![]() |
LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
|
| subroutine dpot05 | ( | character | UPLO, |
| integer | N, | ||
| integer | NRHS, | ||
| double precision, dimension( lda, * ) | A, | ||
| integer | LDA, | ||
| double precision, dimension( ldb, * ) | B, | ||
| integer | LDB, | ||
| double precision, dimension( ldx, * ) | X, | ||
| integer | LDX, | ||
| double precision, dimension( ldxact, * ) | XACT, | ||
| integer | LDXACT, | ||
| double precision, dimension( * ) | FERR, | ||
| double precision, dimension( * ) | BERR, | ||
| double precision, dimension( * ) | RESLTS | ||
| ) |
DPOT05
DPOT05 tests the error bounds from iterative refinement for the
computed solution to a system of equations A*X = B, where A is a
symmetric n by n matrix.
RESLTS(1) = test of the error bound
= norm(X - XACT) / ( norm(X) * FERR )
A large value is returned if this ratio is not less than one.
RESLTS(2) = residual from the iterative refinement routine
= the maximum of BERR / ( (n+1)*EPS + (*) ), where
(*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) | [in] | UPLO | UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular |
| [in] | N | N is INTEGER
The number of rows of the matrices X, B, and XACT, and the
order of the matrix A. N >= 0. |
| [in] | NRHS | NRHS is INTEGER
The number of columns of the matrices X, B, and XACT.
NRHS >= 0. |
| [in] | A | A is DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced. |
| [in] | LDA | LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N). |
| [in] | B | B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side vectors for the system of linear
equations. |
| [in] | LDB | LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N). |
| [in] | X | X is DOUBLE PRECISION array, dimension (LDX,NRHS)
The computed solution vectors. Each vector is stored as a
column of the matrix X. |
| [in] | LDX | LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N). |
| [in] | XACT | XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
The exact solution vectors. Each vector is stored as a
column of the matrix XACT. |
| [in] | LDXACT | LDXACT is INTEGER
The leading dimension of the array XACT. LDXACT >= max(1,N). |
| [in] | FERR | FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bounds for each solution vector
X. If XTRUE is the true solution, FERR bounds the magnitude
of the largest entry in (X - XTRUE) divided by the magnitude
of the largest entry in X. |
| [in] | BERR | BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector (i.e., the smallest relative change in any entry of A
or B that makes X an exact solution). |
| [out] | RESLTS | RESLTS is DOUBLE PRECISION array, dimension (2)
The maximum over the NRHS solution vectors of the ratios:
RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) |
Definition at line 166 of file dpot05.f.