LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
dsyt22.f
Go to the documentation of this file.
1 *> \brief \b DSYT22
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DSYT22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
12 * V, LDV, TAU, WORK, RESULT )
13 *
14 * .. Scalar Arguments ..
15 * CHARACTER UPLO
16 * INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
17 * ..
18 * .. Array Arguments ..
19 * DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
20 * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
21 * ..
22 *
23 *
24 *> \par Purpose:
25 * =============
26 *>
27 *> \verbatim
28 *>
29 *> DSYT22 generally checks a decomposition of the form
30 *>
31 *> A U = U S
32 *>
33 *> where A is symmetric, the columns of U are orthonormal, and S
34 *> is diagonal (if KBAND=0) or symmetric tridiagonal (if
35 *> KBAND=1). If ITYPE=1, then U is represented as a dense matrix,
36 *> otherwise the U is expressed as a product of Householder
37 *> transformations, whose vectors are stored in the array "V" and
38 *> whose scaling constants are in "TAU"; we shall use the letter
39 *> "V" to refer to the product of Householder transformations
40 *> (which should be equal to U).
41 *>
42 *> Specifically, if ITYPE=1, then:
43 *>
44 *> RESULT(1) = | U**T A U - S | / ( |A| m ulp ) and
45 *> RESULT(2) = | I - U**T U | / ( m ulp )
46 *> \endverbatim
47 *
48 * Arguments:
49 * ==========
50 *
51 *> \verbatim
52 *> ITYPE INTEGER
53 *> Specifies the type of tests to be performed.
54 *> 1: U expressed as a dense orthogonal matrix:
55 *> RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
56 *> RESULT(2) = | I - U U**T | / ( n ulp )
57 *>
58 *> UPLO CHARACTER
59 *> If UPLO='U', the upper triangle of A will be used and the
60 *> (strictly) lower triangle will not be referenced. If
61 *> UPLO='L', the lower triangle of A will be used and the
62 *> (strictly) upper triangle will not be referenced.
63 *> Not modified.
64 *>
65 *> N INTEGER
66 *> The size of the matrix. If it is zero, DSYT22 does nothing.
67 *> It must be at least zero.
68 *> Not modified.
69 *>
70 *> M INTEGER
71 *> The number of columns of U. If it is zero, DSYT22 does
72 *> nothing. It must be at least zero.
73 *> Not modified.
74 *>
75 *> KBAND INTEGER
76 *> The bandwidth of the matrix. It may only be zero or one.
77 *> If zero, then S is diagonal, and E is not referenced. If
78 *> one, then S is symmetric tri-diagonal.
79 *> Not modified.
80 *>
81 *> A DOUBLE PRECISION array, dimension (LDA , N)
82 *> The original (unfactored) matrix. It is assumed to be
83 *> symmetric, and only the upper (UPLO='U') or only the lower
84 *> (UPLO='L') will be referenced.
85 *> Not modified.
86 *>
87 *> LDA INTEGER
88 *> The leading dimension of A. It must be at least 1
89 *> and at least N.
90 *> Not modified.
91 *>
92 *> D DOUBLE PRECISION array, dimension (N)
93 *> The diagonal of the (symmetric tri-) diagonal matrix.
94 *> Not modified.
95 *>
96 *> E DOUBLE PRECISION array, dimension (N)
97 *> The off-diagonal of the (symmetric tri-) diagonal matrix.
98 *> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
99 *> Not referenced if KBAND=0.
100 *> Not modified.
101 *>
102 *> U DOUBLE PRECISION array, dimension (LDU, N)
103 *> If ITYPE=1 or 3, this contains the orthogonal matrix in
104 *> the decomposition, expressed as a dense matrix. If ITYPE=2,
105 *> then it is not referenced.
106 *> Not modified.
107 *>
108 *> LDU INTEGER
109 *> The leading dimension of U. LDU must be at least N and
110 *> at least 1.
111 *> Not modified.
112 *>
113 *> V DOUBLE PRECISION array, dimension (LDV, N)
114 *> If ITYPE=2 or 3, the lower triangle of this array contains
115 *> the Householder vectors used to describe the orthogonal
116 *> matrix in the decomposition. If ITYPE=1, then it is not
117 *> referenced.
118 *> Not modified.
119 *>
120 *> LDV INTEGER
121 *> The leading dimension of V. LDV must be at least N and
122 *> at least 1.
123 *> Not modified.
124 *>
125 *> TAU DOUBLE PRECISION array, dimension (N)
126 *> If ITYPE >= 2, then TAU(j) is the scalar factor of
127 *> v(j) v(j)**T in the Householder transformation H(j) of
128 *> the product U = H(1)...H(n-2)
129 *> If ITYPE < 2, then TAU is not referenced.
130 *> Not modified.
131 *>
132 *> WORK DOUBLE PRECISION array, dimension (2*N**2)
133 *> Workspace.
134 *> Modified.
135 *>
136 *> RESULT DOUBLE PRECISION array, dimension (2)
137 *> The values computed by the two tests described above. The
138 *> values are currently limited to 1/ulp, to avoid overflow.
139 *> RESULT(1) is always modified. RESULT(2) is modified only
140 *> if LDU is at least N.
141 *> Modified.
142 *> \endverbatim
143 *
144 * Authors:
145 * ========
146 *
147 *> \author Univ. of Tennessee
148 *> \author Univ. of California Berkeley
149 *> \author Univ. of Colorado Denver
150 *> \author NAG Ltd.
151 *
152 *> \date December 2016
153 *
154 *> \ingroup double_eig
155 *
156 * =====================================================================
157  SUBROUTINE dsyt22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
158  $ V, LDV, TAU, WORK, RESULT )
159 *
160 * -- LAPACK test routine (version 3.7.0) --
161 * -- LAPACK is a software package provided by Univ. of Tennessee, --
162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163 * December 2016
164 *
165 * .. Scalar Arguments ..
166  CHARACTER UPLO
167  INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
168 * ..
169 * .. Array Arguments ..
170  DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
171  $ tau( * ), u( ldu, * ), v( ldv, * ), work( * )
172 * ..
173 *
174 * =====================================================================
175 *
176 * .. Parameters ..
177  DOUBLE PRECISION ZERO, ONE
178  parameter( zero = 0.0d0, one = 1.0d0 )
179 * ..
180 * .. Local Scalars ..
181  INTEGER J, JJ, JJ1, JJ2, NN, NNP1
182  DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
183 * ..
184 * .. External Functions ..
185  DOUBLE PRECISION DLAMCH, DLANSY
186  EXTERNAL dlamch, dlansy
187 * ..
188 * .. External Subroutines ..
189  EXTERNAL dgemm, dort01, dsymm
190 * ..
191 * .. Intrinsic Functions ..
192  INTRINSIC dble, max, min
193 * ..
194 * .. Executable Statements ..
195 *
196  result( 1 ) = zero
197  result( 2 ) = zero
198  IF( n.LE.0 .OR. m.LE.0 )
199  $ RETURN
200 *
201  unfl = dlamch( 'Safe minimum' )
202  ulp = dlamch( 'Precision' )
203 *
204 * Do Test 1
205 *
206 * Norm of A:
207 *
208  anorm = max( dlansy( '1', uplo, n, a, lda, work ), unfl )
209 *
210 * Compute error matrix:
211 *
212 * ITYPE=1: error = U**T A U - S
213 *
214  CALL dsymm( 'L', uplo, n, m, one, a, lda, u, ldu, zero, work, n )
215  nn = n*n
216  nnp1 = nn + 1
217  CALL dgemm( 'T', 'N', m, m, n, one, u, ldu, work, n, zero,
218  $ work( nnp1 ), n )
219  DO 10 j = 1, m
220  jj = nn + ( j-1 )*n + j
221  work( jj ) = work( jj ) - d( j )
222  10 CONTINUE
223  IF( kband.EQ.1 .AND. n.GT.1 ) THEN
224  DO 20 j = 2, m
225  jj1 = nn + ( j-1 )*n + j - 1
226  jj2 = nn + ( j-2 )*n + j
227  work( jj1 ) = work( jj1 ) - e( j-1 )
228  work( jj2 ) = work( jj2 ) - e( j-1 )
229  20 CONTINUE
230  END IF
231  wnorm = dlansy( '1', uplo, m, work( nnp1 ), n, work( 1 ) )
232 *
233  IF( anorm.GT.wnorm ) THEN
234  result( 1 ) = ( wnorm / anorm ) / ( m*ulp )
235  ELSE
236  IF( anorm.LT.one ) THEN
237  result( 1 ) = ( min( wnorm, m*anorm ) / anorm ) / ( m*ulp )
238  ELSE
239  result( 1 ) = min( wnorm / anorm, dble( m ) ) / ( m*ulp )
240  END IF
241  END IF
242 *
243 * Do Test 2
244 *
245 * Compute U**T U - I
246 *
247  IF( itype.EQ.1 )
248  $ CALL dort01( 'Columns', n, m, u, ldu, work, 2*n*n,
249  $ result( 2 ) )
250 *
251  RETURN
252 *
253 * End of DSYT22
254 *
255  END
dsyt22
subroutine dsyt22(ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU, V, LDV, TAU, WORK, RESULT)
DSYT22
Definition: dsyt22.f:159
dsymm
subroutine dsymm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
DSYMM
Definition: dsymm.f:191
dort01
subroutine dort01(ROWCOL, M, N, U, LDU, WORK, LWORK, RESID)
DORT01
Definition: dort01.f:118
dgemm
subroutine dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
DGEMM
Definition: dgemm.f:189