LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ sgemlq()

subroutine sgemlq ( character  SIDE,
character  TRANS,
integer  M,
integer  N,
integer  K,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( * )  T,
integer  TSIZE,
real, dimension( ldc, * )  C,
integer  LDC,
real, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

SGEMLQ

Purpose:
     SGEMLQ overwrites the general real M-by-N matrix C with

                    SIDE = 'L'     SIDE = 'R'
    TRANS = 'N':      Q * C          C * Q
    TRANS = 'T':      Q**T * C       C * Q**T
    where Q is a real orthogonal matrix defined as the product
    of blocked elementary reflectors computed by short wide LQ
    factorization (SGELQ)
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
[in]TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >=0.
[in]N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
[in]A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          Part of the data structure to represent Q as returned by DGELQ.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
[in]T
          T is REAL array, dimension (MAX(5,TSIZE)).
          Part of the data structure to represent Q as returned by SGELQ.
[in]TSIZE
          TSIZE is INTEGER
          The dimension of the array T. TSIZE >= 5.
[in,out]C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
[out]WORK
         (workspace) REAL array, dimension (MAX(1,LWORK))
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If LWORK = -1, then a workspace query is assumed. The routine
          only calculates the size of the WORK array, returns this
          value as WORK(1), and no error message related to WORK 
          is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
 These details are particular for this LAPACK implementation. Users should not 
 take them for granted. These details may change in the future, and are not likely
 true for another LAPACK implementation. These details are relevant if one wants
 to try to understand the code. They are not part of the interface.

 In this version,

          T(2): row block size (MB)
          T(3): column block size (NB)
          T(6:TSIZE): data structure needed for Q, computed by
                           SLASWLQ or SGELQT

  Depending on the matrix dimensions M and N, and row and column
  block sizes MB and NB returned by ILAENV, SGELQ will use either
  SLASWLQ (if the matrix is wide-and-short) or SGELQT to compute
  the LQ factorization.
  This version of SGEMLQ will use either SLAMSWLQ or SGEMLQT to 
  multiply matrix Q by another matrix.
  Further Details in SLAMSWLQ or SGEMLQT.

Definition at line 170 of file sgemlq.f.

170 *
171 * -- LAPACK computational routine (version 3.7.0) --
172 * -- LAPACK is a software package provided by Univ. of Tennessee, --
173 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174 * December 2016
175 *
176 * .. Scalar Arguments ..
177  CHARACTER SIDE, TRANS
178  INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
179 * ..
180 * .. Array Arguments ..
181  REAL A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
182 * ..
183 *
184 * =====================================================================
185 *
186 * ..
187 * .. Local Scalars ..
188  LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
189  INTEGER MB, NB, LW, NBLCKS, MN
190 * ..
191 * .. External Functions ..
192  LOGICAL LSAME
193  EXTERNAL lsame
194 * ..
195 * .. External Subroutines ..
196  EXTERNAL slamswlq, sgemlqt, xerbla
197 * ..
198 * .. Intrinsic Functions ..
199  INTRINSIC int, max, min, mod
200 * ..
201 * .. Executable Statements ..
202 *
203 * Test the input arguments
204 *
205  lquery = lwork.EQ.-1
206  notran = lsame( trans, 'N' )
207  tran = lsame( trans, 'T' )
208  left = lsame( side, 'L' )
209  right = lsame( side, 'R' )
210 *
211  mb = int( t( 2 ) )
212  nb = int( t( 3 ) )
213  IF( left ) THEN
214  lw = n * mb
215  mn = m
216  ELSE
217  lw = m * mb
218  mn = n
219  END IF
220 *
221  IF( ( nb.GT.k ) .AND. ( mn.GT.k ) ) THEN
222  IF( mod( mn - k, nb - k ) .EQ. 0 ) THEN
223  nblcks = ( mn - k ) / ( nb - k )
224  ELSE
225  nblcks = ( mn - k ) / ( nb - k ) + 1
226  END IF
227  ELSE
228  nblcks = 1
229  END IF
230 *
231  info = 0
232  IF( .NOT.left .AND. .NOT.right ) THEN
233  info = -1
234  ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
235  info = -2
236  ELSE IF( m.LT.0 ) THEN
237  info = -3
238  ELSE IF( n.LT.0 ) THEN
239  info = -4
240  ELSE IF( k.LT.0 .OR. k.GT.mn ) THEN
241  info = -5
242  ELSE IF( lda.LT.max( 1, k ) ) THEN
243  info = -7
244  ELSE IF( tsize.LT.5 ) THEN
245  info = -9
246  ELSE IF( ldc.LT.max( 1, m ) ) THEN
247  info = -11
248  ELSE IF( ( lwork.LT.max( 1, lw ) ) .AND. ( .NOT.lquery ) ) THEN
249  info = -13
250  END IF
251 *
252  IF( info.EQ.0 ) THEN
253  work( 1 ) = real( lw )
254  END IF
255 *
256  IF( info.NE.0 ) THEN
257  CALL xerbla( 'SGEMLQ', -info )
258  RETURN
259  ELSE IF( lquery ) THEN
260  RETURN
261  END IF
262 *
263 * Quick return if possible
264 *
265  IF( min( m, n, k ).EQ.0 ) THEN
266  RETURN
267  END IF
268 *
269  IF( ( left .AND. m.LE.k ) .OR. ( right .AND. n.LE.k )
270  $ .OR. ( nb.LE.k ) .OR. ( nb.GE.max( m, n, k ) ) ) THEN
271  CALL sgemlqt( side, trans, m, n, k, mb, a, lda,
272  $ t( 6 ), mb, c, ldc, work, info )
273  ELSE
274  CALL slamswlq( side, trans, m, n, k, mb, nb, a, lda, t( 6 ),
275  $ mb, c, ldc, work, lwork, info )
276  END IF
277 *
278  work( 1 ) = real( lw )
279 *
280  RETURN
281 *
282 * End of SGEMLQ
283 *
Here is the call graph for this function:
Here is the caller graph for this function:
sgemlqt
subroutine sgemlqt(SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT, C, LDC, WORK, INFO)
SGEMLQT
Definition: sgemlqt.f:155
slamswlq
subroutine slamswlq(SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, LDT, C, LDC, WORK, LWORK, INFO)
SLAMSWLQ
Definition: slamswlq.f:205
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55