LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ zhbt21()

subroutine zhbt21 ( character  UPLO,
integer  N,
integer  KA,
integer  KS,
complex*16, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  D,
double precision, dimension( * )  E,
complex*16, dimension( ldu, * )  U,
integer  LDU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
double precision, dimension( 2 )  RESULT 
)

ZHBT21

Purpose:
 ZHBT21  generally checks a decomposition of the form

         A = U S U**H

 where **H means conjugate transpose, A is hermitian banded, U is
 unitary, and S is diagonal (if KS=0) or symmetric
 tridiagonal (if KS=1).

 Specifically:

         RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
         RESULT(2) = | I - U U**H | / ( n ulp )
Parameters
[in]UPLO
          UPLO is CHARACTER
          If UPLO='U', the upper triangle of A and V will be used and
          the (strictly) lower triangle will not be referenced.
          If UPLO='L', the lower triangle of A and V will be used and
          the (strictly) upper triangle will not be referenced.
[in]N
          N is INTEGER
          The size of the matrix.  If it is zero, ZHBT21 does nothing.
          It must be at least zero.
[in]KA
          KA is INTEGER
          The bandwidth of the matrix A.  It must be at least zero.  If
          it is larger than N-1, then max( 0, N-1 ) will be used.
[in]KS
          KS is INTEGER
          The bandwidth of the matrix S.  It may only be zero or one.
          If zero, then S is diagonal, and E is not referenced.  If
          one, then S is symmetric tri-diagonal.
[in]A
          A is COMPLEX*16 array, dimension (LDA, N)
          The original (unfactored) matrix.  It is assumed to be
          hermitian, and only the upper (UPLO='U') or only the lower
          (UPLO='L') will be referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of A.  It must be at least 1
          and at least min( KA, N-1 ).
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The diagonal of the (symmetric tri-) diagonal matrix S.
[in]E
          E is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal of the (symmetric tri-) diagonal matrix S.
          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
          (3,2) element, etc.
          Not referenced if KS=0.
[in]U
          U is COMPLEX*16 array, dimension (LDU, N)
          The unitary matrix in the decomposition, expressed as a
          dense matrix (i.e., not as a product of Householder
          transformations, Givens transformations, etc.)
[in]LDU
          LDU is INTEGER
          The leading dimension of U.  LDU must be at least N and
          at least 1.
[out]WORK
          WORK is COMPLEX*16 array, dimension (N**2)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The values computed by the two tests described above.  The
          values are currently limited to 1/ulp, to avoid overflow.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 154 of file zhbt21.f.

154 *
155 * -- LAPACK test routine (version 3.7.0) --
156 * -- LAPACK is a software package provided by Univ. of Tennessee, --
157 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
158 * December 2016
159 *
160 * .. Scalar Arguments ..
161  CHARACTER UPLO
162  INTEGER KA, KS, LDA, LDU, N
163 * ..
164 * .. Array Arguments ..
165  DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
166  COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
167 * ..
168 *
169 * =====================================================================
170 *
171 * .. Parameters ..
172  COMPLEX*16 CZERO, CONE
173  parameter( czero = ( 0.0d+0, 0.0d+0 ),
174  $ cone = ( 1.0d+0, 0.0d+0 ) )
175  DOUBLE PRECISION ZERO, ONE
176  parameter( zero = 0.0d+0, one = 1.0d+0 )
177 * ..
178 * .. Local Scalars ..
179  LOGICAL LOWER
180  CHARACTER CUPLO
181  INTEGER IKA, J, JC, JR
182  DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
183 * ..
184 * .. External Functions ..
185  LOGICAL LSAME
186  DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHB, ZLANHP
187  EXTERNAL lsame, dlamch, zlange, zlanhb, zlanhp
188 * ..
189 * .. External Subroutines ..
190  EXTERNAL zgemm, zhpr, zhpr2
191 * ..
192 * .. Intrinsic Functions ..
193  INTRINSIC dble, dcmplx, max, min
194 * ..
195 * .. Executable Statements ..
196 *
197 * Constants
198 *
199  result( 1 ) = zero
200  result( 2 ) = zero
201  IF( n.LE.0 )
202  $ RETURN
203 *
204  ika = max( 0, min( n-1, ka ) )
205 *
206  IF( lsame( uplo, 'U' ) ) THEN
207  lower = .false.
208  cuplo = 'U'
209  ELSE
210  lower = .true.
211  cuplo = 'L'
212  END IF
213 *
214  unfl = dlamch( 'Safe minimum' )
215  ulp = dlamch( 'Epsilon' )*dlamch( 'Base' )
216 *
217 * Some Error Checks
218 *
219 * Do Test 1
220 *
221 * Norm of A:
222 *
223  anorm = max( zlanhb( '1', cuplo, n, ika, a, lda, rwork ), unfl )
224 *
225 * Compute error matrix: Error = A - U S U**H
226 *
227 * Copy A from SB to SP storage format.
228 *
229  j = 0
230  DO 50 jc = 1, n
231  IF( lower ) THEN
232  DO 10 jr = 1, min( ika+1, n+1-jc )
233  j = j + 1
234  work( j ) = a( jr, jc )
235  10 CONTINUE
236  DO 20 jr = ika + 2, n + 1 - jc
237  j = j + 1
238  work( j ) = zero
239  20 CONTINUE
240  ELSE
241  DO 30 jr = ika + 2, jc
242  j = j + 1
243  work( j ) = zero
244  30 CONTINUE
245  DO 40 jr = min( ika, jc-1 ), 0, -1
246  j = j + 1
247  work( j ) = a( ika+1-jr, jc )
248  40 CONTINUE
249  END IF
250  50 CONTINUE
251 *
252  DO 60 j = 1, n
253  CALL zhpr( cuplo, n, -d( j ), u( 1, j ), 1, work )
254  60 CONTINUE
255 *
256  IF( n.GT.1 .AND. ks.EQ.1 ) THEN
257  DO 70 j = 1, n - 1
258  CALL zhpr2( cuplo, n, -dcmplx( e( j ) ), u( 1, j ), 1,
259  $ u( 1, j+1 ), 1, work )
260  70 CONTINUE
261  END IF
262  wnorm = zlanhp( '1', cuplo, n, work, rwork )
263 *
264  IF( anorm.GT.wnorm ) THEN
265  result( 1 ) = ( wnorm / anorm ) / ( n*ulp )
266  ELSE
267  IF( anorm.LT.one ) THEN
268  result( 1 ) = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
269  ELSE
270  result( 1 ) = min( wnorm / anorm, dble( n ) ) / ( n*ulp )
271  END IF
272  END IF
273 *
274 * Do Test 2
275 *
276 * Compute U U**H - I
277 *
278  CALL zgemm( 'N', 'C', n, n, n, cone, u, ldu, u, ldu, czero, work,
279  $ n )
280 *
281  DO 80 j = 1, n
282  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - cone
283  80 CONTINUE
284 *
285  result( 2 ) = min( zlange( '1', n, n, work, n, rwork ),
286  $ dble( n ) ) / ( n*ulp )
287 *
288  RETURN
289 *
290 * End of ZHBT21
291 *
Here is the call graph for this function:
Here is the caller graph for this function:
zlange
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:117
zhpr2
subroutine zhpr2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
ZHPR2
Definition: zhpr2.f:147
zgemm
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:189
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
zhpr
subroutine zhpr(UPLO, N, ALPHA, X, INCX, AP)
ZHPR
Definition: zhpr.f:132
zlanhb
double precision function zlanhb(NORM, UPLO, N, K, AB, LDAB, WORK)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlanhb.f:134
zlanhp
double precision function zlanhp(NORM, UPLO, N, AP, WORK)
ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlanhp.f:119
dlamch
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:70