LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ zheevr_2stage()

subroutine zheevr_2stage ( character  JOBZ,
character  RANGE,
character  UPLO,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
double precision  VL,
double precision  VU,
integer  IL,
integer  IU,
double precision  ABSTOL,
integer  M,
double precision, dimension( * )  W,
complex*16, dimension( ldz, * )  Z,
integer  LDZ,
integer, dimension( * )  ISUPPZ,
complex*16, dimension( * )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
integer  LRWORK,
integer, dimension( * )  IWORK,
integer  LIWORK,
integer  INFO 
)

ZHEEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices

Download ZHEEVR_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZHEEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
 of a complex Hermitian matrix A using the 2stage technique for
 the reduction to tridiagonal.  Eigenvalues and eigenvectors can
 be selected by specifying either a range of values or a range of
 indices for the desired eigenvalues.

 ZHEEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
 to ZHETRD.  Then, whenever possible, ZHEEVR_2STAGE calls ZSTEMR to compute
 eigenspectrum using Relatively Robust Representations.  ZSTEMR
 computes eigenvalues by the dqds algorithm, while orthogonal
 eigenvectors are computed from various "good" L D L^T representations
 (also known as Relatively Robust Representations). Gram-Schmidt
 orthogonalization is avoided as far as possible. More specifically,
 the various steps of the algorithm are as follows.

 For each unreduced block (submatrix) of T,
    (a) Compute T - sigma I  = L D L^T, so that L and D
        define all the wanted eigenvalues to high relative accuracy.
        This means that small relative changes in the entries of D and L
        cause only small relative changes in the eigenvalues and
        eigenvectors. The standard (unfactored) representation of the
        tridiagonal matrix T does not have this property in general.
    (b) Compute the eigenvalues to suitable accuracy.
        If the eigenvectors are desired, the algorithm attains full
        accuracy of the computed eigenvalues only right before
        the corresponding vectors have to be computed, see steps c) and d).
    (c) For each cluster of close eigenvalues, select a new
        shift close to the cluster, find a new factorization, and refine
        the shifted eigenvalues to suitable accuracy.
    (d) For each eigenvalue with a large enough relative separation compute
        the corresponding eigenvector by forming a rank revealing twisted
        factorization. Go back to (c) for any clusters that remain.

 The desired accuracy of the output can be specified by the input
 parameter ABSTOL.

 For more details, see DSTEMR's documentation and:
 - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
 - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   2004.  Also LAPACK Working Note 154.
 - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   tridiagonal eigenvalue/eigenvector problem",
   Computer Science Division Technical Report No. UCB/CSD-97-971,
   UC Berkeley, May 1997.


 Note 1 : ZHEEVR_2STAGE calls ZSTEMR when the full spectrum is requested
 on machines which conform to the ieee-754 floating point standard.
 ZHEEVR_2STAGE calls DSTEBZ and ZSTEIN on non-ieee machines and
 when partial spectrum requests are made.

 Normal execution of ZSTEMR may create NaNs and infinities and
 hence may abort due to a floating point exception in environments
 which do not handle NaNs and infinities in the ieee standard default
 manner.
Parameters
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
                  Not available in this release.
[in]RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.
          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
          ZSTEIN are called
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
          On exit, the lower triangle (if UPLO='L') or the upper
          triangle (if UPLO='U') of A, including the diagonal, is
          destroyed.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]VL
          VL is DOUBLE PRECISION
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]VU
          VU is DOUBLE PRECISION
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]IL
          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]IU
          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]ABSTOL
          ABSTOL is DOUBLE PRECISION
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less than
          or equal to zero, then  EPS*|T|  will be used in its place,
          where |T| is the 1-norm of the tridiagonal matrix obtained
          by reducing A to tridiagonal form.

          See "Computing Small Singular Values of Bidiagonal Matrices
          with Guaranteed High Relative Accuracy," by Demmel and
          Kahan, LAPACK Working Note #3.

          If high relative accuracy is important, set ABSTOL to
          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
          eigenvalues are computed to high relative accuracy when
          possible in future releases.  The current code does not
          make any guarantees about high relative accuracy, but
          future releases will. See J. Barlow and J. Demmel,
          "Computing Accurate Eigensystems of Scaled Diagonally
          Dominant Matrices", LAPACK Working Note #7, for a discussion
          of which matrices define their eigenvalues to high relative
          accuracy.
[out]M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
[out]W
          W is DOUBLE PRECISION array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
[out]Z
          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
[out]ISUPPZ
          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
          The support of the eigenvectors in Z, i.e., the indices
          indicating the nonzero elements in Z. The i-th eigenvector
          is nonzero only in elements ISUPPZ( 2*i-1 ) through
          ISUPPZ( 2*i ). This is an output of ZSTEMR (tridiagonal
          matrix). The support of the eigenvectors of A is typically 
          1:N because of the unitary transformations applied by ZUNMTR.
          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  
          If JOBZ = 'N' and N > 1, LWORK must be queried.
                                   LWORK = MAX(1, 26*N, dimension) where
                                   dimension = max(stage1,stage2) + (KD+1)*N + N
                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                                               + max(2*KD*KD, KD*NTHREADS) 
                                               + (KD+1)*N + N
                                   where KD is the blocking size of the reduction,
                                   FACTOPTNB is the blocking used by the QR or LQ
                                   algorithm, usually FACTOPTNB=128 is a good choice
                                   NTHREADS is the number of threads used when
                                   openMP compilation is enabled, otherwise =1.
          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal sizes of the WORK, RWORK and
          IWORK arrays, returns these values as the first entries of
          the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the optimal
          (and minimal) LRWORK.
[in]LRWORK
          LRWORK is INTEGER
          The length of the array RWORK.  LRWORK >= max(1,24*N).

          If LRWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal
          (and minimal) LIWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.  LIWORK >= max(1,10*N).

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  Internal error
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
June 2016
Contributors:
Inderjit Dhillon, IBM Almaden, USA \n
Osni Marques, LBNL/NERSC, USA \n
Ken Stanley, Computer Science Division, University of
  California at Berkeley, USA \n
Jason Riedy, Computer Science Division, University of
  California at Berkeley, USA \n
Further Details:
  All details about the 2stage techniques are available in:

  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  Parallel reduction to condensed forms for symmetric eigenvalue problems
  using aggregated fine-grained and memory-aware kernels. In Proceedings
  of 2011 International Conference for High Performance Computing,
  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  Article 8 , 11 pages.
  http://doi.acm.org/10.1145/2063384.2063394

  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  An improved parallel singular value algorithm and its implementation 
  for multicore hardware, In Proceedings of 2013 International Conference
  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  Denver, Colorado, USA, 2013.
  Article 90, 12 pages.
  http://doi.acm.org/10.1145/2503210.2503292

  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  calculations based on fine-grained memory aware tasks.
  International Journal of High Performance Computing Applications.
  Volume 28 Issue 2, Pages 196-209, May 2014.
  http://hpc.sagepub.com/content/28/2/196 

Definition at line 408 of file zheevr_2stage.f.

408 *
409  IMPLICIT NONE
410 *
411 * -- LAPACK driver routine (version 3.8.0) --
412 * -- LAPACK is a software package provided by Univ. of Tennessee, --
413 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
414 * June 2016
415 *
416 * .. Scalar Arguments ..
417  CHARACTER JOBZ, RANGE, UPLO
418  INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
419  $ M, N
420  DOUBLE PRECISION ABSTOL, VL, VU
421 * ..
422 * .. Array Arguments ..
423  INTEGER ISUPPZ( * ), IWORK( * )
424  DOUBLE PRECISION RWORK( * ), W( * )
425  COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
426 * ..
427 *
428 * =====================================================================
429 *
430 * .. Parameters ..
431  DOUBLE PRECISION ZERO, ONE, TWO
432  parameter( zero = 0.0d+0, one = 1.0d+0, two = 2.0d+0 )
433 * ..
434 * .. Local Scalars ..
435  LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
436  $ WANTZ, TRYRAC
437  CHARACTER ORDER
438  INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
439  $ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
440  $ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
441  $ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
442  $ LWMIN, NSPLIT, LHTRD, LWTRD, KD, IB, INDHOUS
443  DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
444  $ SIGMA, SMLNUM, TMP1, VLL, VUU
445 * ..
446 * .. External Functions ..
447  LOGICAL LSAME
448  INTEGER ILAENV, ILAENV2STAGE
449  DOUBLE PRECISION DLAMCH, ZLANSY
450  EXTERNAL lsame, dlamch, zlansy, ilaenv, ilaenv2stage
451 * ..
452 * .. External Subroutines ..
453  EXTERNAL dcopy, dscal, dstebz, dsterf, xerbla, zdscal,
455 * ..
456 * .. Intrinsic Functions ..
457  INTRINSIC dble, max, min, sqrt
458 * ..
459 * .. Executable Statements ..
460 *
461 * Test the input parameters.
462 *
463  ieeeok = ilaenv( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
464 *
465  lower = lsame( uplo, 'L' )
466  wantz = lsame( jobz, 'V' )
467  alleig = lsame( range, 'A' )
468  valeig = lsame( range, 'V' )
469  indeig = lsame( range, 'I' )
470 *
471  lquery = ( ( lwork.EQ.-1 ) .OR. ( lrwork.EQ.-1 ) .OR.
472  $ ( liwork.EQ.-1 ) )
473 *
474  kd = ilaenv2stage( 1, 'ZHETRD_2STAGE', jobz, n, -1, -1, -1 )
475  ib = ilaenv2stage( 2, 'ZHETRD_2STAGE', jobz, n, kd, -1, -1 )
476  lhtrd = ilaenv2stage( 3, 'ZHETRD_2STAGE', jobz, n, kd, ib, -1 )
477  lwtrd = ilaenv2stage( 4, 'ZHETRD_2STAGE', jobz, n, kd, ib, -1 )
478  lwmin = n + lhtrd + lwtrd
479  lrwmin = max( 1, 24*n )
480  liwmin = max( 1, 10*n )
481 *
482  info = 0
483  IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
484  info = -1
485  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
486  info = -2
487  ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
488  info = -3
489  ELSE IF( n.LT.0 ) THEN
490  info = -4
491  ELSE IF( lda.LT.max( 1, n ) ) THEN
492  info = -6
493  ELSE
494  IF( valeig ) THEN
495  IF( n.GT.0 .AND. vu.LE.vl )
496  $ info = -8
497  ELSE IF( indeig ) THEN
498  IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
499  info = -9
500  ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
501  info = -10
502  END IF
503  END IF
504  END IF
505  IF( info.EQ.0 ) THEN
506  IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
507  info = -15
508  END IF
509  END IF
510 *
511  IF( info.EQ.0 ) THEN
512  work( 1 ) = lwmin
513  rwork( 1 ) = lrwmin
514  iwork( 1 ) = liwmin
515 *
516  IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
517  info = -18
518  ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
519  info = -20
520  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
521  info = -22
522  END IF
523  END IF
524 *
525  IF( info.NE.0 ) THEN
526  CALL xerbla( 'ZHEEVR_2STAGE', -info )
527  RETURN
528  ELSE IF( lquery ) THEN
529  RETURN
530  END IF
531 *
532 * Quick return if possible
533 *
534  m = 0
535  IF( n.EQ.0 ) THEN
536  work( 1 ) = 1
537  RETURN
538  END IF
539 *
540  IF( n.EQ.1 ) THEN
541  work( 1 ) = 2
542  IF( alleig .OR. indeig ) THEN
543  m = 1
544  w( 1 ) = dble( a( 1, 1 ) )
545  ELSE
546  IF( vl.LT.dble( a( 1, 1 ) ) .AND. vu.GE.dble( a( 1, 1 ) ) )
547  $ THEN
548  m = 1
549  w( 1 ) = dble( a( 1, 1 ) )
550  END IF
551  END IF
552  IF( wantz ) THEN
553  z( 1, 1 ) = one
554  isuppz( 1 ) = 1
555  isuppz( 2 ) = 1
556  END IF
557  RETURN
558  END IF
559 *
560 * Get machine constants.
561 *
562  safmin = dlamch( 'Safe minimum' )
563  eps = dlamch( 'Precision' )
564  smlnum = safmin / eps
565  bignum = one / smlnum
566  rmin = sqrt( smlnum )
567  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
568 *
569 * Scale matrix to allowable range, if necessary.
570 *
571  iscale = 0
572  abstll = abstol
573  IF (valeig) THEN
574  vll = vl
575  vuu = vu
576  END IF
577  anrm = zlansy( 'M', uplo, n, a, lda, rwork )
578  IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
579  iscale = 1
580  sigma = rmin / anrm
581  ELSE IF( anrm.GT.rmax ) THEN
582  iscale = 1
583  sigma = rmax / anrm
584  END IF
585  IF( iscale.EQ.1 ) THEN
586  IF( lower ) THEN
587  DO 10 j = 1, n
588  CALL zdscal( n-j+1, sigma, a( j, j ), 1 )
589  10 CONTINUE
590  ELSE
591  DO 20 j = 1, n
592  CALL zdscal( j, sigma, a( 1, j ), 1 )
593  20 CONTINUE
594  END IF
595  IF( abstol.GT.0 )
596  $ abstll = abstol*sigma
597  IF( valeig ) THEN
598  vll = vl*sigma
599  vuu = vu*sigma
600  END IF
601  END IF
602 
603 * Initialize indices into workspaces. Note: The IWORK indices are
604 * used only if DSTERF or ZSTEMR fail.
605 
606 * WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
607 * elementary reflectors used in ZHETRD.
608  indtau = 1
609 * INDWK is the starting offset of the remaining complex workspace,
610 * and LLWORK is the remaining complex workspace size.
611  indhous = indtau + n
612  indwk = indhous + lhtrd
613  llwork = lwork - indwk + 1
614 
615 * RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
616 * entries.
617  indrd = 1
618 * RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
619 * tridiagonal matrix from ZHETRD.
620  indre = indrd + n
621 * RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
622 * -written by ZSTEMR (the DSTERF path copies the diagonal to W).
623  indrdd = indre + n
624 * RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
625 * -written while computing the eigenvalues in DSTERF and ZSTEMR.
626  indree = indrdd + n
627 * INDRWK is the starting offset of the left-over real workspace, and
628 * LLRWORK is the remaining workspace size.
629  indrwk = indree + n
630  llrwork = lrwork - indrwk + 1
631 
632 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
633 * stores the block indices of each of the M<=N eigenvalues.
634  indibl = 1
635 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
636 * stores the starting and finishing indices of each block.
637  indisp = indibl + n
638 * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
639 * that corresponding to eigenvectors that fail to converge in
640 * ZSTEIN. This information is discarded; if any fail, the driver
641 * returns INFO > 0.
642  indifl = indisp + n
643 * INDIWO is the offset of the remaining integer workspace.
644  indiwo = indifl + n
645 
646 *
647 * Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
648 *
649  CALL zhetrd_2stage( jobz, uplo, n, a, lda, rwork( indrd ),
650  $ rwork( indre ), work( indtau ),
651  $ work( indhous ), lhtrd,
652  $ work( indwk ), llwork, iinfo )
653 *
654 * If all eigenvalues are desired
655 * then call DSTERF or ZSTEMR and ZUNMTR.
656 *
657  test = .false.
658  IF( indeig ) THEN
659  IF( il.EQ.1 .AND. iu.EQ.n ) THEN
660  test = .true.
661  END IF
662  END IF
663  IF( ( alleig.OR.test ) .AND. ( ieeeok.EQ.1 ) ) THEN
664  IF( .NOT.wantz ) THEN
665  CALL dcopy( n, rwork( indrd ), 1, w, 1 )
666  CALL dcopy( n-1, rwork( indre ), 1, rwork( indree ), 1 )
667  CALL dsterf( n, w, rwork( indree ), info )
668  ELSE
669  CALL dcopy( n-1, rwork( indre ), 1, rwork( indree ), 1 )
670  CALL dcopy( n, rwork( indrd ), 1, rwork( indrdd ), 1 )
671 *
672  IF (abstol .LE. two*n*eps) THEN
673  tryrac = .true.
674  ELSE
675  tryrac = .false.
676  END IF
677  CALL zstemr( jobz, 'A', n, rwork( indrdd ),
678  $ rwork( indree ), vl, vu, il, iu, m, w,
679  $ z, ldz, n, isuppz, tryrac,
680  $ rwork( indrwk ), llrwork,
681  $ iwork, liwork, info )
682 *
683 * Apply unitary matrix used in reduction to tridiagonal
684 * form to eigenvectors returned by ZSTEMR.
685 *
686  IF( wantz .AND. info.EQ.0 ) THEN
687  indwkn = indwk
688  llwrkn = lwork - indwkn + 1
689  CALL zunmtr( 'L', uplo, 'N', n, m, a, lda,
690  $ work( indtau ), z, ldz, work( indwkn ),
691  $ llwrkn, iinfo )
692  END IF
693  END IF
694 *
695 *
696  IF( info.EQ.0 ) THEN
697  m = n
698  GO TO 30
699  END IF
700  info = 0
701  END IF
702 *
703 * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
704 * Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
705 *
706  IF( wantz ) THEN
707  order = 'B'
708  ELSE
709  order = 'E'
710  END IF
711 
712  CALL dstebz( range, order, n, vll, vuu, il, iu, abstll,
713  $ rwork( indrd ), rwork( indre ), m, nsplit, w,
714  $ iwork( indibl ), iwork( indisp ), rwork( indrwk ),
715  $ iwork( indiwo ), info )
716 *
717  IF( wantz ) THEN
718  CALL zstein( n, rwork( indrd ), rwork( indre ), m, w,
719  $ iwork( indibl ), iwork( indisp ), z, ldz,
720  $ rwork( indrwk ), iwork( indiwo ), iwork( indifl ),
721  $ info )
722 *
723 * Apply unitary matrix used in reduction to tridiagonal
724 * form to eigenvectors returned by ZSTEIN.
725 *
726  indwkn = indwk
727  llwrkn = lwork - indwkn + 1
728  CALL zunmtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ), z,
729  $ ldz, work( indwkn ), llwrkn, iinfo )
730  END IF
731 *
732 * If matrix was scaled, then rescale eigenvalues appropriately.
733 *
734  30 CONTINUE
735  IF( iscale.EQ.1 ) THEN
736  IF( info.EQ.0 ) THEN
737  imax = m
738  ELSE
739  imax = info - 1
740  END IF
741  CALL dscal( imax, one / sigma, w, 1 )
742  END IF
743 *
744 * If eigenvalues are not in order, then sort them, along with
745 * eigenvectors.
746 *
747  IF( wantz ) THEN
748  DO 50 j = 1, m - 1
749  i = 0
750  tmp1 = w( j )
751  DO 40 jj = j + 1, m
752  IF( w( jj ).LT.tmp1 ) THEN
753  i = jj
754  tmp1 = w( jj )
755  END IF
756  40 CONTINUE
757 *
758  IF( i.NE.0 ) THEN
759  itmp1 = iwork( indibl+i-1 )
760  w( i ) = w( j )
761  iwork( indibl+i-1 ) = iwork( indibl+j-1 )
762  w( j ) = tmp1
763  iwork( indibl+j-1 ) = itmp1
764  CALL zswap( n, z( 1, i ), 1, z( 1, j ), 1 )
765  END IF
766  50 CONTINUE
767  END IF
768 *
769 * Set WORK(1) to optimal workspace size.
770 *
771  work( 1 ) = lwmin
772  rwork( 1 ) = lrwmin
773  iwork( 1 ) = liwmin
774 *
775  RETURN
776 *
777 * End of ZHEEVR_2STAGE
778 *
Here is the call graph for this function:
Here is the caller graph for this function:
zstein
subroutine zstein(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
ZSTEIN
Definition: zstein.f:184
zlansy
double precision function zlansy(NORM, UPLO, N, A, LDA, WORK)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlansy.f:125
dstebz
subroutine dstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
DSTEBZ
Definition: dstebz.f:275
zdscal
subroutine zdscal(N, DA, ZX, INCX)
ZDSCAL
Definition: zdscal.f:80
dsterf
subroutine dsterf(N, D, E, INFO)
DSTERF
Definition: dsterf.f:88
dcopy
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:84
zunmtr
subroutine zunmtr(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
ZUNMTR
Definition: zunmtr.f:173
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
zstemr
subroutine zstemr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
ZSTEMR
Definition: zstemr.f:340
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
zswap
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:83
ilaenv
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: tstiee.f:83
ilaenv2stage
integer function ilaenv2stage(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV2STAGE
Definition: ilaenv2stage.f:151
zhetrd_2stage
subroutine zhetrd_2stage(VECT, UPLO, N, A, LDA, D, E, TAU, HOUS2, LHOUS2, WORK, LWORK, INFO)
ZHETRD_2STAGE
Definition: zhetrd_2stage.f:226
dscal
subroutine dscal(N, DA, DX, INCX)
DSCAL
Definition: dscal.f:81
dlamch
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:70