![]() |
LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
|
| subroutine slagv2 | ( | real, dimension( lda, * ) | A, |
| integer | LDA, | ||
| real, dimension( ldb, * ) | B, | ||
| integer | LDB, | ||
| real, dimension( 2 ) | ALPHAR, | ||
| real, dimension( 2 ) | ALPHAI, | ||
| real, dimension( 2 ) | BETA, | ||
| real | CSL, | ||
| real | SNL, | ||
| real | CSR, | ||
| real | SNR | ||
| ) |
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Download SLAGV2 + dependencies [TGZ] [ZIP] [TXT]
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0. | [in,out] | A | A is REAL array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-part'' of the
generalized Schur form. |
| [in] | LDA | LDA is INTEGER
THe leading dimension of the array A. LDA >= 2. |
| [in,out] | B | B is REAL array, dimension (LDB, 2)
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-part'' of the
generalized Schur form. |
| [in] | LDB | LDB is INTEGER
THe leading dimension of the array B. LDB >= 2. |
| [out] | ALPHAR | ALPHAR is REAL array, dimension (2) |
| [out] | ALPHAI | ALPHAI is REAL array, dimension (2) |
| [out] | BETA | BETA is REAL array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
be zero. |
| [out] | CSL | CSL is REAL
The cosine of the left rotation matrix. |
| [out] | SNL | SNL is REAL
The sine of the left rotation matrix. |
| [out] | CSR | CSR is REAL
The cosine of the right rotation matrix. |
| [out] | SNR | SNR is REAL
The sine of the right rotation matrix. |
Definition at line 159 of file slagv2.f.