LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ zgeqr2p()

subroutine zgeqr2p ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
integer  INFO 
)

ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Download ZGEQR2P + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGEQR2P computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix with nonnegative diagonal
    entries;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n). The diagonal entries of R
          are real and nonnegative; the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2019
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

 See Lapack Working Note 203 for details

Definition at line 136 of file zgeqr2p.f.

136 *
137 * -- LAPACK computational routine (version 3.9.0) --
138 * -- LAPACK is a software package provided by Univ. of Tennessee, --
139 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140 * November 2019
141 *
142 * .. Scalar Arguments ..
143  INTEGER INFO, LDA, M, N
144 * ..
145 * .. Array Arguments ..
146  COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
147 * ..
148 *
149 * =====================================================================
150 *
151 * .. Parameters ..
152  COMPLEX*16 ONE
153  parameter( one = ( 1.0d+0, 0.0d+0 ) )
154 * ..
155 * .. Local Scalars ..
156  INTEGER I, K
157  COMPLEX*16 ALPHA
158 * ..
159 * .. External Subroutines ..
160  EXTERNAL xerbla, zlarf, zlarfgp
161 * ..
162 * .. Intrinsic Functions ..
163  INTRINSIC dconjg, max, min
164 * ..
165 * .. Executable Statements ..
166 *
167 * Test the input arguments
168 *
169  info = 0
170  IF( m.LT.0 ) THEN
171  info = -1
172  ELSE IF( n.LT.0 ) THEN
173  info = -2
174  ELSE IF( lda.LT.max( 1, m ) ) THEN
175  info = -4
176  END IF
177  IF( info.NE.0 ) THEN
178  CALL xerbla( 'ZGEQR2P', -info )
179  RETURN
180  END IF
181 *
182  k = min( m, n )
183 *
184  DO 10 i = 1, k
185 *
186 * Generate elementary reflector H(i) to annihilate A(i+1:m,i)
187 *
188  CALL zlarfgp( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
189  $ tau( i ) )
190  IF( i.LT.n ) THEN
191 *
192 * Apply H(i)**H to A(i:m,i+1:n) from the left
193 *
194  alpha = a( i, i )
195  a( i, i ) = one
196  CALL zlarf( 'Left', m-i+1, n-i, a( i, i ), 1,
197  $ dconjg( tau( i ) ), a( i, i+1 ), lda, work )
198  a( i, i ) = alpha
199  END IF
200  10 CONTINUE
201  RETURN
202 *
203 * End of ZGEQR2P
204 *
Here is the call graph for this function:
Here is the caller graph for this function:
zlarf
subroutine zlarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition: zlarf.f:130
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
zlarfgp
subroutine zlarfgp(N, ALPHA, X, INCX, TAU)
ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition: zlarfgp.f:106