LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ slaswlq()

subroutine slaswlq ( integer  M,
integer  N,
integer  MB,
integer  NB,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( ldt, *)  T,
integer  LDT,
real, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

SLASWLQ

Purpose:
 SLASWLQ computes a blocked Tall-Skinny LQ factorization of
 a real M-by-N matrix A for M <= N:

    A = ( L 0 ) *  Q,

 where:

    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
    form in the elements above the digonal of the array A and in
    the elemenst of the array T;
    L is an lower-triangular M-by-M matrix stored on exit in
    the elements on and below the diagonal of the array A.
    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]MB
          MB is INTEGER
          The row block size to be used in the blocked QR.
          M >= MB >= 1
[in]NB
          NB is INTEGER
          The column block size to be used in the blocked QR.
          NB > M.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and below the diagonal
          of the array contain the N-by-N lower triangular matrix L;
          the elements above the diagonal represent Q by the rows
          of blocked V (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is REAL array,
          dimension (LDT, N * Number_of_row_blocks)
          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
          See Further Details below.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.
[out]WORK
         (workspace) REAL array, dimension (MAX(1,LWORK))
[in]LWORK
          The dimension of the array WORK.  LWORK >= MB * M.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
 Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
 representing Q as a product of other orthogonal matrices
   Q = Q(1) * Q(2) * . . . * Q(k)
 where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
   . . .

 Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 stored under the diagonal of rows 1:MB of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,1:N).
 For more information see Further Details in GELQT.

 Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 The last Q(k) may use fewer rows.
 For more information see Further Details in TPQRT.

 For more details of the overall algorithm, see the description of
 Sequential TSQR in Section 2.2 of [1].

 [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
     SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 164 of file slaswlq.f.

164 *
165 * -- LAPACK computational routine (version 3.9.0) --
166 * -- LAPACK is a software package provided by Univ. of Tennessee, --
167 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
168 * November 2019
169 *
170 * .. Scalar Arguments ..
171  INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
172 * ..
173 * .. Array Arguments ..
174  REAL A( LDA, * ), WORK( * ), T( LDT, *)
175 * ..
176 *
177 * =====================================================================
178 *
179 * ..
180 * .. Local Scalars ..
181  LOGICAL LQUERY
182  INTEGER I, II, KK, CTR
183 * ..
184 * .. EXTERNAL FUNCTIONS ..
185  LOGICAL LSAME
186  EXTERNAL lsame
187 * .. EXTERNAL SUBROUTINES ..
188  EXTERNAL sgelqt, sgeqrt, stplqt, stpqrt, xerbla
189 * .. INTRINSIC FUNCTIONS ..
190  INTRINSIC max, min, mod
191 * ..
192 * .. EXECUTABLE STATEMENTS ..
193 *
194 * TEST THE INPUT ARGUMENTS
195 *
196  info = 0
197 *
198  lquery = ( lwork.EQ.-1 )
199 *
200  IF( m.LT.0 ) THEN
201  info = -1
202  ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
203  info = -2
204  ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 )) THEN
205  info = -3
206  ELSE IF( nb.LE.m ) THEN
207  info = -4
208  ELSE IF( lda.LT.max( 1, m ) ) THEN
209  info = -5
210  ELSE IF( ldt.LT.mb ) THEN
211  info = -8
212  ELSE IF( ( lwork.LT.m*mb) .AND. (.NOT.lquery) ) THEN
213  info = -10
214  END IF
215  IF( info.EQ.0) THEN
216  work(1) = mb*m
217  END IF
218 *
219  IF( info.NE.0 ) THEN
220  CALL xerbla( 'SLASWLQ', -info )
221  RETURN
222  ELSE IF (lquery) THEN
223  RETURN
224  END IF
225 *
226 * Quick return if possible
227 *
228  IF( min(m,n).EQ.0 ) THEN
229  RETURN
230  END IF
231 *
232 * The LQ Decomposition
233 *
234  IF((m.GE.n).OR.(nb.LE.m).OR.(nb.GE.n)) THEN
235  CALL sgelqt( m, n, mb, a, lda, t, ldt, work, info)
236  RETURN
237  END IF
238 *
239  kk = mod((n-m),(nb-m))
240  ii=n-kk+1
241 *
242 * Compute the LQ factorization of the first block A(1:M,1:NB)
243 *
244  CALL sgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info)
245  ctr = 1
246 *
247  DO i = nb+1, ii-nb+m , (nb-m)
248 *
249 * Compute the QR factorization of the current block A(1:M,I:I+NB-M)
250 *
251  CALL stplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
252  $ lda, t(1, ctr * m + 1),
253  $ ldt, work, info )
254  ctr = ctr + 1
255  END DO
256 *
257 * Compute the QR factorization of the last block A(1:M,II:N)
258 *
259  IF (ii.LE.n) THEN
260  CALL stplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
261  $ lda, t(1, ctr * m + 1), ldt,
262  $ work, info )
263  END IF
264 *
265  work( 1 ) = m * mb
266  RETURN
267 *
268 * End of SLASWLQ
269 *
Here is the call graph for this function:
Here is the caller graph for this function:
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
sgelqt
subroutine sgelqt(M, N, MB, A, LDA, T, LDT, WORK, INFO)
SGELQT
Definition: sgelqt.f:126
stplqt
subroutine stplqt(M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK, INFO)
STPLQT
Definition: stplqt.f:191
sgeqrt
subroutine sgeqrt(M, N, NB, A, LDA, T, LDT, WORK, INFO)
SGEQRT
Definition: sgeqrt.f:143
stpqrt
subroutine stpqrt(M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)
STPQRT
Definition: stpqrt.f:191