LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ cerrhe()

subroutine cerrhe ( character*3  PATH,
integer  NUNIT 
)

CERRHE

CERRHEX

Purpose:
 CERRHE tests the error exits for the COMPLEX routines
 for Hermitian indefinite matrices.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2017
Purpose:
 CERRHE tests the error exits for the COMPLEX routines
 for Hermitian indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise cerrhe.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 57 of file cerrhe.f.

57 *
58 * -- LAPACK test routine (version 3.8.0) --
59 * -- LAPACK is a software package provided by Univ. of Tennessee, --
60 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
61 * November 2017
62 *
63 * .. Scalar Arguments ..
64  CHARACTER*3 PATH
65  INTEGER NUNIT
66 * ..
67 *
68 * =====================================================================
69 *
70 *
71 * .. Parameters ..
72  INTEGER NMAX
73  parameter( nmax = 4 )
74 * ..
75 * .. Local Scalars ..
76  CHARACTER*2 C2
77  INTEGER I, INFO, J
78  REAL ANRM, RCOND
79 * ..
80 * .. Local Arrays ..
81  INTEGER IP( NMAX )
82  REAL R( NMAX ), R1( NMAX ), R2( NMAX )
83  COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
84  $ E( NMAX ), W( 2*NMAX ), X( NMAX )
85 * ..
86 * .. External Functions ..
87  LOGICAL LSAMEN
88  EXTERNAL lsamen
89 * ..
90 * .. External Subroutines ..
98  $ chptri, chptrs
99 * ..
100 * .. Scalars in Common ..
101  LOGICAL LERR, OK
102  CHARACTER*32 SRNAMT
103  INTEGER INFOT, NOUT
104 * ..
105 * .. Common blocks ..
106  COMMON / infoc / infot, nout, ok, lerr
107  COMMON / srnamc / srnamt
108 * ..
109 * .. Intrinsic Functions ..
110  INTRINSIC cmplx, real
111 * ..
112 * .. Executable Statements ..
113 *
114  nout = nunit
115  WRITE( nout, fmt = * )
116  c2 = path( 2: 3 )
117 *
118 * Set the variables to innocuous values.
119 *
120  DO 20 j = 1, nmax
121  DO 10 i = 1, nmax
122  a( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
123  af( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
124  10 CONTINUE
125  b( j ) = 0.e+0
126  e( j ) = 0.e+0
127  r1( j ) = 0.e+0
128  r2( j ) = 0.e+0
129  w( j ) = 0.e+0
130  x( j ) = 0.e+0
131  ip( j ) = j
132  20 CONTINUE
133  anrm = 1.0
134  ok = .true.
135 *
136  IF( lsamen( 2, c2, 'HE' ) ) THEN
137 *
138 * Test error exits of the routines that use factorization
139 * of a Hermitian indefinite matrix with patrial
140 * (Bunch-Kaufman) diagonal pivoting method.
141 *
142 * CHETRF
143 *
144  srnamt = 'CHETRF'
145  infot = 1
146  CALL chetrf( '/', 0, a, 1, ip, w, 1, info )
147  CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
148  infot = 2
149  CALL chetrf( 'U', -1, a, 1, ip, w, 1, info )
150  CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
151  infot = 4
152  CALL chetrf( 'U', 2, a, 1, ip, w, 4, info )
153  CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
154  infot = 7
155  CALL chetrf( 'U', 0, a, 1, ip, w, 0, info )
156  CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
157  infot = 7
158  CALL chetrf( 'U', 0, a, 1, ip, w, -2, info )
159  CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
160 *
161 * CHETF2
162 *
163  srnamt = 'CHETF2'
164  infot = 1
165  CALL chetf2( '/', 0, a, 1, ip, info )
166  CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
167  infot = 2
168  CALL chetf2( 'U', -1, a, 1, ip, info )
169  CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
170  infot = 4
171  CALL chetf2( 'U', 2, a, 1, ip, info )
172  CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
173 *
174 * CHETRI
175 *
176  srnamt = 'CHETRI'
177  infot = 1
178  CALL chetri( '/', 0, a, 1, ip, w, info )
179  CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
180  infot = 2
181  CALL chetri( 'U', -1, a, 1, ip, w, info )
182  CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
183  infot = 4
184  CALL chetri( 'U', 2, a, 1, ip, w, info )
185  CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
186 *
187 * CHETRI2
188 *
189  srnamt = 'CHETRI2'
190  infot = 1
191  CALL chetri2( '/', 0, a, 1, ip, w, 1, info )
192  CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
193  infot = 2
194  CALL chetri2( 'U', -1, a, 1, ip, w, 1, info )
195  CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
196  infot = 4
197  CALL chetri2( 'U', 2, a, 1, ip, w, 1, info )
198  CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
199 *
200 * CHETRI2X
201 *
202  srnamt = 'CHETRI2X'
203  infot = 1
204  CALL chetri2x( '/', 0, a, 1, ip, w, 1, info )
205  CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
206  infot = 2
207  CALL chetri2x( 'U', -1, a, 1, ip, w, 1, info )
208  CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
209  infot = 4
210  CALL chetri2x( 'U', 2, a, 1, ip, w, 1, info )
211  CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
212 *
213 * CHETRS
214 *
215  srnamt = 'CHETRS'
216  infot = 1
217  CALL chetrs( '/', 0, 0, a, 1, ip, b, 1, info )
218  CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
219  infot = 2
220  CALL chetrs( 'U', -1, 0, a, 1, ip, b, 1, info )
221  CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
222  infot = 3
223  CALL chetrs( 'U', 0, -1, a, 1, ip, b, 1, info )
224  CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
225  infot = 5
226  CALL chetrs( 'U', 2, 1, a, 1, ip, b, 2, info )
227  CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
228  infot = 8
229  CALL chetrs( 'U', 2, 1, a, 2, ip, b, 1, info )
230  CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
231 *
232 * CHERFS
233 *
234  srnamt = 'CHERFS'
235  infot = 1
236  CALL cherfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
237  $ r, info )
238  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
239  infot = 2
240  CALL cherfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
241  $ w, r, info )
242  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
243  infot = 3
244  CALL cherfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
245  $ w, r, info )
246  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
247  infot = 5
248  CALL cherfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
249  $ r, info )
250  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
251  infot = 7
252  CALL cherfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
253  $ r, info )
254  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
255  infot = 10
256  CALL cherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
257  $ r, info )
258  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
259  infot = 12
260  CALL cherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
261  $ r, info )
262  CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
263 *
264 * CHECON
265 *
266  srnamt = 'CHECON'
267  infot = 1
268  CALL checon( '/', 0, a, 1, ip, anrm, rcond, w, info )
269  CALL chkxer( 'CHECON', infot, nout, lerr, ok )
270  infot = 2
271  CALL checon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
272  CALL chkxer( 'CHECON', infot, nout, lerr, ok )
273  infot = 4
274  CALL checon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
275  CALL chkxer( 'CHECON', infot, nout, lerr, ok )
276  infot = 6
277  CALL checon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
278  CALL chkxer( 'CHECON', infot, nout, lerr, ok )
279 *
280  ELSE IF( lsamen( 2, c2, 'HR' ) ) THEN
281 *
282 * Test error exits of the routines that use factorization
283 * of a Hermitian indefinite matrix with rook
284 * (bounded Bunch-Kaufman) diagonal pivoting method.
285 *
286 * CHETRF_ROOK
287 *
288  srnamt = 'CHETRF_ROOK'
289  infot = 1
290  CALL chetrf_rook( '/', 0, a, 1, ip, w, 1, info )
291  CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
292  infot = 2
293  CALL chetrf_rook( 'U', -1, a, 1, ip, w, 1, info )
294  CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
295  infot = 4
296  CALL chetrf_rook( 'U', 2, a, 1, ip, w, 4, info )
297  CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
298  infot = 7
299  CALL chetrf_rook( 'U', 0, a, 1, ip, w, 0, info )
300  CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
301  infot = 7
302  CALL chetrf_rook( 'U', 0, a, 1, ip, w, -2, info )
303  CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
304 *
305 * CHETF2_ROOK
306 *
307  srnamt = 'CHETF2_ROOK'
308  infot = 1
309  CALL chetf2_rook( '/', 0, a, 1, ip, info )
310  CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
311  infot = 2
312  CALL chetf2_rook( 'U', -1, a, 1, ip, info )
313  CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
314  infot = 4
315  CALL chetf2_rook( 'U', 2, a, 1, ip, info )
316  CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
317 *
318 * CHETRI_ROOK
319 *
320  srnamt = 'CHETRI_ROOK'
321  infot = 1
322  CALL chetri_rook( '/', 0, a, 1, ip, w, info )
323  CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
324  infot = 2
325  CALL chetri_rook( 'U', -1, a, 1, ip, w, info )
326  CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
327  infot = 4
328  CALL chetri_rook( 'U', 2, a, 1, ip, w, info )
329  CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
330 *
331 * CHETRS_ROOK
332 *
333  srnamt = 'CHETRS_ROOK'
334  infot = 1
335  CALL chetrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
336  CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
337  infot = 2
338  CALL chetrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
339  CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
340  infot = 3
341  CALL chetrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
342  CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
343  infot = 5
344  CALL chetrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
345  CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
346  infot = 8
347  CALL chetrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
348  CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
349 *
350 * CHECON_ROOK
351 *
352  srnamt = 'CHECON_ROOK'
353  infot = 1
354  CALL checon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
355  CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
356  infot = 2
357  CALL checon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
358  CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
359  infot = 4
360  CALL checon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
361  CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
362  infot = 6
363  CALL checon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
364  CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
365 *
366  ELSE IF( lsamen( 2, c2, 'HK' ) ) THEN
367 *
368 * Test error exits of the routines that use factorization
369 * of a Hermitian indefinite matrix with rook
370 * (bounded Bunch-Kaufman) pivoting with the new storage
371 * format for factors L ( or U) and D.
372 *
373 * L (or U) is stored in A, diagonal of D is stored on the
374 * diagonal of A, subdiagonal of D is stored in a separate array E.
375 *
376 * CHETRF_RK
377 *
378  srnamt = 'CHETRF_RK'
379  infot = 1
380  CALL chetrf_rk( '/', 0, a, 1, e, ip, w, 1, info )
381  CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
382  infot = 2
383  CALL chetrf_rk( 'U', -1, a, 1, e, ip, w, 1, info )
384  CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
385  infot = 4
386  CALL chetrf_rk( 'U', 2, a, 1, e, ip, w, 4, info )
387  CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
388  infot = 8
389  CALL chetrf_rk( 'U', 0, a, 1, e, ip, w, 0, info )
390  CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
391  infot = 8
392  CALL chetrf_rk( 'U', 0, a, 1, e, ip, w, -2, info )
393  CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
394 *
395 * CHETF2_RK
396 *
397  srnamt = 'CHETF2_RK'
398  infot = 1
399  CALL chetf2_rk( '/', 0, a, 1, e, ip, info )
400  CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
401  infot = 2
402  CALL chetf2_rk( 'U', -1, a, 1, e, ip, info )
403  CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
404  infot = 4
405  CALL chetf2_rk( 'U', 2, a, 1, e, ip, info )
406  CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
407 *
408 * CHETRI_3
409 *
410  srnamt = 'CHETRI_3'
411  infot = 1
412  CALL chetri_3( '/', 0, a, 1, e, ip, w, 1, info )
413  CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
414  infot = 2
415  CALL chetri_3( 'U', -1, a, 1, e, ip, w, 1, info )
416  CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
417  infot = 4
418  CALL chetri_3( 'U', 2, a, 1, e, ip, w, 1, info )
419  CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
420  infot = 8
421  CALL chetri_3( 'U', 0, a, 1, e, ip, w, 0, info )
422  CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
423  infot = 8
424  CALL chetri_3( 'U', 0, a, 1, e, ip, w, -2, info )
425  CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
426 *
427 * CHETRI_3X
428 *
429  srnamt = 'CHETRI_3X'
430  infot = 1
431  CALL chetri_3x( '/', 0, a, 1, e, ip, w, 1, info )
432  CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
433  infot = 2
434  CALL chetri_3x( 'U', -1, a, 1, e, ip, w, 1, info )
435  CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
436  infot = 4
437  CALL chetri_3x( 'U', 2, a, 1, e, ip, w, 1, info )
438  CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
439 *
440 * CHETRS_3
441 *
442  srnamt = 'CHETRS_3'
443  infot = 1
444  CALL chetrs_3( '/', 0, 0, a, 1, e, ip, b, 1, info )
445  CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
446  infot = 2
447  CALL chetrs_3( 'U', -1, 0, a, 1, e, ip, b, 1, info )
448  CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
449  infot = 3
450  CALL chetrs_3( 'U', 0, -1, a, 1, e, ip, b, 1, info )
451  CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
452  infot = 5
453  CALL chetrs_3( 'U', 2, 1, a, 1, e, ip, b, 2, info )
454  CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
455  infot = 9
456  CALL chetrs_3( 'U', 2, 1, a, 2, e, ip, b, 1, info )
457  CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
458 *
459 * CHECON_3
460 *
461  srnamt = 'CHECON_3'
462  infot = 1
463  CALL checon_3( '/', 0, a, 1, e, ip, anrm, rcond, w, info )
464  CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
465  infot = 2
466  CALL checon_3( 'U', -1, a, 1, e, ip, anrm, rcond, w, info )
467  CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
468  infot = 4
469  CALL checon_3( 'U', 2, a, 1, e, ip, anrm, rcond, w, info )
470  CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
471  infot = 7
472  CALL checon_3( 'U', 1, a, 1, e, ip, -1.0e0, rcond, w, info)
473  CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
474 *
475  ELSE IF( lsamen( 2, c2, 'HA' ) ) THEN
476 *
477 * Test error exits of the routines that use factorization
478 * of a Hermitian indefinite matrix with Aasen's algorithm.
479 *
480 * CHETRF_AA
481 *
482  srnamt = 'CHETRF_AA'
483  infot = 1
484  CALL chetrf_aa( '/', 0, a, 1, ip, w, 1, info )
485  CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
486  infot = 2
487  CALL chetrf_aa( 'U', -1, a, 1, ip, w, 1, info )
488  CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
489  infot = 4
490  CALL chetrf_aa( 'U', 2, a, 1, ip, w, 4, info )
491  CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
492  infot = 7
493  CALL chetrf_aa( 'U', 2, a, 2, ip, w, 0, info )
494  CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
495  infot = 7
496  CALL chetrf_aa( 'U', 2, a, 2, ip, w, -2, info )
497  CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
498 *
499 * CHETRS_AA
500 *
501  srnamt = 'CHETRS_AA'
502  infot = 1
503  CALL chetrs_aa( '/', 0, 0, a, 1, ip, b, 1, w, 1, info )
504  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
505  infot = 2
506  CALL chetrs_aa( 'U', -1, 0, a, 1, ip, b, 1, w, 1, info )
507  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
508  infot = 3
509  CALL chetrs_aa( 'U', 0, -1, a, 1, ip, b, 1, w, 1, info )
510  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
511  infot = 5
512  CALL chetrs_aa( 'U', 2, 1, a, 1, ip, b, 2, w, 1, info )
513  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
514  infot = 8
515  CALL chetrs_aa( 'U', 2, 1, a, 2, ip, b, 1, w, 1, info )
516  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
517  infot = 10
518  CALL chetrs_aa( 'U', 2, 1, a, 2, ip, b, 2, w, 0, info )
519  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
520  infot = 10
521  CALL chetrs_aa( 'U', 2, 1, a, 2, ip, b, 2, w, -2, info )
522  CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
523 *
524  ELSE IF( lsamen( 2, c2, 'H2' ) ) THEN
525 *
526 * Test error exits of the routines that use factorization
527 * of a symmetric indefinite matrix with Aasen's algorithm.
528 *
529 * CHETRF_AA_2STAGE
530 *
531  srnamt = 'CHETRF_AA_2STAGE'
532  infot = 1
533  CALL chetrf_aa_2stage( '/', 0, a, 1, a, 1, ip, ip, w, 1,
534  $ info )
535  CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
536  infot = 2
537  CALL chetrf_aa_2stage( 'U', -1, a, 1, a, 1, ip, ip, w, 1,
538  $ info )
539  CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
540  infot = 4
541  CALL chetrf_aa_2stage( 'U', 2, a, 1, a, 2, ip, ip, w, 1,
542  $ info )
543  CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
544  infot = 6
545  CALL chetrf_aa_2stage( 'U', 2, a, 2, a, 1, ip, ip, w, 1,
546  $ info )
547  CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
548  infot = 10
549  CALL chetrf_aa_2stage( 'U', 2, a, 2, a, 8, ip, ip, w, 0,
550  $ info )
551  CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
552 *
553 * CHETRS_AA_2STAGE
554 *
555  srnamt = 'CHETRS_AA_2STAGE'
556  infot = 1
557  CALL chetrs_aa_2stage( '/', 0, 0, a, 1, a, 1, ip, ip,
558  $ b, 1, info )
559  CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
560  infot = 2
561  CALL chetrs_aa_2stage( 'U', -1, 0, a, 1, a, 1, ip, ip,
562  $ b, 1, info )
563  CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
564  infot = 3
565  CALL chetrs_aa_2stage( 'U', 0, -1, a, 1, a, 1, ip, ip,
566  $ b, 1, info )
567  CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
568  infot = 5
569  CALL chetrs_aa_2stage( 'U', 2, 1, a, 1, a, 1, ip, ip,
570  $ b, 1, info )
571  CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
572  infot = 7
573  CALL chetrs_aa_2stage( 'U', 2, 1, a, 2, a, 1, ip, ip,
574  $ b, 1, info )
575  CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
576  infot = 11
577  CALL chetrs_aa_2stage( 'U', 2, 1, a, 2, a, 8, ip, ip,
578  $ b, 1, info )
579  CALL chkxer( 'CHETRS_AA_STAGE', infot, nout, lerr, ok )
580 *
581 * Test error exits of the routines that use factorization
582 * of a Hermitian indefinite packed matrix with patrial
583 * (Bunch-Kaufman) diagonal pivoting method.
584 *
585  ELSE IF( lsamen( 2, c2, 'HP' ) ) THEN
586 *
587 * CHPTRF
588 *
589  srnamt = 'CHPTRF'
590  infot = 1
591  CALL chptrf( '/', 0, a, ip, info )
592  CALL chkxer( 'CHPTRF', infot, nout, lerr, ok )
593  infot = 2
594  CALL chptrf( 'U', -1, a, ip, info )
595  CALL chkxer( 'CHPTRF', infot, nout, lerr, ok )
596 *
597 * CHPTRI
598 *
599  srnamt = 'CHPTRI'
600  infot = 1
601  CALL chptri( '/', 0, a, ip, w, info )
602  CALL chkxer( 'CHPTRI', infot, nout, lerr, ok )
603  infot = 2
604  CALL chptri( 'U', -1, a, ip, w, info )
605  CALL chkxer( 'CHPTRI', infot, nout, lerr, ok )
606 *
607 * CHPTRS
608 *
609  srnamt = 'CHPTRS'
610  infot = 1
611  CALL chptrs( '/', 0, 0, a, ip, b, 1, info )
612  CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
613  infot = 2
614  CALL chptrs( 'U', -1, 0, a, ip, b, 1, info )
615  CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
616  infot = 3
617  CALL chptrs( 'U', 0, -1, a, ip, b, 1, info )
618  CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
619  infot = 7
620  CALL chptrs( 'U', 2, 1, a, ip, b, 1, info )
621  CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
622 *
623 * CHPRFS
624 *
625  srnamt = 'CHPRFS'
626  infot = 1
627  CALL chprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
628  $ info )
629  CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
630  infot = 2
631  CALL chprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
632  $ info )
633  CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
634  infot = 3
635  CALL chprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
636  $ info )
637  CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
638  infot = 8
639  CALL chprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
640  $ info )
641  CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
642  infot = 10
643  CALL chprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
644  $ info )
645  CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
646 *
647 * CHPCON
648 *
649  srnamt = 'CHPCON'
650  infot = 1
651  CALL chpcon( '/', 0, a, ip, anrm, rcond, w, info )
652  CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
653  infot = 2
654  CALL chpcon( 'U', -1, a, ip, anrm, rcond, w, info )
655  CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
656  infot = 5
657  CALL chpcon( 'U', 1, a, ip, -anrm, rcond, w, info )
658  CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
659  END IF
660 *
661 * Print a summary line.
662 *
663  CALL alaesm( path, ok, nout )
664 *
665  RETURN
666 *
667 * End of CERRHE
668 *
Here is the call graph for this function:
Here is the caller graph for this function:
chetf2_rook
subroutine chetf2_rook(UPLO, N, A, LDA, IPIV, INFO)
CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: chetf2_rook.f:196
chetf2_rk
subroutine chetf2_rk(UPLO, N, A, LDA, E, IPIV, INFO)
CHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: chetf2_rk.f:243
alaesm
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
lsamen
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
chetrs_3
subroutine chetrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
CHETRS_3
Definition: chetrs_3.f:167
checon
subroutine checon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CHECON
Definition: checon.f:127
chetrs_aa_2stage
subroutine chetrs_aa_2stage(UPLO, N, NRHS, A, LDA, TB, LTB, IPIV, IPIV2, B, LDB, INFO)
CHETRS_AA_2STAGE
Definition: chetrs_aa_2stage.f:143
checon_rook
subroutine checon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
Definition: checon_rook.f:141
chptrf
subroutine chptrf(UPLO, N, AP, IPIV, INFO)
CHPTRF
Definition: chptrf.f:161
chetrs_aa
subroutine chetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CHETRS_AA
Definition: chetrs_aa.f:133
chetrf_rook
subroutine chetrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: chetrf_rook.f:214
chetri2x
subroutine chetri2x(UPLO, N, A, LDA, IPIV, WORK, NB, INFO)
CHETRI2X
Definition: chetri2x.f:122
chetrf_rk
subroutine chetrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: chetrf_rk.f:261
chptri
subroutine chptri(UPLO, N, AP, IPIV, WORK, INFO)
CHPTRI
Definition: chptri.f:111
chetrf
subroutine chetrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF
Definition: chetrf.f:179
checon_3
subroutine checon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, INFO)
CHECON_3
Definition: checon_3.f:168
chkxer
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
chetrs_rook
subroutine chetrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
Definition: chetrs_rook.f:138
chetri_3
subroutine chetri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRI_3
Definition: chetri_3.f:172
chetrf_aa_2stage
subroutine chetrf_aa_2stage(UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, WORK, LWORK, INFO)
CHETRF_AA_2STAGE
Definition: chetrf_aa_2stage.f:162
chetri2
subroutine chetri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRI2
Definition: chetri2.f:129
chetrs
subroutine chetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS
Definition: chetrs.f:122
chprfs
subroutine chprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CHPRFS
Definition: chprfs.f:182
cherfs
subroutine cherfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CHERFS
Definition: cherfs.f:194
chetrf_aa
subroutine chetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_AA
Definition: chetrf_aa.f:134
chetri_3x
subroutine chetri_3x(UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO)
CHETRI_3X
Definition: chetri_3x.f:161
chpcon
subroutine chpcon(UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)
CHPCON
Definition: chpcon.f:120
chetri
subroutine chetri(UPLO, N, A, LDA, IPIV, WORK, INFO)
CHETRI
Definition: chetri.f:116
chetri_rook
subroutine chetri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
CHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
Definition: chetri_rook.f:130
chptrs
subroutine chptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
CHPTRS
Definition: chptrs.f:117
csycon_3
subroutine csycon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON_3
Definition: csycon_3.f:168
chetf2
subroutine chetf2(UPLO, N, A, LDA, IPIV, INFO)
CHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition: chetf2.f:188