LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ ssbt21()

subroutine ssbt21 ( character  UPLO,
integer  N,
integer  KA,
integer  KS,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( * )  D,
real, dimension( * )  E,
real, dimension( ldu, * )  U,
integer  LDU,
real, dimension( * )  WORK,
real, dimension( 2 )  RESULT 
)

SSBT21

Purpose:
 SSBT21  generally checks a decomposition of the form

         A = U S U**T

 where **T means transpose, A is symmetric banded, U is
 orthogonal, and S is diagonal (if KS=0) or symmetric
 tridiagonal (if KS=1).

 Specifically:

         RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
         RESULT(2) = | I - U U**T | / ( n ulp )
Parameters
[in]UPLO
          UPLO is CHARACTER
          If UPLO='U', the upper triangle of A and V will be used and
          the (strictly) lower triangle will not be referenced.
          If UPLO='L', the lower triangle of A and V will be used and
          the (strictly) upper triangle will not be referenced.
[in]N
          N is INTEGER
          The size of the matrix.  If it is zero, SSBT21 does nothing.
          It must be at least zero.
[in]KA
          KA is INTEGER
          The bandwidth of the matrix A.  It must be at least zero.  If
          it is larger than N-1, then max( 0, N-1 ) will be used.
[in]KS
          KS is INTEGER
          The bandwidth of the matrix S.  It may only be zero or one.
          If zero, then S is diagonal, and E is not referenced.  If
          one, then S is symmetric tri-diagonal.
[in]A
          A is REAL array, dimension (LDA, N)
          The original (unfactored) matrix.  It is assumed to be
          symmetric, and only the upper (UPLO='U') or only the lower
          (UPLO='L') will be referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of A.  It must be at least 1
          and at least min( KA, N-1 ).
[in]D
          D is REAL array, dimension (N)
          The diagonal of the (symmetric tri-) diagonal matrix S.
[in]E
          E is REAL array, dimension (N-1)
          The off-diagonal of the (symmetric tri-) diagonal matrix S.
          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
          (3,2) element, etc.
          Not referenced if KS=0.
[in]U
          U is REAL array, dimension (LDU, N)
          The orthogonal matrix in the decomposition, expressed as a
          dense matrix (i.e., not as a product of Householder
          transformations, Givens transformations, etc.)
[in]LDU
          LDU is INTEGER
          The leading dimension of U.  LDU must be at least N and
          at least 1.
[out]WORK
          WORK is REAL array, dimension (N**2+N)
[out]RESULT
          RESULT is REAL array, dimension (2)
          The values computed by the two tests described above.  The
          values are currently limited to 1/ulp, to avoid overflow.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 149 of file ssbt21.f.

149 *
150 * -- LAPACK test routine (version 3.7.0) --
151 * -- LAPACK is a software package provided by Univ. of Tennessee, --
152 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153 * December 2016
154 *
155 * .. Scalar Arguments ..
156  CHARACTER UPLO
157  INTEGER KA, KS, LDA, LDU, N
158 * ..
159 * .. Array Arguments ..
160  REAL A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
161  $ U( LDU, * ), WORK( * )
162 * ..
163 *
164 * =====================================================================
165 *
166 * .. Parameters ..
167  REAL ZERO, ONE
168  parameter( zero = 0.0e0, one = 1.0e0 )
169 * ..
170 * .. Local Scalars ..
171  LOGICAL LOWER
172  CHARACTER CUPLO
173  INTEGER IKA, J, JC, JR, LW
174  REAL ANORM, ULP, UNFL, WNORM
175 * ..
176 * .. External Functions ..
177  LOGICAL LSAME
178  REAL SLAMCH, SLANGE, SLANSB, SLANSP
179  EXTERNAL lsame, slamch, slange, slansb, slansp
180 * ..
181 * .. External Subroutines ..
182  EXTERNAL sgemm, sspr, sspr2
183 * ..
184 * .. Intrinsic Functions ..
185  INTRINSIC max, min, real
186 * ..
187 * .. Executable Statements ..
188 *
189 * Constants
190 *
191  result( 1 ) = zero
192  result( 2 ) = zero
193  IF( n.LE.0 )
194  $ RETURN
195 *
196  ika = max( 0, min( n-1, ka ) )
197  lw = ( n*( n+1 ) ) / 2
198 *
199  IF( lsame( uplo, 'U' ) ) THEN
200  lower = .false.
201  cuplo = 'U'
202  ELSE
203  lower = .true.
204  cuplo = 'L'
205  END IF
206 *
207  unfl = slamch( 'Safe minimum' )
208  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
209 *
210 * Some Error Checks
211 *
212 * Do Test 1
213 *
214 * Norm of A:
215 *
216  anorm = max( slansb( '1', cuplo, n, ika, a, lda, work ), unfl )
217 *
218 * Compute error matrix: Error = A - U S U**T
219 *
220 * Copy A from SB to SP storage format.
221 *
222  j = 0
223  DO 50 jc = 1, n
224  IF( lower ) THEN
225  DO 10 jr = 1, min( ika+1, n+1-jc )
226  j = j + 1
227  work( j ) = a( jr, jc )
228  10 CONTINUE
229  DO 20 jr = ika + 2, n + 1 - jc
230  j = j + 1
231  work( j ) = zero
232  20 CONTINUE
233  ELSE
234  DO 30 jr = ika + 2, jc
235  j = j + 1
236  work( j ) = zero
237  30 CONTINUE
238  DO 40 jr = min( ika, jc-1 ), 0, -1
239  j = j + 1
240  work( j ) = a( ika+1-jr, jc )
241  40 CONTINUE
242  END IF
243  50 CONTINUE
244 *
245  DO 60 j = 1, n
246  CALL sspr( cuplo, n, -d( j ), u( 1, j ), 1, work )
247  60 CONTINUE
248 *
249  IF( n.GT.1 .AND. ks.EQ.1 ) THEN
250  DO 70 j = 1, n - 1
251  CALL sspr2( cuplo, n, -e( j ), u( 1, j ), 1, u( 1, j+1 ), 1,
252  $ work )
253  70 CONTINUE
254  END IF
255  wnorm = slansp( '1', cuplo, n, work, work( lw+1 ) )
256 *
257  IF( anorm.GT.wnorm ) THEN
258  result( 1 ) = ( wnorm / anorm ) / ( n*ulp )
259  ELSE
260  IF( anorm.LT.one ) THEN
261  result( 1 ) = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
262  ELSE
263  result( 1 ) = min( wnorm / anorm, real( n ) ) / ( n*ulp )
264  END IF
265  END IF
266 *
267 * Do Test 2
268 *
269 * Compute U U**T - I
270 *
271  CALL sgemm( 'N', 'C', n, n, n, one, u, ldu, u, ldu, zero, work,
272  $ n )
273 *
274  DO 80 j = 1, n
275  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - one
276  80 CONTINUE
277 *
278  result( 2 ) = min( slange( '1', n, n, work, n, work( n**2+1 ) ),
279  $ real( n ) ) / ( n*ulp )
280 *
281  RETURN
282 *
283 * End of SSBT21
284 *
Here is the call graph for this function:
Here is the caller graph for this function:
sspr2
subroutine sspr2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
SSPR2
Definition: sspr2.f:144
sgemm
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:189
sspr
subroutine sspr(UPLO, N, ALPHA, X, INCX, AP)
SSPR
Definition: sspr.f:129