerevisiae identified as

having orthologs in the six related yeast species S. paradoxus, S.

mikatae, S. kudriavzevii, S. bayanus, S. castellii, and S. kluyveri ([44]; this

dataset was also analyzed in [5]). As shown in Table 6, alignments

produced by FSA had higher concordance (0.943) than those

produced by any other program. If a program produces

alignments with low concordance between amino acid and

Table 2. Benchmarks against RNA structural databases.

Program BRAliBase 2.1 Consan mix80

(Acc/Sn/PPV) (Acc/Sn/PPV)

ClustalW 0.85/0.86/0.86 0.65/0.65/0.68

DIALIGN 0.82/0.83/0.85 0.76/0.75/0.82

FSA 0.90/0.91/0.94 0.77/0.74/0.92

FSA (–maxsn) 0.91/0.92/0.92 0.78/0.78/0.86

MAFFT 0.90/0.91/0.91 0.77/0.78/0.77

MUSCLE 0.90/0.91/0.90 0.74/0.76/0.74

ProbConsRNA 0.91/0.92/0.92 (failed to align)

T-Coffee 0.81/0.82/0.84 0.38/0.33/0.40

SeqAn::T-Coffee 0.89/0.90/0.90 (failed to align)

Comparisons of the accuracies (Acc), sensitivities (Sn) and positive predictive
values (PPV) of FSA and other alignment methods on the BRAliBase 2.1 dataset
of small RNAs [26] and the Consan mix80 dataset of Small and Large Subunit
ribosomal RNAs [27]. The BRAliBase 2.1 dataset consisted of all alignments with
15 sequences (the largest alignments). The mix80 dataset provided difficult
alignment problems: The four alignments each contain from 107 to 254
sequences of approximately 1–4 kilobases in length, with average percentage
identity less than ,50%. Two program, ProbConsRNA and SeqAn::T-Coffee,
were incapable of aligning these large datasets. When run in –fast mode, FSA
considers only a subset (,20% in this case) of all sequence pairs. Note that
because the mix80 dataset consists of long sequences, FSA automatically uses
anchoring for speed. FSA does not use anchoring on the short sequences of
BRAliBase 2.1.
doi:10.1371/journal.pcbi.1000392.t002

Table 3. Benchmarks against simulated mammalian and fly
genomic DNA.

Program
Blanchette
et al. DAWG simgenome

(Acc/Sn/PPV) (Acc/Sn/PPV) (Acc/Sn/PPV)

CHAOS/DIALIGN 0.58/0.44/0.74 0.72/0.46/0.43 0.62/0.67/0.59

DIALIGN-TX 0.73/0.68/0.77 0.72/0.51/0.44 0.64/0.68/0.61

FSA (–exonerate) 0.86/0.82/0.93 0.81/0.38/0.74 0.79/0.78/0.84

FSA (–exonerate –maxsn) 0.87/0.85/0.90 0.75/0.41/0.50 0.76/0.79/0.77

MAVID 0.57/0.45/0.68 0.66/0.36/0.32 0.72/0.77/0.72

MLAGAN 0.70/0.63/0.80 0.45/0.39/0.19 0.71/0.71/0.73

Pecan 0.92/0.91/0.92 0.77/0.48/0.53 0.78/0.81/0.78

TBA 0.83/0.81/0.87 0.80/0.32/0.75 0.74/0.79/0.72

Comparisons of the accuracies (Acc), sensitivities (Sn) and positive predictive
values (PPV) of FSA and other alignment methods on simulated alignments of
mammalian and Drosophila DNA. The simulated alignments of nonfunctional
DNA sequences (‘‘Blanchette et al.’’) from nine mammals (human, chimp,
baboon, mouse, rat, cat, dog, cow, and pig) were produced by [28]. Simulated
alignments of nonfunctional (‘‘DAWG ’’) and functional as well as nonfunctional
(‘‘simgenome ’’) DNA sequences from the twelve species of Drosophila
described in [43] were produced with the DAWG [29] and simgenome [30]
programs as described in [30] (both were parametrized based on Pecan
alignments of Drosophila whole-genome alignments). Three of the simgenome
alignments contained sequences of length zero and were removed from this
analysis. FSA was run with the –exonerate option to use both anchors from the
exonerate program as well as MUMs from MUMmer. FSA had the highest
accuracy on the two simulated Drosophila datasets and only Pecan had higher
accuracy on the mammalian dataset. Pecan consistently produced the most-
sensitive aligments.
doi:10.1371/journal.pcbi.1000392.t003
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nucleotide alignments, then at least one of the alignments must be

incorrect (and quite possibly both are).

This simple test additionally indicates the effectiveness and

robustness of FSA’s query-specific learning. While very different

learning procedures are used for amino acid and nucleotide

sequence, the concordant alignments inferred by FSA indicate that

our results are robust with respect to the details of the learning

procedure.

Ablation analysis of FSA’s components
We conducted an ablation analysis of FSA’s components to test

the effectiveness of each component and ensure that they all

contributed to the accuracy of the program. As indicated by the

results in Tables 7–10, each optional component of FSA

contributes to its accuracy.

The importance of each component depends strongly upon the

alignment problem. The –fast heuristic for reducing the number of

sequence pairs used to construct an alignment results in little loss

of accuracy, at least on the benchmarks used in this paper (Tables 7

and 8). As indicated by the small and long RNA benchmarks

(Table 8), iterative refinement is important for aligning many

sequences and less so for small alignment problems. The anchor

annealing procedure appears to be an effective heuristic for

aligning long sequences. Anchoring with unique matches (MUMs)

causes only a negligible loss of accuracy on the long RNA dataset

(Table 8). However, results on simulated long DNA sequences

(Table 9) demonstrate that inexact matches, such as those returned

by exonerate, must be used during anchor annealing to obtain

high sensitivity on very long or distant nonfunctional DNA

sequences. Nonfunctional DNA lacks the local constraints which

preserve exact matches across distant species in functional (e.g.,

coding) sequence. Query-specific learning is important for

maintaining FSA’s robustness to non-homologous sequence. While

FSA aligned only 4% of random protein sequences in default

Table 4. Benchmarks against simulated unrelated protein
and DNA sequences.

Program Protein DNA

AMAP 14% n/a

ClustalW 97% 95%

DIALIGN 24% 17%

FSA 4% 5%

FSA (–maxsn) 21% 17%

MAFFT 83% 93%

MUMMALS 63% n/a

MUSCLE 89% 80%

Probalign 44% n/a

ProbCons 51% 77%

T-Coffee 63% 75%

SeqAn::T-Coffee 74% 78%

Large-scale random sequence tests indicate that for most alignment programs,
aligned sequences are not necessarily homologous (table shows the fraction of
random sequence aligned, calculated by taking a sum-of-pairs over pairwise
alignments). Even when run in maximum-sensitivity mode (–maxsn), FSA
aligned only a small fraction of the random sequence. We generated 50
datasets, each with 10 random sequences, and ran all programs with default
parameters. Protein sequences were 300 aa in length and DNA sequences were
1,000 nt in length. Results reported for ProbCons on DNA sequences were
obtained with ProbConsRNA.
doi:10.1371/journal.pcbi.1000392.t004

Table 5. Benchmarks against simulated unrelated genomic
DNA.

Program Genomic DNA

CHAOS/DIALIGN 10%

ClustalW 96%

DIALIGN-TX 20%

FSA (–exonerate) 1%

FSA (–exonerate –maxsn) 4%

MAVID 17%

MLAGAN 30%

Pecan 1%

TBA 0%

Large-scale random sequence tests for genomic alignment programs. As in
Table 4, table entries are the fraction of random sequence aligned, calculated
by taking a sum-of-pairs over pairwise alignments. FSA aligns a small fraction of
random genomic sequence in both its default and maximium-sensitivity (–
maxsn) modes. TBA did not align a single base in these tests and was thus the
best performer. As the three best-performing programs in this test, TBA, Pecan
and FSA –exonerate, all use inexact sequence matches as anchors, the relative
performance of these three programs can be explained by the stringency of the
anchoring thresholds used: TBA uses the highest threshold by default, Pecan
the next-highest and FSA the lowest. All three of these programs show good
base-level specificity on the simulated alignments of Table 3, for which TBA has
the highest specificity on one dataset and FSA on two. The random sequence
tests consisted of 50 datasets, each with 10 random DNA sequences (uniform
base distribution) of length 50 kb. All programs were run with default
parameters. For genomic aligners that required a phylogenetic tree, we used
the guide tree computed by ClustalW (rooted via the midpoint algorithm of the
PHYLIP [64] retree program).
doi:10.1371/journal.pcbi.1000392.t005

Table 6. Comparisons of alignments obtained in codon and
amino acid space.

Program Alignment similarity (average)

ClustalW 0.914

DIALIGN 0.912

FSA 0.943

FSA (–noanchored) 0.952

MAFFT 0.932

MUSCLE 0.915

ProbCons 0.902

T-Coffee 0.897

SeqAn::T-Coffee 0.905

We assessed the concordance between alignments obtained in nucleotide and
amino acid space by aligning all 1,502 genes in Saccharomyces cerevisiae which
have orthologs in the six related yeast species S. paradoxus, S. mikatae, S.
kudriavzevii, S. bayanus, S. castellii, and S. kluyveri (this dataset was analyzed in
[5]). Alignments produced by FSA, in both anchored and unanchored (–
noanchored) modes, had the highest concordance. Alignment similarity
between alignments computed in nucleotide and amino acid space was
assessed by converting the amino acid alignment to the implied nucleotide
alignment and computing the alignment similarity (the proportion of identical
homology statements made by the alignments; see Text S1, ‘‘The mathematics
of distance-based alignment’’ for details) between them. Alignments for
ProbCons on nucleotide sequences were obtained with ProbConsRNA.
doi:10.1371/journal.pcbi.1000392.t006
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mode, when run without learning it aligned 13% (Table 10),

similar to the 14% aligned by AMAP (Table 4).

Runtimes and parallelization
Biologists commonly perform alignments of hundreds or

thousands of 16S ribosomal DNA sequences in order to elucidate

evolutionary relationships and build phylogenetic trees. We

performed alignments of prokaryotic 16S sequences to compare

the speed of commonly-used programs (Table 11). MAFFT was

the fastest method by an order of magnitude; MUSCLE and FSA

were the next-fastest methods. Many alignment programs were

unable to align these large datasets.

The results in Table 12 and Table 13 demonstrate the

effectiveness of FSA’s parallelization mode. Parallelizing the

pairwise comparisons dramatically reduces runtime: When

running in –fast mode on a small cluster with 10 processors,

FSA can align 500 16S sequences in 20% of the time required

without parallelization.

Table 8. Ablation analysis of FSA on RNA structural databases.

FSA options BRAliBase 2.1 FSA options Consan mix80

(Acc/Sn/PPV) (Acc/Sn/PPV)

(default) 0.90/0.91/0.94

–fast 0.90/0.91/0.94 –fast 0.77/0.74/0.92

–nolearn 0.91/0.92/0.93 –nolearn –fast 0.77/0.74/0.93

–refinement 0 0.90/0.91/0.93 –refinement 0 –fast 0.73/0.69/0.94

–noindel2 0.91/0.92/0.93 –noindel2 –fast 0.73/0.69/0.91

–noanchored –fast 0.77/0.74/0.93

–maxsn 0.91/0.92/0.92

–fast –maxsn 0.91/0.92/0.92 –fast –maxsn 0.78/0.78/0.86

–nolearn –maxsn 0.91/0.92/0.92 –nolearn –fast –maxsn 0.78/0.78/0.85

–refinement 0 –maxsn 0.90/0.91/0.93 –refinement 0 –fast –maxsn 0.74/0.70/0.92

–noindel2 –maxsn 0.91/0.92/0.92 –noindel2 –fast –maxsn 0.74/0.73/0.84

–noanchored –fast –maxsn 0.79/0.79/0.85

Ablation analysis of FSA on the RNA benchmarks of Table 2 : Comparisons of the accuracies (Acc), sensitivities (Sn) and positive predictive values (PPV) of FSA with
different components enabled or disabled. From top to bottom, FSA was run in default mode, –fast mode, with learning disabled, with iterative refinement disabled,
with 1 set (rather than 2 sets) of indel states, and with anchored disabled; these options were then repeated for maximum-sensitivity mode (–maxsn). Iterative
refinement is important for the large alignments of the mix80 dataset.
doi:10.1371/journal.pcbi.1000392.t008

Table 7. Ablation analysis of FSA on protein structural
databases.

FSA options BAliBASE 3 BAliBASE 3+fp SABmark 1.65

(Acc/Sn/PPV) (Acc/Sn/PPV) (Acc/Sn/PPV)

(default) 0.71/0.62/0.85 0.75/0.62/0.84 0.59/0.38/0.52

–fast 0.70/0.61/0.85 0.74/0.62/0.84 0.59/0.37/0.52

–nolearn 0.72/0.65/0.81 0.75/0.65/0.79 0.56/0.44/0.44

–refinement 0 0.70/0.61/0.85 0.74/0.61/0.84 0.59/0.37/0.52

–noindel2 0.70/0.61/0.85 0.74/0.60/0.84 0.59/0.38/0.52

–maxsn 0.73/0.68/0.76 0.74/0.68/0.72 0.52/0.45/0.39

–fast –maxsn 0.73/0.67/0.76 0.73/0.67/0.71 0.52/0.44/0.39

–nolearn –maxsn 0.73/0.68/0.74 0.70/0.68/0.67 0.49/0.47/0.37

–refinement 0 –maxsn 0.72/0.66/0.78 0.73/0.66/0.73 0.53/0.43/0.39

–noindel2 –maxsn 0.73/0.68/0.76 0.72/0.68/0.70 0.51/0.45/0.39

Ablation analysis of FSA on the protein benchmarks of Table 1 : Comparisons of
the accuracies (Acc), sensitivities (Sn) and positive predictive values (PPV) of FSA
with different components enabled or disabled. From top to bottom, FSA was
run in default mode, –fast mode, with learning disabled, with iterative
refinement disabled, and with 1 set (rather than 2 sets) of indel states; these
options were then repeated for maximum-sensitivity mode (–maxsn). As made
evident by the results (PPV) on the BAliBASE 3+fp and SABmark 1.65 datasets,
query-specific learning helps FSA to distinguish homologous and non-
homologous sequences. The above figures understate the utility of iterative
refinement: while it generally has little effect on these small protein alignments,
it occasionally dramatically reduces the number of small gaps and thereby
improves the alignment accuracy.
doi:10.1371/journal.pcbi.1000392.t007

Table 9. Ablation analysis of FSA on simulated mammalian
genomic DNA.

FSA options Blanchette et al.

(Acc/Sn/PPV)

(default) 0.53/0.32/0.93

–exonerate 0.83/0.77/0.94

–exonerate –minscore 50 0.83/0.78/0.94

–exonerate –refinement 0 0.82/0.76/0.93

–exonerate –noindel2 0.78/0.72/0.94

Ablation analysis of FSA on the simulated mammalian DNA of Table 3 :
Comparisons of the accuracies (Acc), sensitivities (Sn) and positive predictive
values (PPV) of FSA with different components enabled or disabled. We tested
the effectiveness of components related to anchor annealing for aligning long
sequences, including using anchors from MUMmer and exonerate and
changing the minimum acceptable score for an exonerate anchor (the default is
–minscore 100). These results clearly show that while using only MUMs for
anchoring (the default mode) gives a high positive predictive value, inexact
matches must be used to obtain high sensitivity on very long or distant
nonfunctional sequences lacking the local constraints which give rise to MUMs
across species in functional (e.g., coding) sequence.
doi:10.1371/journal.pcbi.1000392.t009
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Discussion

In the Introduction we highlighted four design criteria which we

emphasized in the development of FSA. The first goal was to find

alignments with high expected accuracy, where an accurate

alignment has minimal distance to the truth. This objective

function is markedly different from both the maximum-likelihood

approaches used by programs such as ClustalW and MUSCLE

and the maximum expected sensitivity approaches used by

programs such as ProbCons and Pecan. Note that while the

objective function used in ProbCons is called ‘‘maximum expected

accuracy’’ in the paper [37], it is actually a maximum expected

sensitivity objective function, where there is no penalty for over-

aligning sequence (c.f., the results shown in Table 4). Their

objective function can be recovered as a special case of our

approach by ignoring the gap probabilities in FSA’s objective

function (Text S1, ‘‘The mathematics of distance-based align-

ment’’). FSA’s explicit search for the most accurate, rather than

most likely or most sensitive, alignment is what allows FSA to so

dramatically outperform most other programs on tests on

unrelated sequence (Table 4).

We believe that this accuracy criterion, which gives equal

weight to the correctness of all sequence positions, is a natural

measure of alignment quality. Downstream analyses, such as

phylogenetic reconstruction and evolutionary constraint analysis,

are increasingly using indels in addition to homologous characters

for more accurate estimation (e.g., [45,46]). Thus, it is important

that alignments be as ‘‘evolutionarily correct’’ as possible [47],

which is the purpose of the accuracy criterion.

FSA’s strong performance under the accuracy criterion is due to

techniques such as its iterative refinement as well as its explicit

attempt to maximize the expected accuracy; programs which

explicitly seek to maximize an objective function of the posterior

Table 10. Ablation analysis of FSA on simulated unrelated
protein and DNA sequences.

FSA options Protein DNA

(default) 4% 5%

–fast 4% 5%

–nolearn 13% 8%

–refinement 0 3% 5%

–noindel2 5% 10%

–maxsn 21% 17%

–fast –maxsn 22% 17%

–nolearn –maxsn 30% 16%

–refinement 0 –maxsn 19% 15%

–noindel2 –maxsn 27% 21%

Ablation analysis of FSA on the unrelated sequence benchmarks of Table 4 :
Comparisons of the accuracies (Acc), sensitivities (Sn) and positive predictive
values (PPV) of FSA with different components enabled or disabled. From top to
bottom, FSA was run in default mode, –fast mode, with learning disabled, with
iterative refinement disabled, and with 1 set (rather than 2 sets) of indel states;
these options were then repeated for maximum-sensitivity mode (–maxsn).
Query-specific learning helps to make FSA robust to non-homologous
sequence.
doi:10.1371/journal.pcbi.1000392.t010

Table 11. Timing comparison of FSA and other methods on 16S sequences.

Program 100 200 300 400 500 seqs

ClustalW 1,194 s 4,147 s 9,110 s 16,187 s 27,755 s

DIALIGN 4,346 s 19,449 s 49,388 s (fail) (fail)

FSA –fast 1,513 s 3754 s 5,641 s 9,767 s 15,683 s

FSA –fast –noindel2 –refinement 0 638 s 1,495 s 2,467 s 3,604 s 5,154 s

MAFFT 31 s 105 s 243 s 442 s 54 s

MUSCLE 351 s 1,235 s 1,516 s 4,384 s 7,552 s

ProbConsRNA 16,319 s (fail) (fail) (fail) (fail)

T-Coffee 1,362 s 3,666 s 7,880 s 15,254 s 22,085 s

SeqAn::T-Coffee 3,024 s (fail) (fail) (fail) (fail)

Comparison of runtimes of FSA and other alignment methods when aligning 16S ribosomal sequences. MAFFT was faster than any other method by an order of
magnitude; the next-fastest programs were MUSCLE and FSA. FSA can be made substantially faster by using a 3-state, rather than the default 5-state, HMM (with little
loss of accuracy; see Table 8) and disabling iterative refinement. MAFFT was run with the –auto option, which presumably triggered a faster alignment mode on the 500
sequence dataset than was used for the datasets with fewer sequences. The designation ‘‘(fail)’’ means that a programs failed to align a dataset (generally due to out-of-
memory errors). Timing results are from computers with 2.40 GHz CPUs and 2 GB of RAM. 16S sequences were obtained as a random slice of prokMSA from Greengenes
[65] and had an average length of 1,450 nt.
doi:10.1371/journal.pcbi.1000392.t011

Table 12. Timing comparison of FSA in regular and
parallelized modes.

FSA options 100 200 300 500
1,000
seqs

FSA 6,407 s 27,534 s — — —

FSA –parallelize 10 819 s 5,713 s 22,113 s — —

FSA –fast 1,650 s 3,781 s 6,207 s 12,249 s —

FSA –fast –parallelize 10 201 s 513 s 924 s 2,511 s 15,179 s

Runtimes for FSA in regular, –fast and –parallelize modes when aligning the 16S
sequences of Table 11 sequences in unanchored mode (–noanchored) with a 3-
state HMM (–noindel2) and refinement disabled (–refinement 0). When running
in –fast mode on a cluster with 10 processors (3.00 and 3.20 GHz; 8 GB of RAM),
FSA can align 500 16S sequences in 20% of the time required without
parallelization. The parallelized FSA was run on a cluster managed by the
Condor batch queueing system [66]; nodes were connected by a 100 Mbps
Ethernet network. Note that these runtimes are much slower than users can
expect from default FSA usage, which uses anchoring for speed (Table 11); we
used unanchored mode to make clear the benefits of parallelization.
doi:10.1371/journal.pcbi.1000392.t012
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probabilities of character alignment, such as ProbCons or

Probalign, could instead seek to maximize the expected accuracy

described here and, as a likely result, increase their robustness to

non-homologous sequence. However, while we believe that the

expected accuracy is a biologically-sensible objective function, it

may not be appropriate if the user desires the most sensitive

alignment. While FSA can produce the most-sensitive RNA

alignments, other programs can produce more sensitive align-

ments of proteins and genomic sequence, albeit generally at the

cost of a tendency to align non-homologous sequence (Table 4).

The second goal was to create alignments which are robust to

evolutionary distances and different functional constraints on

patterns of molecular evolution. FSA’s unsupervised query-specific

learning for parameter selection frees the user from unknown

systematic biases implicitly introduced by using an alignment

program whose parameters were trained on a dataset whose

statistics may not reflect those of the sequences to be aligned. For

example, it is traditionally challenging to align sequences with

unusual base composition, but FSA can easily handle such

alignments by automatically learning appropriate parameters. As

indicated by our ablation analysis, query-specific learning further

increases FSA’s robustness to non-homologous sequences beyond

that offered by the minimum-distance objective function alone.

We believe that FSA’s unsupervised query-specific learning is

the first time a multiple alignment program has been capable of

dynamically learning a complete parameterization, wherein

parameters can vary for each pair of sequences to be compared,

on the fly. This learning method is related to the ‘‘pre-training’’

option in ProbCons, which permits users to learn different models

for families of homologous sequences, but does not permit

parameterizations to vary between sequence pairs. We also note

that the MORPH program for pairwise alignment of sequences

with cis-regulatory modules learns model transition parameters

from data [48]. While supervised training on curated data can give

superior performance on test sets which are statistically-similar to

the training data, the practical alignment problems encountered

everyday by biologists do not fit into this rigid problem setup.

Query-specific learning consistently gives reasonable performance.

The third and fourth goals, to develop a single, modular

program which can address all typical alignment problems

encountered by biologists, are naturally achieved within FSA’s

architecture. While almost all alignment programs are designed to

either align many short sequences or a few long sequences, we

have demonstrated that it is feasible to create a single program

which can address both situations. This is made practical by FSA’s

modular nature, where the statistical model for pairwise

comparisons, the anchoring scheme for finding homology between

long sequences, and the sequence annealing procedure are entirely

separate and can be individually modified and improved. For

example, the parallelization of FSA was designed and developed

with minimal changes to the rest of FSA’s code base. Similarly,

while FSA’s basic anchoring relies only on exact matches from

MUMmer, the anchoring scheme was easily extended to

incorporate inexact matches from exonerate [17] and alignment

constraints from Mercator [22]. In fact, this flexibility permits FSA

to incorporate almost any sources of potential homology

information, from predicted transcription factor binding sites to

entire gene models. One natural extension of FSA’s approach is to

models of RNA alignment which take structure into account. The

program Stemloc-AMA [49] uses a model of the pairwise

evolution of RNA secondary structure in conjunction with the

sequence annealing algorithm to create accurate multiple

alignments of structured RNAs. By using Stemloc-AMA’s

probabilistic model rather than a Pair HMM and taking

advantage of techniques such as query-specific learning, FSA

could sum over possible pairwise structural alignments in order to

get better estimates of posterior probabilities of character

alignment.

FSA is a statistical alignment program insofar as it uses an

explicit statistical model of alignments and a probabilistic objective

function for optimization, but as discussed in ‘‘Theoretical

justification of distance-based alignment’’ (Text S1), it also is a

distance-based approximation to the ‘‘phylogenetic alignment’’

models of alignments on trees [8–11,50–52]. While traditional

phylogenetic alignment algorithms are currently too computation-

ally-expensive to use on datasets of more than a few sequences,

FSA’s distance-based method allows biologists to use the

sophisticated tools of statistical alignment algorithms on practical

problems. Furthermore, while we have not addressed the

phylogenetic aspects of FSA in detail in this paper, our methods

can be adapted to incorporate a complete phylogenetic model

(Text S1, ‘‘The mathematics of distance-based alignment’’).

However, we believe that FSA’s current approach, which is

agnostic to phylogeny, offers many practical advantages for

common genomics analyses. For example, because FSA uses a

sum-of-pairs objective function, there is no guide tree to potentially

bias downstream phylogenetic reconstructions based on the

alignment. Similarly, while most genomic alignment programs

require a species tree to perform the alignment, our phylogeny-

free approach will be avoid potential biases introduced by using a

single species tree to align regions which may have undergone

recombination.

Supporting Information

Text S1 Supplementary Information

Found at: doi:10.1371/journal.pcbi.1000392.s001 (0.23 MB PDF)
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Runtimes for FSA in –fast –parallelize P mode as a function of the number of
processors P in the computer cluster with a 3-state HMM (–noindel2) and
refinement disabled (–refinement 0). Sequences and cluster specifications are
same as for Table 12.
doi:10.1371/journal.pcbi.1000392.t013

Fast Statistical Alignment

PLoS Computational Biology | www.ploscompbiol.org 13 May 2009 | Volume 5 | Issue 5 | e1000392



The coloring in the GUI according to posterior probabilities of

alignment is inspired by the AU viewer of BAli-Phy [9].

Software. The sequence annealing implementation in FSA is based on

Ariel Schwartz’s AMAP program [14], which implements the Pearce-Kelly

algorithm [61].

FSA’s query-specific learning uses code created with Gerton Lunter’s

HMMoC compiler for HMMs [15]. The ‘‘aligner’’ example distributed

with HMMoC, which implements a learning procedure for gap

parameters, was an inspiration for FSA’s learning strategies. FSA’s banding
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