LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ zgeqr2()

subroutine zgeqr2 ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
integer  INFO 
)

ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.

Download ZGEQR2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGEQR2 computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2019
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

Definition at line 132 of file zgeqr2.f.

132 *
133 * -- LAPACK computational routine (version 3.9.0) --
134 * -- LAPACK is a software package provided by Univ. of Tennessee, --
135 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136 * November 2019
137 *
138 * .. Scalar Arguments ..
139  INTEGER INFO, LDA, M, N
140 * ..
141 * .. Array Arguments ..
142  COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
143 * ..
144 *
145 * =====================================================================
146 *
147 * .. Parameters ..
148  COMPLEX*16 ONE
149  parameter( one = ( 1.0d+0, 0.0d+0 ) )
150 * ..
151 * .. Local Scalars ..
152  INTEGER I, K
153  COMPLEX*16 ALPHA
154 * ..
155 * .. External Subroutines ..
156  EXTERNAL xerbla, zlarf, zlarfg
157 * ..
158 * .. Intrinsic Functions ..
159  INTRINSIC dconjg, max, min
160 * ..
161 * .. Executable Statements ..
162 *
163 * Test the input arguments
164 *
165  info = 0
166  IF( m.LT.0 ) THEN
167  info = -1
168  ELSE IF( n.LT.0 ) THEN
169  info = -2
170  ELSE IF( lda.LT.max( 1, m ) ) THEN
171  info = -4
172  END IF
173  IF( info.NE.0 ) THEN
174  CALL xerbla( 'ZGEQR2', -info )
175  RETURN
176  END IF
177 *
178  k = min( m, n )
179 *
180  DO 10 i = 1, k
181 *
182 * Generate elementary reflector H(i) to annihilate A(i+1:m,i)
183 *
184  CALL zlarfg( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
185  $ tau( i ) )
186  IF( i.LT.n ) THEN
187 *
188 * Apply H(i)**H to A(i:m,i+1:n) from the left
189 *
190  alpha = a( i, i )
191  a( i, i ) = one
192  CALL zlarf( 'Left', m-i+1, n-i, a( i, i ), 1,
193  $ dconjg( tau( i ) ), a( i, i+1 ), lda, work )
194  a( i, i ) = alpha
195  END IF
196  10 CONTINUE
197  RETURN
198 *
199 * End of ZGEQR2
200 *
Here is the call graph for this function:
Here is the caller graph for this function:
zlarf
subroutine zlarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition: zlarf.f:130
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
zlarfg
subroutine zlarfg(N, ALPHA, X, INCX, TAU)
ZLARFG generates an elementary reflector (Householder matrix).
Definition: zlarfg.f:108