Code in PostgreSQL should only rely on language features available in the C99 standard. That means a conforming C99 compiler has to be able to compile postgres, at least aside from a few platform dependent pieces.
A few features included in the C99 standard are, at this time, not
permitted to be used in core PostgreSQL
code. This currently includes variable length arrays, intermingled
declarations and code, //
comments, universal
character names. Reasons for that include portability and historical
practices.
Features from later revision of the C standard or compiler specific features can be used, if a fallback is provided.
For example _Static_assert()
and
__builtin_constant_p
are currently used, even though
they are from newer revisions of the C standard and a
GCC extension respectively. If not available
we respectively fall back to using a C99 compatible replacement that
performs the same checks, but emits rather cryptic messages and do not
use __builtin_constant_p
.
Both, macros with arguments and static inline
functions, may be used. The latter are preferable if there are
multiple-evaluation hazards when written as a macro, as e.g. the
case with
#define Max(x, y) ((x) > (y) ? (x) : (y))
or when the macro would be very long. In other cases it's only possible to use macros, or at least easier. For example because expressions of various types need to be passed to the macro.
When the definition of an inline function references symbols (i.e. variables, functions) that are only available as part of the backend, the function may not be visible when included from frontend code.
#ifndef FRONTEND static inline MemoryContext MemoryContextSwitchTo(MemoryContext context) { MemoryContext old = CurrentMemoryContext; CurrentMemoryContext = context; return old; } #endif /* FRONTEND */
In this example CurrentMemoryContext
, which is only
available in the backend, is referenced and the function thus
hidden with a #ifndef FRONTEND
. This rule
exists because some compilers emit references to symbols
contained in inline functions even if the function is not used.
To be suitable to run inside a signal handler code has to be written very carefully. The fundamental problem is that, unless blocked, a signal handler can interrupt code at any time. If code inside the signal handler uses the same state as code outside chaos may ensue. As an example consider what happens if a signal handler tries to acquire a lock that's already held in the interrupted code.
Barring special arrangements code in signal handlers may only
call async-signal safe functions (as defined in POSIX) and access
variables of type volatile sig_atomic_t
. A few
functions in postgres
are also deemed signal safe, importantly
SetLatch()
.
In most cases signal handlers should do nothing more than note that a signal has arrived, and wake up code running outside of the handler using a latch. An example of such a handler is the following:
static void handle_sighup(SIGNAL_ARGS) { int save_errno = errno; got_SIGHUP = true; SetLatch(MyLatch); errno = save_errno; }
errno
is saved and restored because
SetLatch()
might change it. If that were not done
interrupted code that's currently inspecting errno
might see the wrong
value.
For clarity, it is preferred to explicitly dereference a function pointer when calling the pointed-to function if the pointer is a simple variable, for example:
(*emit_log_hook) (edata);
(even though emit_log_hook(edata)
would also work).
When the function pointer is part of a structure, then the extra
punctuation can and usually should be omitted, for example:
paramInfo->paramFetch(paramInfo, paramId);