![]() |
LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
|
| subroutine cglmts | ( | integer | N, |
| integer | M, | ||
| integer | P, | ||
| complex, dimension( lda, * ) | A, | ||
| complex, dimension( lda, * ) | AF, | ||
| integer | LDA, | ||
| complex, dimension( ldb, * ) | B, | ||
| complex, dimension( ldb, * ) | BF, | ||
| integer | LDB, | ||
| complex, dimension( * ) | D, | ||
| complex, dimension( * ) | DF, | ||
| complex, dimension( * ) | X, | ||
| complex, dimension( * ) | U, | ||
| complex, dimension( lwork ) | WORK, | ||
| integer | LWORK, | ||
| real, dimension( * ) | RWORK, | ||
| real | RESULT | ||
| ) |
CGLMTS
CGLMTS tests CGGGLM - a subroutine for solving the generalized linear model problem.
| [in] | N | N is INTEGER
The number of rows of the matrices A and B. N >= 0. |
| [in] | M | M is INTEGER
The number of columns of the matrix A. M >= 0. |
| [in] | P | P is INTEGER
The number of columns of the matrix B. P >= 0. |
| [in] | A | A is COMPLEX array, dimension (LDA,M)
The N-by-M matrix A. |
| [out] | AF | AF is COMPLEX array, dimension (LDA,M) |
| [in] | LDA | LDA is INTEGER
The leading dimension of the arrays A, AF. LDA >= max(M,N). |
| [in] | B | B is COMPLEX array, dimension (LDB,P)
The N-by-P matrix A. |
| [out] | BF | BF is COMPLEX array, dimension (LDB,P) |
| [in] | LDB | LDB is INTEGER
The leading dimension of the arrays B, BF. LDB >= max(P,N). |
| [in] | D | D is COMPLEX array, dimension( N )
On input, the left hand side of the GLM. |
| [out] | DF | DF is COMPLEX array, dimension( N ) |
| [out] | X | X is COMPLEX array, dimension( M )
solution vector X in the GLM problem. |
| [out] | U | U is COMPLEX array, dimension( P )
solution vector U in the GLM problem. |
| [out] | WORK | WORK is COMPLEX array, dimension (LWORK) |
| [in] | LWORK | LWORK is INTEGER
The dimension of the array WORK. |
| [out] | RWORK | RWORK is REAL array, dimension (M) |
| [out] | RESULT | RESULT is REAL
The test ratio:
norm( d - A*x - B*u )
RESULT = -----------------------------------------
(norm(A)+norm(B))*(norm(x)+norm(u))*EPS |
Definition at line 152 of file cglmts.f.