Additional documentation for the Gay-Berne ellipsoidal potential as implemented in LAMMPS

Mike Brown, Sandia National Labs, April 2007

The Gay-Berne anisotropic LJ interaction between pairs of dissimilar ellipsoidal particles is given by

$$
U\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{r}_{12}\right)=\mathbf{U}_{\mathbf{r}}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{r}_{12}, \gamma\right) \cdot \eta_{12}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, v\right) \cdot \chi_{12}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{r}_{12}, \mu\right)
$$

where $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$ are the transformation matrices from the simulation box frame to the body frame and \mathbf{r}_{12} is the center to center vector between the particles. U_{r} controls the shifted distance dependent interaction based on the distance of closest approach of the two particles (h_{12}) and the userspecified shift parameter gamma:

$$
\begin{gathered}
U_{r}=4 \epsilon\left(\varrho^{12}-\varrho^{6}\right) \\
\varrho=\frac{\sigma}{h_{12}+\gamma \sigma}
\end{gathered}
$$

Let the shape matrices $\mathbf{S}_{\mathbf{i}}=\operatorname{diag}\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}\right)$ be given by the ellipsoid radii. The η orientation-dependent energy based on the user-specified exponent v is given by

$$
\begin{gathered}
\eta_{12}=\left[\frac{2 s_{1} s_{2}}{\operatorname{det}\left(\mathbf{G}_{\mathbf{1 2}}\right)}\right]^{v / 2}, \\
s_{i}=\left[a_{i} b_{i}+c_{i} c_{i}\right]\left[a_{i} b_{i}\right]^{1 / 2},
\end{gathered}
$$

and

$$
\mathbf{G}_{12}=\mathbf{A}_{1}^{\mathrm{T}} \mathbf{S}_{1}^{2} \mathbf{A}_{1}+\mathbf{A}_{2}^{\mathrm{T}} \mathbf{S}_{2}^{2} \mathbf{A}_{2}=\mathbf{G}_{1}+\mathbf{G}_{2}
$$

Let the relative energy matrices $\mathbf{E}_{\mathbf{i}}=\operatorname{diag}\left(\epsilon_{\mathbf{i}}, \epsilon_{\mathbf{i b}}, \epsilon_{\mathbf{i c}}\right)$ be given by the relative well depths (dimensionless energy scales inversely proportional to the well-depths of the respective orthogonal configurations of the interacting
molecules). The χ orientation-dependent energy based on the user-specified exponent μ is given by

$$
\begin{gathered}
\chi_{12}=\left[2 \hat{\mathbf{r}}_{12}^{T} \mathbf{B}_{12}^{-1} \hat{\mathbf{r}}_{12}\right]^{\mu}, \\
\hat{\mathbf{r}}_{12}=\mathbf{r}_{12} /\left|\mathbf{r}_{12}\right|,
\end{gathered}
$$

and

$$
\mathbf{B}_{12}=\mathbf{A}_{1}^{\mathrm{T}} \mathbf{E}_{1}^{2} \mathbf{A}_{1}+\mathbf{A}_{2}^{\mathrm{T}} \mathbf{E}_{2}^{2} \mathbf{A}_{2}=\mathbf{B}_{1}+\mathbf{B}_{2}
$$

Here, we use the distance of closest approach approximation given by the Perram reference, namely

$$
\begin{gathered}
h_{12}=r-\sigma_{12}\left(\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{r}_{12}\right), \\
r=\left|\mathbf{r}_{\mathbf{1 2}}\right|,
\end{gathered}
$$

and

$$
\sigma_{12}=\left[\frac{1}{2} \hat{\mathbf{r}}_{12}^{T} \mathbf{G}_{\mathbf{1 2}}^{-1} \hat{\mathbf{r}}_{\mathbf{1 2}} .\right]^{-\mathbf{1} / \mathbf{2}}
$$

Forces and Torques: Because the analytic forces and torques have not been published for this potential, we list them here:

$$
\mathbf{f}=-\eta_{12}\left(\mathbf{U}_{\mathbf{r}} \cdot \frac{\partial \chi_{12}}{\partial \mathbf{r}}+\chi_{12} \cdot \frac{\partial \mathbf{U}_{\mathbf{r}}}{\partial \mathbf{r}}\right)
$$

where the derivative of U_{r} is given by (see Allen reference)

$$
\begin{gathered}
\frac{\partial U_{r}}{\partial r}=\frac{\partial U_{S L J}}{\partial r} \hat{\mathbf{r}}_{12}+r^{-2} \frac{\partial U_{S L J}}{\partial \varphi}\left[\kappa-\left(\kappa^{\mathbf{T}} \cdot \hat{\mathbf{r}}_{12}\right) \hat{\mathbf{r}}_{12}\right] \\
\frac{\partial U_{S L J}}{\partial \varphi}=24 \epsilon\left(2 \varrho^{13}-\varrho^{7}\right) \sigma_{12}^{3} / 2 \sigma \\
\frac{\partial U_{S L J}}{\partial r}=24 \epsilon\left(2 \varrho^{13}-\varrho^{7}\right) / \sigma
\end{gathered}
$$

and

$$
\kappa=\mathbf{G}_{12}^{-1} \cdot \mathbf{r}_{12} .
$$

The derivate of the χ term is given by

$$
\frac{\partial \chi_{12}}{\partial r}=-r^{-2} \cdot 4.0 \cdot\left[\iota-\left(\iota^{\mathbf{T}} \cdot \hat{\mathbf{r}}_{12}\right) \hat{\mathbf{r}}_{12}\right] \cdot \mu \cdot \chi_{12}^{(\mu-\mathbf{1}) / \mu}
$$

and

$$
\iota=\mathbf{B}_{12}^{-1} \cdot \mathbf{r}_{12} .
$$

The torque is given by:

$$
\begin{gathered}
\tau_{\mathbf{i}}=\mathbf{U}_{\mathbf{r}} \eta_{12} \frac{\partial \chi_{12}}{\partial \mathbf{q}_{\mathbf{i}}}+\chi_{12}\left(\mathbf{U}_{\mathbf{r}} \frac{\partial \eta_{12}}{\partial \mathbf{q}_{\mathbf{i}}}+\eta_{12} \frac{\partial \mathbf{U}_{\mathbf{r}}}{\partial \mathbf{q}_{\mathbf{i}}}\right), \\
\frac{\partial U_{r}}{\partial \mathbf{q}_{\mathbf{i}}}=\mathbf{A}_{\mathbf{i}} \cdot\left(-\kappa^{\mathbf{T}} \cdot \mathbf{G}_{\mathbf{i}} \times \mathbf{f}_{\mathbf{k}}\right), \\
\mathbf{f}_{\mathbf{k}}=-\mathbf{r}^{-\mathbf{2}} \frac{\delta \mathbf{U}_{\mathbf{S L J}}}{\delta \varphi} \kappa,
\end{gathered}
$$

and

$$
\frac{\partial \chi_{12}}{\partial \mathbf{q}_{\mathbf{i}}}=4.0 \cdot r^{-2} \cdot \mathbf{A}_{\mathbf{i}}\left(-\iota^{\mathbf{T}} \cdot \mathbf{B}_{\mathbf{i}} \times \iota\right) .
$$

For the derivative of the η term, we were unable to find a matrix expression due to the determinant. Let $a_{m i}$ be the mth row of the rotation matrix A_{i}. Then,

$$
\frac{\partial \eta_{12}}{\partial \mathbf{q}_{\mathbf{i}}}=\mathbf{A}_{\mathbf{i}} \cdot \sum_{\mathbf{m}} \mathbf{a}_{\mathbf{m i}} \times \frac{\partial \eta_{\mathbf{1 2}}}{\partial \mathbf{a}_{\mathbf{m i}}}=\mathbf{A}_{\mathbf{i}} \cdot \sum_{\mathbf{m}} \mathbf{a}_{\mathbf{m i}} \times \mathbf{d}_{\mathbf{m i}}
$$

where $d_{m} i$ represents the mth row of a derivative matrix D_{i},

$$
\mathbf{D}_{\mathbf{i}}=-\frac{\mathbf{1}}{\mathbf{2}} \cdot\left(\frac{\mathbf{2 s} \mathbf{s} \mathbf{s} \mathbf{2}}{\operatorname{det}\left(\mathbf{G}_{\mathbf{1 2}}\right)}\right)^{v / \mathbf{2}} \cdot \frac{v}{\operatorname{det}\left(\mathbf{G}_{\mathbf{1 2}}\right)} \cdot \mathbf{E},
$$

where the matrix E gives the derivate with respect to the rotation matrix,

$$
\mathbf{E}=\left[\mathbf{e}_{\mathbf{m y}}\right]=\frac{\partial \eta_{\mathbf{1 2}}}{\partial \mathbf{A}_{\mathbf{i}}},
$$

and

$$
e_{m y}=\operatorname{det}\left(\mathbf{G}_{12}\right) \cdot \operatorname{trace}\left[\mathbf{G}_{12}^{-1} \cdot\left(\hat{\mathbf{p}}_{\mathbf{y}} \otimes \mathbf{a}_{\mathbf{m}}+\mathbf{a}_{\mathbf{m}} \otimes \hat{\mathbf{p}}_{\mathbf{y}}\right) \cdot \mathbf{s}_{\mathbf{m} \mathbf{m}}^{2}\right] .
$$

Here, p_{v} is the unit vector for the axes in the lab frame ($p 1=[1,0,0], p 2=$ $[0,1,0]$, andp $3=[0,0,1])$ and $s_{m m}$ gives the mth radius of the ellipsoid i.

