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SMS heuristics for proteins and DNA 

 The SMS software tool determines the evolutionary model that best fits the input sequences 
in a tree inference context. Two criteria are available, depending on the user’s preferences: AIC 
(Akaike Information Criterion [1]) and BIC (Bayesian Information Criterion [2]). BIC penalizes 
free parameters more strongly than AIC. SMS does not use AICc (the corrected version of AIC) as 
it can be problematic with today’s MSAs, where the number of taxa (t) and thus the number of free 
parameters ( 2 3k t  = number of branch lengths) is often close to, or even larger than, the number 
of sites (n). In that case, the correction term (with denominator 1n k  ) can be very large in 
absolute value, and even negative, which is simply meaningless.  

To reduce the computational burden, SMS uses heuristics to avoid evaluating all available 
models and options. Furthermore, some calculations are simplified. For example, the proportion of 
invariant sites is not systematically re-optimized in all settings. Below, we first provide definitions 
and then describe SMS heuristics for proteins and DNA sequences. 

Definitions 
 MSA: multiple sequence alignment (PHYLIP format). 

 Model: a substitution rate matrix (e.g. GTR for DNA, JTT for proteins) + a model for rates 

across sites (RAS, e.g. +) + the option used to define the equilibrium frequencies (only with 

proteins). 

 Model decoration: RAS and equilibrium frequency options, that is: 

◦ +Γ: use of discrete gamma distribution with 4 categories to model RAS, the parameter  of 

this distribution is estimated from the MSA; no gamma distribution of RAS is used with –Γ 
(usually omitted when describing model options). 

◦ +I: we assume that some sites are invariant and then estimate the proportion of invariant 

sites in the MSA; +I alone (without +) is only used with DNA, as it rarely appeared to be 

useful with proteins in our tests (Sup. Tab. 4); -I is usually omitted in the model option 
description. 

◦ +F: (proteins only) indicates that the equilibrium frequencies of amino-acids are estimated 
from the MSA (simple counting method); with -F (usually omitted), we use the equilibrium 
frequencies corresponding to the substitution matrix being evaluated.  

 With protein data, SMS evaluates:  

◦ 4 decorations: +Γ / +Γ+I / +Γ+F / +Γ+I+F. 

◦ 17 substitution matrices (JTT, WAG, LG, etc., see Fig. 1C), with rate parameters pre-
estimated from very large data sets (e.g., see [3]); moreover, users can add their own 
matrices (Paml format) to this list for comparison purposes. 
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 With DNA data, SMS evaluates:  

◦ 4 decorations: +I / +Γ / +Γ+I / none. 

◦ 4 substitution matrices: GTR, TN93, HKY85, and K80; all parameters in these matrices are 
estimated by maximum likelihood (ML) from the MSA, including nucleotide equilibrium 
frequencies. 

SMS heuristic for protein data 
With proteins, SMS involves four main steps: (1) fast inference of a fixed tree topology; (2) 

selection of the “most promising” RAS decoration with LG, to be applied to all matrices in the next 
step; (3) selection of the best matrix with a similarity-based heuristic to avoid evaluating both +F 
and –F options systematically; (4) final selection of the best decoration for the best matrix. Thanks 
to steps (2) and (3), SMS computes an average of only ~1.75 decorations per matrix, instead of 4 
with exhaustive calculations. These four steps are detailed below. 

1. Set a fixed tree topology 
SMS computes a tree topology using BioNJ with LG evolutionary distances and no 

decoration (default PhyML option to build a first tree). Users can also supply their preferred 
topology. In both cases, this topology remains fixed during the next steps; only the branch lengths 
and model parameters are optimized by SMS for each of the models and options being evaluated. 

2. Select the “most promising” RAS decoration with LG 
Assuming LG with -F option and the previously-defined fixed tree topology, SMS selects 

the RAS decoration (+Γ, +Γ+I) that best fits the MSA, according to the user-selected criterion (AIC 
or BIC). This decoration is used in the next step (3) for all matrices and, when +Γ+I is selected, the 
proportion of invariant sites is kept fixed to accelerate parameter estimations. 

3. Select the best substitution matrix 
Substitution matrices for proteins are pre-estimated using very large data sets that commonly 

comprise thousands of MSAs. Both the relative rates and the amino-acid equilibrium frequencies 
attached to the matrix are estimated during this process. However, the average amino-acid 
frequencies obtained may be a poor fit for the MSA being analyzed. In that case, the +F option 
becomes relevant. To measure the closeness between the matrix equilibrium frequencies and those 
in the MSA, SMS computes a χ2 distance that is used to sort the matrices. 

On the one hand, the smaller the χ2 distance, the closer the amino-acid frequencies in the 
MSA are to the frequencies associated with the substitution matrix; then, the +F option is likely to 
be of no use, and -F will produce better AIC/BIC values. On the other hand, the larger the MSA, the 
more likely it is that the +F option will produce better results, since, with large data sets, we have 
enough information to estimate a large number of parameters (i.e. here, 20 additional amino-acid 
frequencies). A threshold of 5,000 residues was empirically determined to distinguish large MSAs 
from small MSAs. To reduce the computational burden, SMS uses a strategy to minimize the 
number of times it evaluates both +F and -F options for the same matrix: 

 Large MSAs: SMS sorts the matrices in increasing χ2 value order, then evaluates and compares 
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both +F and -F options until it obtains three consecutive best +F options; subsequently, SMS no 
longer evaluates the -F option. Indeed, +F is expected to be the best option in most cases, except 
for the (hopefully few) matrices being close to the MSA with a low χ2 value. 

 Small MSAs: SMS sorts the matrices in decreasing χ2 value order, then evaluates and compares 
both +F and -F options until it obtains three consecutive best -F options; subsequently, SMS no 
longer evaluates the +F option. Indeed, -F is expected to be the best option in most cases, except 
for the (hopefully few) matrices being remote from the MSA with a high χ2 value. 

4. Select the best decoration 
In the previous steps, one (most matrices) to four (LG) decorations were evaluated for each 

of the matrices to select the best one. In this last step, SMS computes the AIC/BIC values 
associated with the selected matrix and the decorations that were not yet evaluated (or evaluated 
approximately using a fixed proportion of invariant sites). 

SMS heuristic for DNA data 
With DNA, SMS involves four main steps: (1) fast inference of a fixed tree topology; (2) 

selection of the “most promising” decoration with GTR, with this decoration then used in the next 
step to compare the matrices; (3) selection of the best matrix among GTR, TN93, HKY85, and K80; 

(4) selection of the best decoration for the best matrix. Only a few models (16 = 4 matrices X 4 

decorations) are considered, as supported by our statistics with 500 representative data sets (Sup. 
Tab. 3). We also take advantage of the fact that GTR is usually best. On average, SMS evaluates ~6 
and ~7.5 models when optimizing AIC and BIC respectively, while, with exhaustive calculations, 
16 models are evaluated. Nucleotide equilibrium frequencies are estimated by ML with all models 
and options. Below, we detail the four SMS steps with DNA. 

1. Set a fixed tree topology 
SMS computes a BioNJ tree topology with HKY85 evolutionary distances and no RAS 

modeling (default PhyML option to build a first tree). Users can also provide their preferred 
topology. In both cases, this topology remains fixed during the next steps; only the branch lengths 
and model parameters are optimized by SMS for each of the models and options being evaluated. 

2. Select the “most promising” decoration with GTR 
Four decorations are evaluated (+I / +Γ / +Γ+I / none). The best decoration among four 

possibilities is selected and used in the next step (3) for all matrices. Moreover, when +I or +Γ+I is 
selected, the proportion of invariant sites is kept fixed to accelerate parameter estimations. 

3. Select the best matrix 
SMS compares GTR, TN93, HK85, and K80, assuming the previously selected decoration 

and proportion of invariant sites. These four matrices are nested: TN93 is a special case of GTR, 
HKY85 a special case of TN93, and K80 a special case of HKY85. Moreover, GTR is usually best 
(Sup. Tab. 3). Thus, SMS proceeds in a stepwise manner: it first compares GTR and TN93; if GTR 
is better, then SMS stops and selects GTR; otherwise, HKY85 is evaluated and compared to TN93; 
if TN93 is better, then SMS stops and returns TN93; otherwise, K80 is evaluated and compared to 
HKY85, and the best of both is selected. 
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4. Select the best decoration for the best matrix  
In this step, SMS assumes the previously selected matrix and optimizes branch lengths and 

model parameters for all decorations for which these calculations were not already (or 
approximately) performed. SMS then returns the best matrix/decoration combination. 

 
Data sets 

1,000 representative data sets 

To compare SMS with other approaches, we used 500 DNA and 500 protein MSAs, 
corresponding to the first data sets submitted to the PhyML Web server since the beta test version 
of SMS was made available (April 2015). No selection was performed, so these data sets are 
representative of the MSAs commonly used for phylogenetic analyses. Statistics are displayed in 
Sup. Table 1. Some of these data sets are very small (e.g. a total of 231 amino acids, with 11 taxa 
and 231 sites); some are very large (e.g. 14,160,098 amino acids); some contain more than 1,000 
taxa; and some have a huge number of sites (e.g. 52,092 nucleotidic sites). These datasets and their 
features are available from http://www.atgc-montpellier.fr/sms/, along with the results of the 
various approaches. For confidentiality reasons, taxon names have been removed, taxa are 
numbered, and the sites of the MSAs have been shuffled (PhyML and SMS results are unchanged). 

 
Data Criterion Minimum 1st quartile 2nd quartile 3rd quartile Maximum 

DNA 

# taxa (T) 
 T = 6 
 S = 7,976 
 R = 47,551 

 T = 27 
 S = 801 
 R = 21,353 

 T = 54 
 S = 9,909 
 R = 473,500 

 T = 102 
 S = 1,241 
 R = 126,574 

 T = 1,093 
 S = 500 
 R = 538,138 

# sites (S) 
 T = 162 
 S = 106 
 R = 17,057 

 T = 32 
 S = 573 
 R = 18,336 

 T = 7 
 S = 957 
 R = 6,391 

 T = 70 
 S = 1,846 
 R = 115,435 

 T = 15 
 S = 52,092 
 R = 781,380 

# nuc. (R) 
 T = 20 
 S = 132 
 R = 2,640 

 T = 58 
 S = 531 
 R = 23,618 

 T = 21 
 S = 2,667 
R = 54,615 

 T = 240 
 S = 658 
R = 157,919 

 T = 576 
 S = 7,433 
 R = 4,280,950 

Protein 

# taxa (T) 
 T = 5 
 S = 555 
 R = 2,584 

 T = 28 
 S = 306 
 R = 8,505 

 T = 50 
 S = 299 
 R = 11,892 

 T = 110 
 S = 65 
 R = 7,053 

 T = 1,151 
 S = 798 
 R = 824,644 

# sites (S) 
 T = 71 
 S = 17 
 R = 1,154 

 T = 198 
 S = 172 
 R = 28,459 

 T = 15 
 S = 395 
 R = 4,422 

 T = 39 
 S = 610 
 R = 23,629 

 T = 62 
 S = 230,322 
 R = 14,160,098 

# aa (R) 
 T = 11 
 S = 21 
 R = 231 

 T = 76 
 S = 83 
 R = 6,184 

 T = 159 
 S = 106 
 R = 16,853 

 T = 294 
 S = 141 
R = 40,724 

 T = 62 
 S = 230,322 
 R = 14,160,098 

 
Sup. Table 1: 500 DNA + 500 protein representative data sets. Several statistics are 
displayed to rank and summarize these 1,000 user-supplied data sets, which we used to compare 
SMS to other approaches: T is the number of taxa, S is the number of sites, and R is the number 

of nucleotides/amino acids (R = T X S - number of gaps and unknowns). For each of these 

statistics we provide the features of the MSA with minimum value, maximum value, as well as 
the first, second (i.e. median), and third quartiles. For example, the DNA alignment with the 
minimum number of taxa has T = 6, S = 7,979, and R = 47,551.  
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 100 PhyML 3.0 data sets 

 To confirm our findings with previous representative MSAs and ensure that our experiments 
are reproducible, we also tested the medium-size data sets that were used to benchmark PhyML 3.0 
[4]. These comprise 50 DNA and 50 protein MSAs extracted from TreeBase [5]. Statistics are 
displayed in Sup. Table 2. Globally these MSAs have less diverse sizes than the recent MSAs 
described in Sup. Table 1. Notably, some of the recent MSAs are extremely large, which was not 
the case with the previous ones, which were selected to be neither too large nor too small (see the 
PhyML 3.0 benchmark web site, where these data sets can be downloaded: http://www.atgc-
montpellier.fr/phyml/benchmarks/). 

 

Data Criterion Minimum 1st quartile 2nd quartile 3rd quartile Maximum 

DNA 

# taxa (T) 
 T = 50 
 S = 872 
 R = 43,600 

 T = 56 
 S = 827 
 R = 46,312 

 T = 68 
 S = 1,712 
 R = 116,416 

 T = 99 
 S = 1,634 
 R = 161,766 

 T = 191 
 S = 990 
 R = 189,090 

# sites (S) 
 T = 70 
 S = 800 
 R = 56,000 

 T = 54 
 S = 966 
 R = 52,164 

 T = 142 
 S = 1,130 
 R = 160,460 

 T = 51 
 S = 1,537 
 R = 78,387 

 T = 51 
 S = 1,951 
 R = 99,501 

# nuc. (R) 
 T = 50 
 S = 872 
 R = 43,600 

 T = 66 
 S = 1,027 
 R = 67,782 

 T = 77 
 S = 1,101 
 R = 84,777 

 T = 143 
 S = 897 
 R = 128,271 

 T = 117 
 S = 1,910 
 R = 223,470 

Protein 

# taxa (T) 
 T = 5 
 S = 1,006 
 R = 5,030 

 T = 18 
 S = 1,561 
 R = 28,098 

 T = 23 
 S = 392 
 R = 9,016 

 T = 32 
 S = 129 
 R = 4,128 

 T = 139 
 S = 348 
 R = 48,372 

# sites (S) 
 T = 46 
 S = 68 
 R = 3,128 

 T = 30 
 S = 276 
 R = 8,280 

 T = 40 
 S = 430 
 R = 17,200 

 T = 30 
 S = 719 
 R = 21,570 

 T = 19 
 S = 1,566 
 R = 29,754 

# aa (R) 
 T = 7 
 S = 232 
 R = 1,624 

 T = 11 
 S = 530 
 R = 5,830 

 T = 38 
 S = 251 
R = 9,538 

 T = 40 
 S = 430 
R = 17,200 

 T = 52 
 S = 981 
 R = 51,012 

 
 

Sup. Table 2: 50 DNA + 50 protein data sets, available from the PhyML 3.0 web site. See 
note to Sup. Tab. 1. 

 

Usefulness of the models and options 

Part of the computing efficiency of SMS is induced by the fact that it uses a limited number 
of models and options. Among all the possibilities available in PhyML, we selected those that 
showed to be biologically relevant and useful with the data sets currently assembled to perform 
phylogenetic analyses. For this purpose, we analyzed the 500 DNA and 500 protein MSAs 
previously described, with all models and options available from the PhyML 3.0 web server, plus 
the SYM substitution matrix for DNA [6], which is available in jModelTest2 [7]. Results obtained 
using the AIC and BIC criteria are summarized in Sup. Table 3 for DNA and Sup. Table 4 for 
proteins.  
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Criterion Deco./Mat. GTR SYM TN93 HKY85 F81 K80 JC69 Total

AIC 

“none” 11 2 1 6 1  1 22 

+I 13 1 7 13  1  35

+Γ 71 9 25 12 1 3  121 

+I +Γ 248 7 39 26 1 1  322 

Total 343 19 72 57 3 5 1 500

BIC 

“none” 4 4  11 5 6 2 32 

+I 3  8 26 1 8  46 

+Γ 45 10 38 45 1 27 1 167 

+I +Γ 155 10 36 46 1 7  255 

Total 207 24 82 128 8 48 3 500 

Sup. Table 3: Usefulness of DNA models and options. These results were obtained using our 
500 representative DNA data sets. We ran PhyML with all combinations of matrices and 
decorations and counted the number of times each combination had the best AIC/BIC value. 

With DNA data, we see that: 

 All RAS decorations (“none”, +I, + and ++I) are useful, even “none”, which has the best AIC 

and BIC values for ~4% and ~6% of the MSAs, respectively. As expected, the most frequently 

selected decoration is ++I (~65% and ~50%). All four decorations are thus available in SMS 

for DNA MSAs. It is likely that “none” and +I are mostly used with non-coding DNA, where 
the strength of the structural and functional constraints is less variable than in the coding regions 
(see results with proteins). 

 The simplest matrices (F81 and JC69) are essentially useless and not available in SMS, as they 
are best with ~1% of the MSAs (both AIC and BIC). This was expected, since these matrices do 
not capture the difference between transitions and transversions. 

 The other, more sophisticated matrices (GTR, SYM, TN93, HKY85, and K80), are much more 
useful. As expected (due to the large size of extant data sets), GTR is the most frequently 
selected model (~68% and ~40% with AIC and BIC, respectively), followed by TN93 (second 
best with AIC, ~14%), and HKY85 (second best with BIC, ~25%). SYM is clearly behind (<5% 
with both AIC and BIC); this was expected since SYM assumes (nearly) equal nucleotide 
frequencies, which is rarely the case. Thus, SYM is not available in SMS (and is not available 
on the PhyML 3.0 Web server). However, K80 (also assuming nearly equal nucleotide 
frequencies) appears to be useful with BIC (~10%), due to its simplicity (1 free parameter only). 
GTR, TN93, HKY85, and K80 are thus available in SMS. 

With proteins, we see that: 

 Among the RAS decorations, only + and ++I are useful and available in SMS; “none” and +I 

are all best with only 6 and 10 MSAs with AIC and BIC respectively, and thus are not available. 
Protein MSAs usually have few constant sites (median proportion ≈ 3%), and we expect a high 
variability of site rates caused by the variability of functional and structural constraints acting 
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along the protein sequences. These results and choices are thus biologically consistent. 

Criterion Model 
J 
T 
T 

W 
A 
G 

L 
G 

D 
a 
y 
h 
o 
f 
f 

D 
C 
M 
u 
t 

V 
T 

B 
l 
o 
s 
u 
m 
62 

M 
t 
R 
E 
V 

R 
t 
R 
E 
V 

C 
p 
R 
E 
V 

M 
t 
Z 
o 
a 

M 
t 

M 
a 
m 

M 
t 
A 
r 
t 

H 
I 
V 
b 

H 
I 
V 
w 

F 
L 
U 

A 
B 

T 
o 
t 
a 
l 

AIC 

“none” 2      1           3 

+F             1     1 

+I    1              1 

+I+F 1                 1 

+Γ 19 6 42   4    1 1   2  5  80 

+Γ+F 21 10 33  2 8 5  3 3 4  1   2 1 93

+I+Γ 26 10 117  1 3 5   1     2 1  166

+I+Γ+F 30 12 74   8 3  9 4 4 1  4 1 5  155

Total 99 38 266 1 3 23 14 0 12 9 9 1 2 6 3 13 1 500

BIC 

“none” 2  1    1           4 

+F  2                2 

+I 2   1          1    4 

+I+F                  0 

+Γ 42 13 82 2 1 6 2   3 2   2 1 5  161

+Γ+F 17 9 25  1 6 4  1 1 3  1 1 1 2  72 

+I+Γ 26 12 124 1 1 5 5   1  1    1  177

+I+Γ+F 9 6 41   7 2  5 4 4   1  1  80 

Total 98 42 273 4 3 24 14 0 6 9 9 1 1 5 2 9 0 500

Sup. Table 4: Usefulness of protein models and options. These results were obtained using 
our 500 representative protein data sets. See note to Sup. Tab. 3. 

 

 Both -F and +F options are useful and available in SMS; each is best in ~50% of the cases with 
AIC, and ~66% and ~34% respectively with BIC, which penalizes the number of parameters 
more strongly. 

 Most matrices are dedicated to special types of proteins; for example, FLU is dedicated to 
influenza data sets, MtArt to mitochondrial MSAs from arthropods (with non-standard genetic 
code), and AB to proteins from immune systems. Thus, one would not expect these matrices to 
be selected frequently, and all matrices available in PhyML are also available in SMS. Among 
the general matrices, LG [3] is clearly the most useful (best AIC and BIC values for >50% of 
the MSAs), followed by JTT (~20%) and WAG (~8%), while Dayhoff, DCmut, VT, and 
Blosum62 are rarely selected (total of ~9%).  
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Data type Software Substitution Matrices Decorations 

DNA 
SMS GTR, HKY85, K80, TN93 +I, +Γ, +Γ +I, none 

jModelTest2 GTR, HKY85, K80, SYM, F81, JC69 +I, +Γ, +Γ +I, none 

Protein 

SMS 
JTT, WAG, LG, Dayhoff, DCMut, VT, Blosum62, 
MtREV RtREV, CpREV, MtMam, MtArt, HIVw, HIVb, 
FLU, AB, MtZoa 

+Γ, +Γ+I, +Γ+F, +Γ+I +F 

ProtTest 
JTT, WAG, LG, Dayhoff, DCMut, VT, Blosum62, 
MtREV RtREV, CpREV, MtMam, MtArt, HIVw, HIVb, 
FLU 

+Γ, +Γ+I, +Γ+F, +Γ+I +F, 
+F, none, +I, +I +F 

Sup. Table 5: Available models in SMS and jModelTest2/ProtTest. (differences in italics) 
 

Method comparisons 

Methods being compared 

To assess accuracy and efficiency, SMS was compared to the exhaustive approach that 
evaluates all matrix+decoration combinations to select the best one, instead of using heuristics to 
focus on the most promising combinations and save computing time. The exhaustive approach was 
launched with the same BioNJ tree, same sets of matrices and decorations as SMS, that is, 4 

matrices X 4 decorations = 16 combinations for DNA, and 17 matrices X 4 decorations = 68 

combinations for proteins. We compared the:  

 Selected models (same or different). 

 Difference in AIC and BIC when a different model was selected by SMS; then, the SMS model 
is necessarily worse than the exhaustive approach model, and we checked that the difference in 
AIC and BIC (per taxon per site) was acceptably small. 

 Number of times PhyML was launched by SMS, that is, the number of combinations tested by 
SMS, to be compared to the 16 and 68 combinations tested by the exhaustive approach for DNA 
and proteins, respectively. 

 Computing time of both methods. 

 “Speed increase” brought by SMS, that is, the computing time of the exhaustive approach 
divided by that of SMS. 

We also compared SMS to jModelTest2 [7] and ProtTest [8]. In both cases, we used fast 
options to run these programs, since SMS was designed to be fast. Moreover, we selected the 
options to make these programs as close as possible to SMS in terms of matrices and decorations, 
and we checked to make sure that the differences in both AIC/BIC values and computing times 
were not explained by the use of different PhyML versions.   
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Methods  Data Criterion 
Same 
model 

SMS 
better

SMS 
worse

Δ AIC & Δ BIC 
per taxon-site

# PhyML runs 
SMS/other 

Speed 
increase

SMS 
versus 

Exhaustive 
DNA 

AIC 

BIC 

49 

48 

na 

na 

1 

2 

2.57 x 10-6 

7.62 x 10-3 

5.8 / 16 

7.3 / 16 

1.9 

1.6 

SMS 
versus 

Exhaustive 
Protein 

AIC 

BIC 

50 

49 

na 

na 

0 

1 

0 

7.19 x 10-3 

29.7 / 68 

31.9 / 68 

2.8 

2.6 

SMS 
versus 

jModelTest2 
DNA 

AIC 

BIC 

44 

28 

5 

19 

1 

3 

- 2.24 x 10-5 

-9.24 x 10-5 

5.8 / 7.1 

7.3 / 7.1 

1.0 

0.8  

SMS 
versus 

ProtTest 
Protein 

AIC 

BIC 

41 

43 

4 

2 

5 

5 

- 9.89 x 10-5 

9.77 x 10-5 

29.7 / 120 

31.9 / 120 

4.6 

4.5 

Sup. Table 6: Method comparison with PhyML 3.0 data sets. See note to Table 1. 

 

We used jModelTest2 version 2.1.10 with options:  

 '-G 0.1' which corresponds to the fast “model filtering” heuristic to focus on promising models; 
(0.1 is the default threshold value to tune this heuristic). 

 '-t BIONJ' which estimates a BioNJ tree topology separately for each of the models being tested 
(default involves using a unique JC69-based tree, which is presumably not accurate enough). 

 '-f ' which includes matrices with unequal base frequencies (e.g. GTR and HKY85). 

 '-i' which includes decorations with invariant sites (i.e. +I PhyML option). 

 '-g 4' which includes decorations with 4 gamma site-rate categories (i.e. 4, just as SMS). 

We used ProtTest version 3.4 with options:  

 'S' meaning that a fixed BioNJ tree topology with JTT is used to select the models (SMS uses 
LG instead), and that the branch lengths are re-optimized for each model (same as SMS). 

 '-all-distributions' which includes decorations with site rate variation modeled using 4 gamma 

rate categories (4) and/or invariant sites (+I). 

 '+F' which includes models with empirical amino-acid frequency estimations. 

The comparison criteria were similar to those used with the exhaustive approach. However, 
the set of models and options differ between these programs (Sup. Tab. 5). Thus, SMS may return a 
better/worse model than these programs, typically for algorithmic reasons, but also because the set 
of models is not the same (e.g. MtZoa with proteins, which is available in SMS but not in ProtTest, 
and SYM with DNA, which is available in jModelTest2 but not in SMS). 
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Sup. Figure 1: Computing time comparisons with large MSAs. Left: 50 largest protein alignments. Right: 
50 largest DNA alignments; jModelTest2 was used with the fast “model filtering” option. All computations 

were performed on the same computer (single thread, Intel X5650 processor at 2.6 GHz). All MSAs 
were extracted from the 500+500 representative dataset. For the size of the MSAs, see Sup. Tab. 1.  

 
Comparison results 

Results are displayed in Table 1 with the 500+500 representative MSAs, and in Sup. Table 6 
with PhyML 3.0 MSAs. Both sets of results are fully congruent, and the percentages and numbers 
below are based on the comparison of 500+500 MSAs. Computing times with the largest MSAs are 
displayed in Sup. Figure 1. We see that: 

 With DNA, SMS most often finds the same model as the exhaustive method (~95%), and the 
difference in AIC/BIC is very low when the models are different. The speed increase is of ~2, as 
SMS evaluates ~6 (AIC) to ~7.5 (BIC) models among 16. 

 With proteins, SMS finds the same model as the exhaustive approach in most cases (~99%), but 
when the models differ, the difference in AIC/BIC is larger than with DNA, likely because the 
models for proteins are more different than the SMS models for DNA. Speed increases by a 
factor of 2-3, as SMS evaluates ~30 models among 68 and saves computing time by not 
systematically re-estimating the proportion of invariant sites while searching for the best matrix. 

 Comparing SMS with jModelTest2, the number of times where the models are the same is still 
relatively high (~76% and ~62%, with AIC and BIC, respectively), but lower than with the 
exhaustive approach, as the sets of models explored by SMS and jModelTest2 are different 
(Sup. Tab. 5). When the models differ, SMS finds a better model more often than jModelTest2 
(85/35 and 151/41 with AIC and BIC, respectively), and the difference in AIC/BIC is clearly in 
favor of SMS. This gain is partly explained by TN93, which is a useful model (Sup. Tab. 3), 
available in SMS, but not in jModelTest2 (with default options). Both programs are nearly as 
fast as each other (Sup. Fig. 1), as expected, since both use heuristics to focus on the most 
promising models. 
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 With proteins and ProtTest, we observe that the models are generally the same (93% with both 
AIC and BIC). When the models differ, ProtTest tends to find a better model than SMS (14/21 
and 12/23 with AIC and BIC, respectively), but the difference in the AIC/BIC value is in favor 
of SMS. Most of the gain obtained by SMS is derived from the use of the MtZoa substitution 
matrix, which is not available in ProtTest. The speed increase is in the range of 3.5 to 4.5, and 
thus quite substantial, especially for large MSAs (Sup. Fig. 1). This is explained by the smaller 
number of available models in SMS (68 versus 120), and the fact that SMS uses a heuristic 
approach to focus on the (~30 / 68) most promising models. 

To summarize, SMS performs well as compared to the exhaustive approach, in most cases 
finding identical or similar models, while the gain in computing time is significant. SMS tends to 
select better models than jModelTest2, while it is much faster than ProtTest thanks to tailored 
heuristics. Gains in computing time with proteins are quite substantial in practice as, for example, 
ProtTest requires 105 hours to process the largest representative MSA (1151 taxa, 798 sites), while 
SMS only takes 21 hours. 
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