LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ dsyt22()

subroutine dsyt22 ( integer  ITYPE,
character  UPLO,
integer  N,
integer  M,
integer  KBAND,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  D,
double precision, dimension( * )  E,
double precision, dimension( ldu, * )  U,
integer  LDU,
double precision, dimension( ldv, * )  V,
integer  LDV,
double precision, dimension( * )  TAU,
double precision, dimension( * )  WORK,
double precision, dimension( 2 )  RESULT 
)

DSYT22

Purpose:
      DSYT22  generally checks a decomposition of the form

              A U = U S

      where A is symmetric, the columns of U are orthonormal, and S
      is diagonal (if KBAND=0) or symmetric tridiagonal (if
      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
      otherwise the U is expressed as a product of Householder
      transformations, whose vectors are stored in the array "V" and
      whose scaling constants are in "TAU"; we shall use the letter
      "V" to refer to the product of Householder transformations
      (which should be equal to U).

      Specifically, if ITYPE=1, then:

              RESULT(1) = | U**T A U - S | / ( |A| m ulp ) and
              RESULT(2) = | I - U**T U | / ( m ulp )
  ITYPE   INTEGER
          Specifies the type of tests to be performed.
          1: U expressed as a dense orthogonal matrix:
             RESULT(1) = | A - U S U**T | / ( |A| n ulp )  and
             RESULT(2) = | I - U U**T | / ( n ulp )

  UPLO    CHARACTER
          If UPLO='U', the upper triangle of A will be used and the
          (strictly) lower triangle will not be referenced.  If
          UPLO='L', the lower triangle of A will be used and the
          (strictly) upper triangle will not be referenced.
          Not modified.

  N       INTEGER
          The size of the matrix.  If it is zero, DSYT22 does nothing.
          It must be at least zero.
          Not modified.

  M       INTEGER
          The number of columns of U.  If it is zero, DSYT22 does
          nothing.  It must be at least zero.
          Not modified.

  KBAND   INTEGER
          The bandwidth of the matrix.  It may only be zero or one.
          If zero, then S is diagonal, and E is not referenced.  If
          one, then S is symmetric tri-diagonal.
          Not modified.

  A       DOUBLE PRECISION array, dimension (LDA , N)
          The original (unfactored) matrix.  It is assumed to be
          symmetric, and only the upper (UPLO='U') or only the lower
          (UPLO='L') will be referenced.
          Not modified.

  LDA     INTEGER
          The leading dimension of A.  It must be at least 1
          and at least N.
          Not modified.

  D       DOUBLE PRECISION array, dimension (N)
          The diagonal of the (symmetric tri-) diagonal matrix.
          Not modified.

  E       DOUBLE PRECISION array, dimension (N)
          The off-diagonal of the (symmetric tri-) diagonal matrix.
          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
          Not referenced if KBAND=0.
          Not modified.

  U       DOUBLE PRECISION array, dimension (LDU, N)
          If ITYPE=1 or 3, this contains the orthogonal matrix in
          the decomposition, expressed as a dense matrix.  If ITYPE=2,
          then it is not referenced.
          Not modified.

  LDU     INTEGER
          The leading dimension of U.  LDU must be at least N and
          at least 1.
          Not modified.

  V       DOUBLE PRECISION array, dimension (LDV, N)
          If ITYPE=2 or 3, the lower triangle of this array contains
          the Householder vectors used to describe the orthogonal
          matrix in the decomposition.  If ITYPE=1, then it is not
          referenced.
          Not modified.

  LDV     INTEGER
          The leading dimension of V.  LDV must be at least N and
          at least 1.
          Not modified.

  TAU     DOUBLE PRECISION array, dimension (N)
          If ITYPE >= 2, then TAU(j) is the scalar factor of
          v(j) v(j)**T in the Householder transformation H(j) of
          the product  U = H(1)...H(n-2)
          If ITYPE < 2, then TAU is not referenced.
          Not modified.

  WORK    DOUBLE PRECISION array, dimension (2*N**2)
          Workspace.
          Modified.

  RESULT  DOUBLE PRECISION array, dimension (2)
          The values computed by the two tests described above.  The
          values are currently limited to 1/ulp, to avoid overflow.
          RESULT(1) is always modified.  RESULT(2) is modified only
          if LDU is at least N.
          Modified.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 159 of file dsyt22.f.

159 *
160 * -- LAPACK test routine (version 3.7.0) --
161 * -- LAPACK is a software package provided by Univ. of Tennessee, --
162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163 * December 2016
164 *
165 * .. Scalar Arguments ..
166  CHARACTER UPLO
167  INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
168 * ..
169 * .. Array Arguments ..
170  DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
171  $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
172 * ..
173 *
174 * =====================================================================
175 *
176 * .. Parameters ..
177  DOUBLE PRECISION ZERO, ONE
178  parameter( zero = 0.0d0, one = 1.0d0 )
179 * ..
180 * .. Local Scalars ..
181  INTEGER J, JJ, JJ1, JJ2, NN, NNP1
182  DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
183 * ..
184 * .. External Functions ..
185  DOUBLE PRECISION DLAMCH, DLANSY
186  EXTERNAL dlamch, dlansy
187 * ..
188 * .. External Subroutines ..
189  EXTERNAL dgemm, dort01, dsymm
190 * ..
191 * .. Intrinsic Functions ..
192  INTRINSIC dble, max, min
193 * ..
194 * .. Executable Statements ..
195 *
196  result( 1 ) = zero
197  result( 2 ) = zero
198  IF( n.LE.0 .OR. m.LE.0 )
199  $ RETURN
200 *
201  unfl = dlamch( 'Safe minimum' )
202  ulp = dlamch( 'Precision' )
203 *
204 * Do Test 1
205 *
206 * Norm of A:
207 *
208  anorm = max( dlansy( '1', uplo, n, a, lda, work ), unfl )
209 *
210 * Compute error matrix:
211 *
212 * ITYPE=1: error = U**T A U - S
213 *
214  CALL dsymm( 'L', uplo, n, m, one, a, lda, u, ldu, zero, work, n )
215  nn = n*n
216  nnp1 = nn + 1
217  CALL dgemm( 'T', 'N', m, m, n, one, u, ldu, work, n, zero,
218  $ work( nnp1 ), n )
219  DO 10 j = 1, m
220  jj = nn + ( j-1 )*n + j
221  work( jj ) = work( jj ) - d( j )
222  10 CONTINUE
223  IF( kband.EQ.1 .AND. n.GT.1 ) THEN
224  DO 20 j = 2, m
225  jj1 = nn + ( j-1 )*n + j - 1
226  jj2 = nn + ( j-2 )*n + j
227  work( jj1 ) = work( jj1 ) - e( j-1 )
228  work( jj2 ) = work( jj2 ) - e( j-1 )
229  20 CONTINUE
230  END IF
231  wnorm = dlansy( '1', uplo, m, work( nnp1 ), n, work( 1 ) )
232 *
233  IF( anorm.GT.wnorm ) THEN
234  result( 1 ) = ( wnorm / anorm ) / ( m*ulp )
235  ELSE
236  IF( anorm.LT.one ) THEN
237  result( 1 ) = ( min( wnorm, m*anorm ) / anorm ) / ( m*ulp )
238  ELSE
239  result( 1 ) = min( wnorm / anorm, dble( m ) ) / ( m*ulp )
240  END IF
241  END IF
242 *
243 * Do Test 2
244 *
245 * Compute U**T U - I
246 *
247  IF( itype.EQ.1 )
248  $ CALL dort01( 'Columns', n, m, u, ldu, work, 2*n*n,
249  $ result( 2 ) )
250 *
251  RETURN
252 *
253 * End of DSYT22
254 *
Here is the call graph for this function:
Here is the caller graph for this function:
dsymm
subroutine dsymm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
DSYMM
Definition: dsymm.f:191
dort01
subroutine dort01(ROWCOL, M, N, U, LDU, WORK, LWORK, RESID)
DORT01
Definition: dort01.f:118
dgemm
subroutine dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
DGEMM
Definition: dgemm.f:189