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1 Requirements and Installation

FSA is released under the GNU General Public License (http://www.gnu.org/copyleft/gpl.html). The

source code can be downloaded from its SourceForge project homepage, http://fsa.sourceforge.net/, and

should build and run smoothly on most *NIX machines, including Mac OS X and popular distributions

of Linux. The program is compiled by navigating to the FSA root directory and typing the standard con-

figure, make, make install. Use the configure script to specify installation options, etc. In order to align

long DNA sequences, FSA requires that MUMmer [1] be installed. It is recommend that exonerate [2]

is installed as well.

If you wish to run FSA in parallelized mode, you must have a PostgreSQL [3] database available

and a computer cluster managed by Condor [4].
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2 Webserver

Alignment jobs can be submitted to the FSAwebserver at http://orangutan.math.berkeley.edu/fsa/. Due to

computational constraints, large alignment jobs involving hundreds of sequences or very long sequences

will not be completed.
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3 GUI

In order to use FSA’s GUI to interact with alignments, run FSA with the --gui option. If aligning a

sequence file myseqs.fasta as

fsa --gui myseqs.fasta

then the GUI is subsequently invoked as

java -jar display/mad.jar myseqs.fasta

If you wish to also color an alignment myseqs.mfa of these sequences, invoke the GUI as

java -jar display/mad.jar myseqs.fasta myseqs.mfa

FSA’s GUI can color alignments according to estimates of five different measures of alignment qual-

ity. A character xi in a multiple alignmentA∗ can be colored according to one of the following measures,

all of which are normalized to [0, 1]:

Accuracy. The expected accuracy with which xi is aligned to other characters or gaps in the column.

Accuracy (xi) = 2 ·
∑

Y : xi∼yj∈A∗

P(xi ∼ yj |X, Y ) +
∑

Y : xi∼−∈A∗

P(xi ∼ −|X, Y )

/
(2 · |{Y : xi ∼ yj ∈ A∗}|+ |{Y : xi ∼ − ∈ A∗}|)

This definition is analogous to the definition of expected alignment accuracy E [Acc (A∗)]P(A|data) given

previously, but restricted to a single character xi in the alignment. The denominator ensures that Accuracy (xi)

is normalized to [0, 1].

Sensitivity. The expected sensitivity with which xi is aligned to other characters in the column.

Sensitivity (xi) =
∑
Y

E [tp]P(A|X,Y )

/ ∑
Y

E [tp + fn]P(A|X,Y )

=
∑

Y : xi∼yj∈A∗

P(xi ∼ yj |X, Y )
/ ∑

Y

∑
yj∈Y

P(xi ∼ yj |X, Y ) ,
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where tp = true positives and fn = false negatives. Note that this is an approximation of E [tp/ (tp + fn)]P(A|X,Y ).

Specificity. The expected specificity (positive predictive value) with which xi is aligned to other char-

acters in the column.

Specificity (xi) =
∑
Y

E [tp]P(A|X,Y )

/ ∑
Y

E [tp + fp]P(A|X,Y )

=
∑

Y : xi∼yj∈A∗

P(xi ∼ yj |X, Y )
/

|{Y : xi ∼ yj ∈ A∗}| ,

where tp = true positives and fp = false positives. Note that this is an approximation of E [tp/ (tp + fp)]P(A|X,Y ).

Certainty. The certainty with which xi is aligned correctly (whether there is a good alternate choice)

to other characters or gaps in the column:

Certainty (xi) = 2 ·
∑

Y : xi∼yj∈A∗

P(xi ∼ yj |X, Y ) +
∑

Y : xi∼−∈A∗

P(xi ∼ −|X, Y )

/ 2 ·
∑

Y : xi∼yj∈A∗

altmax
yj

P(xi ∼ yj |X, Y )

+
∑

Y : xi∼−∈A∗

altmax
yj

P(xi ∼ yj |X, Y )

 ,

where altmaxyj P(xi ∼ yj |X, Y ) is the probability of the second-best choice for aligning xi to either a

character yj or a gap in Y . As defined above, this measure can range from [0,∞); we normalize it to

[0, 1] for display in the GUI by taking

Certainty (xi)←


0 if Certainty (xi) < 1

log Certainty (xi)/ log 5 if 0 ≤ Certainty (xi) ≤ 5

1 if Certainty (xi) > 5



Fast Statistical Alignment: Text S1 7

Consistency. The consistency of the many pairwise comparisons used to construct the multiple align-

ment and the implied optimality of the alignment of xi to other characters or gaps in the column.

Consistency (xi) = 2 ·
∑

Y : xi∼yj∈A∗

P(xi ∼ yj |X, Y ) +
∑

Y : xi∼−∈A∗

P(xi ∼ −|X, Y )

/ 2 ·
∑

Y : xi∼yj∈A∗

max
yj

P(xi ∼ yj |X, Y )

+
∑

Y : xi∼−∈A∗

max
yj

P(xi ∼ yj |X, Y )

 ,

where maxyj P(xi ∼ yj |X, Y ) is the probability of the best choice for aligning xi to either a character

yj or a gap in Y . The consistency measure is related to the certainty measure, but note that it is already

normalized to [0, 1].
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4 Parallelization

Use the --parallelize option to parallelize the pairwise comparison step of FSA. For example, to align the

sequences in the file myseqs.fasta with N processors, invoke FSA as:

fsa --parallelize N myseqs.fasta

When run with these arguments, FSAwill automatically create a Condor-specific submit file and submit

N jobs to your cluster.

FSA can also use a database to store pairwise posterior probabilities and initial weights of the null

alignment. To use a database, you must provide the --hostaddr and --dbname options. Other database

connection options include --port, --username and --password. For the example above, but with a

database, invoke FSA as:

fsa --parallelize N --hostaddr [DB hostname/IP address] --dbname [DB

name] myseqs.fasta

The --noannealing option may be used to disable the sequence annealing step. This option can be

used when you only wish to compute pairwise probabilities and store them in a database. To align se-

quences with data already in a database, run FSA with --noposteriors and a combination of db connection

options:

fsa --noposteriors --hostaddr [DB host name/IP address] --dbname [DB

name] myseqs.fasta

When using FSA with a database, you can also restrict the maximum amount of RAM used during

sequence annealing with the --db-maxram option (the --maxram option only affects the amount of RAM

used when making pairwise comparisons between sequences). Without this option, FSA will load all

necessary data into memory before beginning sequence annealing for performance reasons.
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5 Complete list of options

FSA attempts to guess appropriate settings for the input sequences based on the sequence composition

(nucleotide or protein), average sequence length, and number of input sequences. You can get fine-

grained control over its inference procedures with the command-line options described below. Use the

--help flag to see descriptions of all options.

Any Boolean option (e.g., --learngap) can be disabled by prepending --no (e.g., --nolearngap).

Logging options. The progress of the algorithm can be assessed by adjusting the log level as --log [0-

10]. Log level --log 7 reports progress of the dynamic programming and sequence annealing procedures

and is recommended for big alignment jobs. Log level --log 6 reports progress of anchoring and is

recommended when aligning very long sequences.

Output options. FSA produces multi-FASTA (MFA) format alignments by default. Use --stockholm

to produce Stockholm-format alignments instead. FSA’s Stockholm-format alignments are annotated

with per-column accuracy information as well as a single accuracy estimate for the entire alignment.

You can record and subsequently view all intermediate alignments produced by the sequence anneal-

ing process. Use --gui to record them formatted for the Java interactive GUI. This option is also used to

record the statistical model estimated by FSA in order to graphically view the expected accuracy of the

alignment.

Use --write-params and --write-posteriors to record the learned emission parameters (substitution

matrices) and pairwise posterior probability matrices to disk. See Section 6 for information on how to

view these graphically.

Parallelization options. See Section 4.

Database options. See Section 4.
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Pair HMM model options. If desired, FSA can align coding nucleotide sequence by first trans-

lating the sequences, aligning the resulting protein sequences, and then displaying the corresponding

nucleotide-level alignment. Use --nucprot to invoke this behavior.

Use --noindel2 to use a Pair HMM with 1 set, rather than 2 sets, of indel states. The transition

probabilities of the model can be set directly with the options illustrated in Figure 1. The substitution

model for nucleotide or amino acid sequence can be chosen with the --model option. For DNA or RNA,

the model can be either the Jukes-Cantor [5] or Tamura-Nei [6] model (default is Tamura-Nei). These

models are further parameterized with the --time, --alphar, --alphay and --beta options. Protein sequences

use the BLOSUM62 substitution matrix transformed such that the equilibrium distribution is equal to the

empirical distribution over amino acids in the input sequences.

M

D2

I2

S E

--gapextend1

--gapextend1

D1

I1

--gapextend2

--gapextend2

--gapopen2 / 2

--gapopen2 / 2

--gapopen1 / 2

--gapopen1 / 2

Figure 1. The default 5-state Pair HMM used by FSA with transitions labeled by the corresponding
command-line options. FSA can optionally use a three-state HMM, which has only one set of Insert (I)
and Delete (D) states; use --noindel2 to trigger this option.

Unless specified otherwise, FSA will use the corresponding transition and emission probabilities

(whether chosen automatically or specified via command-line options) as seeds for the query-specific

learning algorithm.

Parameter estimation options. FSA’s query-specific learning uses unsupervised EM to learn appro-
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priate parameters for each pair of input sequences. The --learngap, --learnemit-bypair and --learnemit-all

options control whether FSA estimates transition probabilities and emission probabilities. If --learnemit-bypair

is set, then FSA learns a separate emission distribution for each pair of sequences (default for nucleotide

sequence); if --learnemit-all is set then FSA learns a single emission distribution for all sequences (de-

fault for amino acid sequence).

The --nolearn options disables all learning. In this case FSA uses the default ProbCons parameters.

The Dirichlet transition and emission regularization scales can be adjusted with --regularization-gapscale

and --regularization-emitscale and regularization can be turned off entirely with --noregularize. The

emission regularization scales correspond to the total number of pseudocount emissions because the

seed distribution for pseudocount calculation (taken to be the seed emission parameters) is normalized

to 1. The emission regularization scales are equal to the number of free parameters in a symmetric pair

emission matrix, 4 · (4− 1)/2 + 4 = 10 for nucleotides and 20 · (20− 1)/2 + 20 = 210 for amino acids.

We have observed that FSA’s learning is insensitive to the transition regularization scale (qualitatively

because there are many transition counts for typical pairs of sequences, thereby dwarfing the effects of

the weak regularizer), which is set to 3 by default.

By default EM terminates when the log-likelihood increases by less than 10% (--mininc 0.1) and a

maximum of three rounds of EM are permitted (--maxrounds 3).

The minimum amount of sequence data for learning transition and emission probabilities can be

controlled with --mingapdata and --minemitdata. By default the minimum data for learning emis-

sion probabilities corresponds approximately to two DNA or RNA sequences of length 60 nucleotides

(--minemitdata 60) or four protein sequences of length 266 amino acids (--minemitdata 1596), corre-

sponding to observing each of the independent parameters of a substitution matrix four times.

Multiple alignment options: sequence annealing. The number of rounds of iterative refinement is

controlled with --refinement. FSA can be run in maximum-sensitivity mode with --maxsn. For users

wanting finer-grained control over the sensitivity/specificity trade-off, the gap factor can be specified with

--gapfactor (the gap factor is explained in the main text). The default is --gapfactor 1, which corresponds
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to the case where sequence annealing stops aligning characters when the probability that a character

is aligned is equal to the probability that it is unaligned (aligned to a gap). The maximum-sensitivity

mode is equivalent to using --gapfactor 0; values > 1 give higher specificity. Dynamic weighting can be

disabled with --nodynamicweights, although this is generally not recommended (see the main text for a

description of weighting).

Alignment speedup options: many sequences. The user can control the fraction or total number

of pairwise comparisons made when building a multiple alignment with the --alignment-fraction and

--alignment-number options. The number of comparisons used when aligning N sequences can lie be-

tween (N − 1) and N · (N − 1)/2; as discussed in the main text, we observe good performance even

when only a subset of pairs are used.

The number of pairwise comparisons used for parameter learning when --learnemit-all (the default

for proteins) is enabled can be similarly controlled with --learning-fraction and --learning-number. Gen-

erally fewer pairwise comparisons are necessary for effective parameter learning than for constructing a

multiple alignment.

The --fast option uses presets which are appropriate for aligning many sequences. It sets --alignment-fraction

to the Erdös-Rényi threshold probability scaled by a factor of 5 and sets --learning-fraction to the thresh-

old scaled by a factor of 2. As suggested by the results in the main text, the heuristics invoked by --fast

are effective for difficult alignment problems.

The --refalign option aligns all sequences to a single reference sequence (taken to be the first sequence

in the input file). No other pairwise comparisons are performed (so a total of (N − 1) comparisons are

made).

Alignment speedup options: long sequences (MUMmer). Anchoring can be turned on with the --anchored

option and similarly disabled with --noanchored. By default, anchoring is turned on for nucleotide se-

quences longer than 200 nucleotides and disabled otherwise. Translated anchoring in protein space is

invoked with --translated. The minimum length of anchors, controlled with --minlen, is 10 for nucleotide

sequence and 7 for amino acid sequence (for anchoring protein sequences or translated anchoring of nu-
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cleotide sequence). Because MUMmer reports only exact matches, by default FSA concatenates adjacent

parallel anchors which are separated by at most 2 mismatches; this can be controlled with --maxjoinlen.

Alignment speedup options: long sequences (exonerate). FSA can use the exonerate pro-

gram [2] to effectively obtain anchors between distant species, for which there are few exact matches.

Use --exonerate to trigger anchor-finding with exonerate as well as MUMmer. By default FSA only

uses candidate alignments with scores ≥ 100; change this with --minscore. Use --softmasked to tell

exonerate that the input sequences are softmasked.

Alignment speedup options: long sequences (Mercator). FSA can use the constraint maps pro-

duced by the homology-mapping program Mercator [7] to constrain the multiple alignment. Use

--mercator to specify the Mercator constraint file.

Memory savings. FSA’s maximum memory consumption during inference can be controlled with

--maxram. If the total RAM available can be read from system information (which FSA can do for

BSD/Darwin and Linux systems), then --maxram is set by default to 85% of the total RAM. If an infer-

ence step requires more than the maximum memory allowed, then FSA leaves those sequences (or parts

of sequences) unaligned.

The speed and memory consumption of each pairwise comparison can be reduced by “banding”

the dynamic programming (DP) matrix with --bandwidth, thereby constraining the algorithm to only

consider aligning characters xi and yj if |i − j| < the bandwidth. Banding can be very effective but

should be used with caution.

FSA uses a sparse representation of posterior probabilities, in which only posterior probabilities of

character alignment greater than a cutoff are stored. By default this cutoff is 0.01; it can be increased

with --minprob to reduce memory usage, although this is generally not recommended.
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6 Utility programs

FSA is distributed with utility programs for viewing log files, manipulating and comparing alignments,

estimating the accuracies of alignments under its statistical model, and viewing the inferred alignment

posterior probabilities.

Viewing log files. FSA uses code from Ian Holmes’s dart library [8] for logging. The script dartlog.pl

can be used to color and follow log files as they are written by FSA.

Comparing alignments. The script cmpalign.pl compares two alignments and computes the cor-

responding accuracy, sensitivity and positive predictive value. This script uses the general-purpose Perl

packages Stockholm and Stockholm::Database for parsing alignments, derived from the pack-

ages of the same names in the dart library [8]. They have been modified to parse more alignment

formats (Stockholm, multi-FASTA, ClustalW and MSF).

Working with alignments. The program prot2codon finds the codon-level (nucleotide) alignment

implied by a given alignment at the amino acid level.

The program gapcleaner implements the minimal chain decomposition described in the main text

to find the most parsimonious ordering of indel events in an alignment.

Working with whole-genome alignments. FSA comes with programs for working with whole-genome

alignments produced by FSA in conjunction with the homology-mapping program Mercator [7]:

• slice mercator alignment: Extract a subalignment from a FSA–Mercatorwhole-genome

alignment.

• isect mercator alignment gff: Extract subalignments from a FSA–Mercator whole-

genome alignment for the features in a GFF file.

• map coords: Map coordinates for one genome to another genome using the base-level homology

mapping implied by a FSA–Mercator whole-genome alignment.
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• map gff coords: Map coordinates for the features in a GFF file for one genome to another

genome using the base-level homology mapping implied by a FSA–Mercator whole-genome

alignment.

Using FSA’s statistical model.

• accuracy.pl: Compute the expected accuracy, sensitivity, positive predictive value, certainty

and consistency for an alignment under FSA’s statistical model. Use in conjunction with the --gui

option for FSA.

• seqdotplot.pl: Create colored dotplots of the pairwise alignment posterior probabilities. Use

in conjunction with the --write-params option for FSA.

seqdotplot.pl is from the dart library.
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7 The mathematics of distance-based alignment

The POSET view of alignments. FSA defines an alignment to be a set of homology statements be-

tween characters. This definition of an alignment is expressed mathematically as a partially ordered

set (POSET) [9], which is equivalent to viewing an alignment as a Directed Acyclic Graph (DAG) as

described in [10] and implemented in the POA alignment program.

A biologically-intuitive metric on alignments (introduced in [11]) emerges naturally from this def-

inition. We define the distance d (A∗,A) between two alignments to be just the number of characters

for which they make different homology statements. For two sequences X and Y of lengths LX and

LY , the distance between two alignments is just d (A∗,A) = LX + LY − Sim (A∗,A), where the sim-

ilarity measure Sim (A∗,A) is the number of characters for which A∗ and A make identical homology

statements. The distance is therefore computed as:

d (A∗,A) = LX + LY −

2 ·
∑

i,j : xi∼yj∈A∗

1 {xi ∼ yj ∈ A} (1)

+
∑

i : xi∼−∈A∗

1 {xi ∼ − ∈ A}+
∑

j : −∼yj∈A∗

1 {− ∼ yj ∈ A}

 .

This distance d (A∗,A) between alignments also has a natural mathematical expression. An align-

ment A induces a hierarchy on (or partition of) the set X of all characters in the aligned sequences. The

distance between two alignments is just the size of the symmetric difference of the two corresponding

hierarchies induced on the set X, d (A∗,A) = µ (A∗ ∆A), where the size µ of the symmetric difference

is the cardinality of the set Y which the resulting symmetric difference is defined over.

Inferring indel events. As discussed earlier, the POSET definition of alignments does not attach sig-

nificance to gap orderings which do not affect the homology specifications of the alignment. FSA outputs

the global alignment with the minimum number of “gap openings” across the individual sequences.

Finding this minimum-indel global alignment corresponds to finding a minimal-chain decomposition

of the alignment POSET. Such a minimal-chain decomposition (Dilworth decomposition) of an arbitrary
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POSET can be found in time cubic in the number of nodes [12]. Thanks to the special structure of

sequence graphs, however, by Theorem 7.1 FSA can find this minimum-indel global alignment in time

linear in the number of vertices and edges in the graph with a depth-first search.

Theorem 7.1 The minimal-chain decomposition of a POSET which arises from a linear extension of the

POSET can be found in time linear in the number of nodes by a depth-first search of the corresponding

DAG.

Proof Let M(P) be the minimal number of chains in a chain decomposition arising from a linear exten-

sion of a POSET P with elements {x}. Note that M(P) ≥ I(P), where

I(P) =
∑

x : indegree (x)>1

indegree (x) .

Here we are treating the POSET as a DAG. More precisely, the DAG represents the transitive reduction

of the partial order, wherein nodes of the DAG represent one or more characters of the alignment and

edges of the DAG represent the ordering imposed by the sequences.

Now consider imposing a topological ordering on the corresponding DAG according to the reverse

finishing times of a postorder traversal of the graph. This topological sort, consisting of a sequence of

chains of the POSET, terminates each chain when the depth-first search reaches a vertex x of the graph

for which indegree(x) > 1. The topological sort obtained by a postorder traversal therefore has exactly

I(P) chains. As M(P) ≥ I(P), this is a minimal chain decomposition.

The objective function. FSA seeks to find the alignment with the minimum expected distance to the

truth, where the distance d (A∗,A) between two alignments is defined in Equation 1 as the number

of characters for which they make different homology statements. The (pairwise) alignment with the
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minimum expected distance to the truth is therefore

Aoptimal = argmin
A∗

E [d (A∗,A)]P(A|X,Y ) (2)

= argmin
A∗

E [LX + LY − Sim (A∗,A)]P(A|X,Y )

= argmax
A∗

E [Sim (A∗,A)]P(A|X,Y ) .

The alignment with the minimum expected distance to the truth is therefore equivalent to the alignment

with the maximum expected similarity to the truth. This gives a natural measure of alignment accuracy,

where we define alignment accuracy as the similarity to the truth and the expected alignment accuracy

as the expected similarity to the truth,

Acc (A∗) = Sim (A∗, truth) /(LX + LY ) (3)

E [Acc (A∗)]P(A|X,Y ) = E [Sim (A∗,A)]P(A|X,Y ) /(LX + LY ) .

We divide by (LX + LY ) to normalize the accuracy to the interval [0, 1]. We will speak equivalently of

finding the alignment with the highest expected similarity to the truth and the highest expected accuracy.

The posterior probabilities over alignments P (A|X, Y ) used in the optimization are given by FSA’s

statistical model (a Pair HMM). Recalling that Sim (A∗,A) is the number of characters for which A∗

and A make identical homology statements, we can express the optimal alignment by taking the expec-

tation of Equation 1 and using the posterior probabilities that characters are aligned or gapped (these are
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computed with the Forward-Backward algorithm):

Aoptimal = argmax
A∗

E [Sim (A∗,A)]P(A|X,Y ) (4)

= argmax
A∗

∑
A

[P (A|X, Y ) Sim (A∗,A)]

= argmax
A∗

2 ·
∑

i,j : xi∼yj∈A∗

P(xi ∼ yj |X, Y )

+
∑

i : xi∼−∈A∗

P(xi ∼ −|X, Y ) +
∑

j : −∼yj∈A∗

P(− ∼ yj |X, Y )

 ,

FSA extends this definition of an optimal pairwise alignment to an optimal multiple alignment by tak-

ing sum-of-pairs over all sequences (see “Theoretical justification of distance-based alignment” for a

derivation of the approximations involved therein).

FSA allows the user to control the sensitivity/specificity trade-off of the method by introducing a gap

factor gf into the objective function (Equation 4) being optimized,

Aoptimal = argmax
A∗

2 ·
∑

i,j : xi∼yj∈A∗

P(xi ∼ yj |X, Y )

+gf ·

 ∑
i : xi∼−∈A∗

P(xi ∼ −|X, Y ) +
∑

j : −∼yj∈A∗

P(− ∼ yj |X, Y )

 ,

A gap factor gf = 1 corresponds to optimizing the expected accuracy, in which case we stop aligning

characters when the probability that a character is aligned is equal to the probability that it is unaligned

(aligned to a gap); a lower gap factor emphasizes sensitivity and a higher gap factor emphasizes speci-

ficity. By default FSA uses gf = 1.

A steepest-ascent algorithm. The sequence annealing algorithm greedily attempts to maximize the

objective function given in Equation 4, where the posterior probabilities of alignment are given by FSA’s

statistical model. Because exact optimization is tractable only for two (short) sequences, sequence an-

nealing depends on effective heuristics for optimizing this function.
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Sequence annealing begins with the null alignment (all characters unaligned) and iteratively aligns

single columns until a stopping criteria is reached. In FSA’s view of an alignment as a POSET (DAG),

aligning single columns during sequence annealing is equivalent to adding relations (adding edges),

maintaining alignment consistency is equivalent to ensuring that the partial order is valid (ensuring that

the graph is acyclic) and producing a “global” alignment is equivalent to choosing a linear extension

(choosing a topological order).

This graph-based approach to sequence alignment, which is used by programs including DIALIGN

[13], POA [10], AMAP and FSA, was given an early graph-based formalization in [14]. The resulting

algorithm in [14] is qualitatively similar to the sequence annealing approach which AMAP and FSA

use. DIALIGN’s approach [13], wherein homologous segments of sequences, rather than individual

characters, are aligned, uses results from this formalization [15].

As a greedy algorithm, sequence annealing first aligns the columns which will give the largest (incre-

mental) increase in the expected accuracy of the alignment (strictly speaking, the first columns aligned

have maximum weight; see below). FSA therefore internally creates a series of alignments with in-

creasing expected sensitivity and decreasing expected positive predictive value or precision. The final

alignment, which has the highest expected accuracy, is the one most relevant in the majority of appli-

cations, but the user can view all intermediate alignments produced by the sequence annealing process

with the GUI.

In the current implementation in FSA, sequence annealing is a steepest-ascent hill-climbing algo-

rithm for maximizing the expected accuracy criterion, and as such will find a local, rather than global,

optimum of the objective function. Most common variants of the multiple alignment problem have been

proved to be NP-hard [16], strongly suggesting that the expected accuracy approach described here is

NP-hard as well. However, our experiments with simulated annealing strategies, which have given mini-

mal performance increases, suggest that the expected-accuracy alignment landscape is relatively smooth

at the large scale, thereby permitting a greedy approach to be very effective. We have additionally ob-

served that the majority of the steps taken by the greedy algorithm (the first 80-90% on typical datasets)

involve aligning characters whose homology is completely certain under FSA’s model, further suggest-
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ing that a greedy strategy is effective on typical accuracy landscapes. Sequence annealing (the greedy

algorithm) followed by iterative refinement appears to be the best strategy to use.

The order in which columns are aligned is given by a weighting function on the posterior probabilities

of alignment. For two columns, each containing a single character (xi and yj), the weighting function is

just

2 · P(xi ∼ yj |X, Y )
/

(P(xi ∼ −|X, Y ) + P(− ∼ yj |X, Y ))

(this is the “tgf” weighting function described in [11]). If the two columns each contain one or more

characters, then the numerator (“match probabilities”) and denominator (“gap probabilities”) become

sums over the characters pairs which are newly-aligned after aligning the two columns (see Theorem 7.2).

Sequence annealing begins by constructing a heap of all possible alignments of (edges between)

single characters using this weighting function. At each step of the algorithm, a single candidate edge is

popped from the heap. If the columns joined by the edge have been modified since the weight was last

calculated, then the weight is re-calculated as specified in Theorem 7.2. If the new weight is no longer

greater than the weight of the next edge on the heap (if the heap ordering is incorrect), then the edge

is re-inserted into the heap and the next edge is popped. If the edge does have the highest weight (if

the heap ordering is correct), then the edge is added to the alignment if it is not inconsistent with edges

added previously. Treating a multiple alignment as a DAG, sequence annealing quickly performs this

consistency-checking of candidate edges using the Pearce-Kelly algorithm [17] for online topological

ordering of directed graphs. While we have phrased the algorithm in the edge-insertion framework,

the implementation uses a node-contraction framework, wherein two nodes are merged when they are

connected by an accepted edge.

The sequence annealing algorithm described above and introduced in AMAP has unfavorable compu-

tational complexity of O(N4) for aligning N sequences. Consider the simple case of building a complete

alignment of N sequences, for which there will be O(N2) edges if we perform an all-pairs comparison.

Because a complete alignment of N sequences requires only O(N) edges to assemble, the majority of

the O(N2) candidate edges must be eventually rejected due to consistency constraints. Most of these will

not be examined (popped from the heap) until the alignment is largely complete. This introduces an enor-
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mous computational cost: re-weighting a candidate edge between two completely-assembled columns

costs O(N2) due to the sum-of-pairs operation required, and so in the worst case, re-weighting of these

candidate edges will therefore cost O(N2) for each edge. Because the number of inconsistent edges

grows as O(N2), whereas the number of consistent edges grows only as O(N), the sequence annealing

algorithm of [11] has a worse-case complexity of O(N4), making it impractical for many sequences.

The sequence annealing algorithm therefore has two costly parts, consistency-checking with the

Pearce-Kelly algorithm and edge re-weighting. While the analysis above may suggest that it is best

to always perform consistency-checking before edge re-weighting, this is only clearly true once the

alignment is largely assembled. There are two phases in the alignment construction, an initial phase, in

which most candidate edges are accepted and the basic structure of the alignment is assembled, and a

completion phase, in which most candidate edges are rejected and the structure of the alignment changes

little. In the initial phase it is best to perform re-weighting first, since re-weighting is cheap on a sparse

graph and most edges will pass the consistency checks; in the completion phase it is best to perform

consistency-checking first, since re-weighting is expensive and most edges will fail consistency checks.

Finding an optimal solution to this trade-off is an open problem. FSA uses a hybrid approach,

wherein it performs several fast partial consistency checks first, such as checking that candidate edges

do not map to a single column of the current alignment, re-weights edges which pass these checks,

and only then performs a “full” consistency check with a search of the DAG. FSA avoids performing

repeated searches between identical columns by maintaining lookup tables of consistent and inconsistent

edges which are iteratively constructed as graph searches are performed for consistency-checking of

new candidate edges. It additionally amortizes re-weighting calculations to minimize their cost and

keeps track of re-weighted candidate edges to avoid the cost of re-weighting “duplicate” candidate edges

which join columns of the current alignment for which we have already seen and re-weighted a candidate

edge. The resulting new sequence annealing algorithm avoids the bad scaling described above, giving

it an approximate complexity of O(N2) for an all-pairs approach to typical problems, with the true

complexity depending on the structure of the graph. The scaling with the number of sequences is further

reduced to approximately O(N · log N) in --fast mode.
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By Theorem 7.2, the sequence annealing algorithm is a true steepest ascent algorithm in the weight-

ing function [11].

Theorem 7.2 The weight of a candidate edge w (col1, col2) between columns can only decrease as more

characters are aligned to the columns. Sequence annealing is therefore a true steepest-ascent algorithm

in the weighting function given by

w (col1, col2) = 2 ·
∑

xi : X∈col1

∑
yj : Y ∈col2

P(xi ∼ yj |X, Y )

/  ∑
xi : X∈col1

∑
yj : Y ∈col2

[P(xi ∼ −|X, Y ) + P(− ∼ yj |X, Y )]


between two columns col1, col2. This follows from this fact:

If l1, . . . , lk and m1, . . . ,mk are positive numbers, then

max
k

lk
mk
≥

∑
k lk∑

k mk
.

(This theorem and its proof are from [11].)

Proof Let C =
P

k lkP
k mk

and assume the contrary. Then we have

max
k

lk
mk

< C ,

from which it follows that lk < C ·mk ∀ k. However, then
P

k lkP
k mk

< C, which is a contradiction.

We have observed that in practice, FSA’s sequence annealing algorithm is approximately as fast as

inference. This is supported by recent theoretical analysis: The average running time of the Pearce-Kelly

algorithm on a complete random graph with n nodes is O
(
n2 log2 n

)
[18]. If we perform distance-

based alignment of N sequences of length L, then this gives a runtime of O
(
N2 · L2 · log2(N · L)

)
, so

in the “worst average case” for sequence annealing in which we have a near-complete graph (sequence

graphs are generically sparse), sequence annealing costs only logarithmically more than inference. FSA’s
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alignment speedup techniques can further reduce this. While this average-case analysis does not take into

account the cost of re-weighting candidate edges, as described above, FSA’s revised annealing algorithm

reduces the cost of re-weighting to approximately O(N2), allowing the bound to hold.

Theoretical justification of distance-based alignment. Our distance-based approach to the multiple

alignment problem can be viewed as an approximation to more complex models of multiple alignments.

Analogously to the case of Neighbor-Joining, which uses only pairwise comparisons to approximate

full models of likelihoods on trees, distance-based alignment uses only pairwise inference of alignment

probabilities to approximate complete models of sequences evolving on trees.

Consider finding the optimal multiple alignment of sequences X1, ..., XN related by a phylogenetic

tree T , so that our statistical model defines probabilities P (A|X1, ..., XN , T ) over multiple alignments

A given a tree T . The generalization of Equation 2 to this case is straightforward:

Aoptimal = argmin
A∗

E [d (A∗,A|T )]P(A|X1,...,XN ,T ) .

We can rewrite the objective function as

E [d (A∗,A| T )]P(A|X1,...,XN ,T ) =
∑
A

P (A|X1, ...XN , T ) d (A∗,A|T ) (5)

=
1(
N
2

) ∑
i,j

∑
Aij

∑
A|Aij

P (A|X1, ..., XN , T ) d (A∗,A|T ) , (6)

where in the last form we have introduced a sum over pairwise alignments Aij of sequences Xi and Xj

andA|Aij refers to a multiple alignmentA constrained to contain the pairwise alignmentAij . Equation 6

is presented to show that it is meaningful to think of taking a sum-of-pairs over sequences even within

the framework of a full model of sequences on trees.

Motivated by Equation 5, we derive a distance-based alignment method from this explicit model

of alignments on a tree by making two restrictions. We define the distance d (A∗,A|T ) between two
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multiple alignments of sequences related by a tree T as a weighted sum of pairwise distances,

d (A∗,A|T ) =
∑
i,j

wij(T ) d
(
A∗ij ,Aij

)
, (7)

and use a pairwise approximation to the full probabilistic model,

∑
A|Aij

P (A|X1, ..., XN , T ) = P (Aij |Xi, Xj) . (8)

The first restriction, on distances between multiple alignments, is related to the approximations made

by distance-based phylogenetic reconstruction methods such as Neighbor-Joining [19] and BIONJ [20].

In this paper we use weights wij(T ) = 1 ∀ i, j, T , which corresponds to a phylogeny-free approach

to alignment. In principle these weights can be adjusted according to the known phylogeny using the

approach of Altschul et al. [21]. The second restriction, on computation of the likelihood function,

is well-studied: The Pair HMM used by FSA is an approximation (in a precise sense; see, e.g., [22])

of pairwise stochastic models of substitutions and indels such as the Thorne-Kishino-Felsenstein ’91

model [23] and its extensions. Substituting Equations 7 and 8 into Equation 5, we obtain the sum-of-

pairs objective function use by FSA (Equation 2),

E [d (A∗,A| T )]P(A|X1,...,XN ,T ) =
∑
i,j

wij(T )
∑
Aij

d
(
A∗ij ,Aij

)
P (Aij |Xi, Xj) . (9)

We do not have theoretical results on the degree of approximation involved in Equations 7 and 8,

and so at present these approximations remain well-motivated heuristics. However, much as Neighbor-

Joining was long seen as a murky heuristic before being revealed as a greedy optimization of a principled

objective function [24,25], we believe that our distance-based method should yield precise approximation

bounds via a more detailed understanding of possible metrics on alignments of sequences related by a

tree as well as the annealing algorithm itself.

We note that the presentation above can easily be further generalized to include, for example, se-

quences which have undergone recombination.
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