![]() |
LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
|
| subroutine dptt01 | ( | integer | N, |
| double precision, dimension( * ) | D, | ||
| double precision, dimension( * ) | E, | ||
| double precision, dimension( * ) | DF, | ||
| double precision, dimension( * ) | EF, | ||
| double precision, dimension( * ) | WORK, | ||
| double precision | RESID | ||
| ) |
DPTT01
DPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
factorization and computes the residual
norm(L*D*L' - A) / ( n * norm(A) * EPS ),
where EPS is the machine epsilon. | [in] | N | N is INTEGTER
The order of the matrix A. |
| [in] | D | D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A. |
| [in] | E | E is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A. |
| [in] | DF | DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the factor L from the L*D*L'
factorization of A. |
| [in] | EF | EF is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the factor L from the
L*D*L' factorization of A. |
| [out] | WORK | WORK is DOUBLE PRECISION array, dimension (2*N) |
| [out] | RESID | RESID is DOUBLE PRECISION
norm(L*D*L' - A) / (n * norm(A) * EPS) |
Definition at line 93 of file dptt01.f.