LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ dlatsqr()

subroutine dlatsqr ( integer  M,
integer  N,
integer  MB,
integer  NB,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension(ldt, *)  T,
integer  LDT,
double precision, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

DLATSQR

Purpose:
 DLATSQR computes a blocked Tall-Skinny QR factorization of
 a real M-by-N matrix A for M >= N:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a M-by-M orthogonal matrix, stored on exit in an implicit
    form in the elements below the digonal of the array A and in
    the elemenst of the array T;

    R is an upper-triangular N-by-N matrix, stored on exit in
    the elements on and above the diagonal of the array A.

    0 is a (M-N)-by-N zero matrix, and is not stored.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A. M >= N >= 0.
[in]MB
          MB is INTEGER
          The row block size to be used in the blocked QR.
          MB > N.
[in]NB
          NB is INTEGER
          The column block size to be used in the blocked QR.
          N >= NB >= 1.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and above the diagonal
          of the array contain the N-by-N upper triangular matrix R;
          the elements below the diagonal represent Q by the columns
          of blocked V (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is DOUBLE PRECISION array,
          dimension (LDT, N * Number_of_row_blocks)
          where Number_of_row_blocks = CEIL((M-N)/(MB-N))
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
          See Further Details below.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB.
[out]WORK
         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
[in]LWORK
          The dimension of the array WORK.  LWORK >= NB*N.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
 Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
 representing Q as a product of other orthogonal matrices
   Q = Q(1) * Q(2) * . . . * Q(k)
 where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
   Q(1) zeros out the subdiagonal entries of rows 1:MB of A
   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
   . . .

 Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
 stored under the diagonal of rows 1:MB of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,1:N).
 For more information see Further Details in GEQRT.

 Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
 stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
 The last Q(k) may use fewer rows.
 For more information see Further Details in TPQRT.

 For more details of the overall algorithm, see the description of
 Sequential TSQR in Section 2.2 of [1].

 [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
     SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 166 of file dlatsqr.f.

166 *
167 * -- LAPACK computational routine (version 3.9.0) --
168 * -- LAPACK is a software package provided by Univ. of Tennessee, --
169 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
170 * November 2019
171 *
172 * .. Scalar Arguments ..
173  INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
174 * ..
175 * .. Array Arguments ..
176  DOUBLE PRECISION A( LDA, * ), WORK( * ), T(LDT, *)
177 * ..
178 *
179 * =====================================================================
180 *
181 * ..
182 * .. Local Scalars ..
183  LOGICAL LQUERY
184  INTEGER I, II, KK, CTR
185 * ..
186 * .. EXTERNAL FUNCTIONS ..
187  LOGICAL LSAME
188  EXTERNAL lsame
189 * .. EXTERNAL SUBROUTINES ..
190  EXTERNAL dgeqrt, dtpqrt, xerbla
191 * .. INTRINSIC FUNCTIONS ..
192  INTRINSIC max, min, mod
193 * ..
194 * .. EXECUTABLE STATEMENTS ..
195 *
196 * TEST THE INPUT ARGUMENTS
197 *
198  info = 0
199 *
200  lquery = ( lwork.EQ.-1 )
201 *
202  IF( m.LT.0 ) THEN
203  info = -1
204  ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
205  info = -2
206  ELSE IF( mb.LE.n ) THEN
207  info = -3
208  ELSE IF( nb.LT.1 .OR. ( nb.GT.n .AND. n.GT.0 )) THEN
209  info = -4
210  ELSE IF( lda.LT.max( 1, m ) ) THEN
211  info = -5
212  ELSE IF( ldt.LT.nb ) THEN
213  info = -8
214  ELSE IF( lwork.LT.(n*nb) .AND. (.NOT.lquery) ) THEN
215  info = -10
216  END IF
217  IF( info.EQ.0) THEN
218  work(1) = nb*n
219  END IF
220  IF( info.NE.0 ) THEN
221  CALL xerbla( 'DLATSQR', -info )
222  RETURN
223  ELSE IF (lquery) THEN
224  RETURN
225  END IF
226 *
227 * Quick return if possible
228 *
229  IF( min(m,n).EQ.0 ) THEN
230  RETURN
231  END IF
232 *
233 * The QR Decomposition
234 *
235  IF ((mb.LE.n).OR.(mb.GE.m)) THEN
236  CALL dgeqrt( m, n, nb, a, lda, t, ldt, work, info)
237  RETURN
238  END IF
239 *
240  kk = mod((m-n),(mb-n))
241  ii=m-kk+1
242 *
243 * Compute the QR factorization of the first block A(1:MB,1:N)
244 *
245  CALL dgeqrt( mb, n, nb, a(1,1), lda, t, ldt, work, info )
246 *
247  ctr = 1
248  DO i = mb+1, ii-mb+n , (mb-n)
249 *
250 * Compute the QR factorization of the current block A(I:I+MB-N,1:N)
251 *
252  CALL dtpqrt( mb-n, n, 0, nb, a(1,1), lda, a( i, 1 ), lda,
253  $ t(1, ctr * n + 1),
254  $ ldt, work, info )
255  ctr = ctr + 1
256  END DO
257 *
258 * Compute the QR factorization of the last block A(II:M,1:N)
259 *
260  IF (ii.LE.m) THEN
261  CALL dtpqrt( kk, n, 0, nb, a(1,1), lda, a( ii, 1 ), lda,
262  $ t(1, ctr * n + 1), ldt,
263  $ work, info )
264  END IF
265 *
266  work( 1 ) = n*nb
267  RETURN
268 *
269 * End of DLATSQR
270 *
Here is the call graph for this function:
Here is the caller graph for this function:
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
dtpqrt
subroutine dtpqrt(M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)
DTPQRT
Definition: dtpqrt.f:191
dgeqrt
subroutine dgeqrt(M, N, NB, A, LDA, T, LDT, WORK, INFO)
DGEQRT
Definition: dgeqrt.f:143