 |
LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
|
◆ dtpcon()
subroutine dtpcon |
( |
character |
NORM, |
|
|
character |
UPLO, |
|
|
character |
DIAG, |
|
|
integer |
N, |
|
|
double precision, dimension( * ) |
AP, |
|
|
double precision |
RCOND, |
|
|
double precision, dimension( * ) |
WORK, |
|
|
integer, dimension( * ) |
IWORK, |
|
|
integer |
INFO |
|
) |
| |
DTPCON
Download DTPCON + dependencies
[TGZ]
[ZIP]
[TXT]
- Purpose:
DTPCON estimates the reciprocal of the condition number of a packed
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
- Parameters
-
[in] | NORM | NORM is CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm. |
[in] | UPLO | UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular. |
[in] | DIAG | DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular. |
[in] | N | N is INTEGER
The order of the matrix A. N >= 0. |
[in] | AP | AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1. |
[out] | RCOND | RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))). |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (3*N) |
[out] | IWORK | IWORK is INTEGER array, dimension (N) |
[out] | INFO | INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value |
- Author
- Univ. of Tennessee
-
Univ. of California Berkeley
-
Univ. of Colorado Denver
-
NAG Ltd.
- Date
- December 2016
Definition at line 132 of file dtpcon.f.
139 CHARACTER DIAG, NORM, UPLO
141 DOUBLE PRECISION RCOND
145 DOUBLE PRECISION AP( * ), WORK( * )
151 DOUBLE PRECISION ONE, ZERO
152 parameter( one = 1.0d+0, zero = 0.0d+0 )
155 LOGICAL NOUNIT, ONENRM, UPPER
157 INTEGER IX, KASE, KASE1
158 DOUBLE PRECISION AINVNM, ANORM, SCALE, SMLNUM, XNORM
166 DOUBLE PRECISION DLAMCH, DLANTP
173 INTRINSIC abs, dble, max
180 upper =
lsame( uplo,
'U' )
181 onenrm = norm.EQ.
'1' .OR.
lsame( norm,
'O' )
182 nounit =
lsame( diag,
'N' )
184 IF( .NOT.onenrm .AND. .NOT.
lsame( norm,
'I' ) )
THEN
186 ELSE IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
188 ELSE IF( .NOT.nounit .AND. .NOT.
lsame( diag,
'U' ) )
THEN
190 ELSE IF( n.LT.0 )
THEN
194 CALL xerbla(
'DTPCON', -info )
206 smlnum =
dlamch(
'Safe minimum' )*dble( max( 1, n ) )
210 anorm =
dlantp( norm, uplo, diag, n, ap, work )
214 IF( anorm.GT.zero )
THEN
227 CALL dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
229 IF( kase.EQ.kase1 )
THEN
233 CALL dlatps( uplo,
'No transpose', diag, normin, n, ap,
234 $ work, scale, work( 2*n+1 ), info )
239 CALL dlatps( uplo,
'Transpose', diag, normin, n, ap,
240 $ work, scale, work( 2*n+1 ), info )
246 IF( scale.NE.one )
THEN
248 xnorm = abs( work( ix ) )
249 IF( scale.LT.xnorm*smlnum .OR. scale.EQ.zero )
251 CALL drscl( n, scale, work, 1 )
259 $ rcond = ( one / anorm ) / ainvnm
integer function idamax(N, DX, INCX)
IDAMAX
subroutine dlatps(UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO)
DLATPS solves a triangular system of equations with the matrix held in packed storage.
subroutine dlacn2(N, V, X, ISGN, EST, KASE, ISAVE)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
subroutine drscl(N, SA, SX, INCX)
DRSCL multiplies a vector by the reciprocal of a real scalar.
subroutine xerbla(SRNAME, INFO)
XERBLA
logical function lsame(CA, CB)
LSAME
double precision function dlantp(NORM, UPLO, DIAG, N, AP, WORK)
DLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
double precision function dlamch(CMACH)
DLAMCH