LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
zlansp.f
Go to the documentation of this file.
1 *> \brief \b ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZLANSP + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansp.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansp.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansp.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER NORM, UPLO
25 * INTEGER N
26 * ..
27 * .. Array Arguments ..
28 * DOUBLE PRECISION WORK( * )
29 * COMPLEX*16 AP( * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> ZLANSP returns the value of the one norm, or the Frobenius norm, or
39 *> the infinity norm, or the element of largest absolute value of a
40 *> complex symmetric matrix A, supplied in packed form.
41 *> \endverbatim
42 *>
43 *> \return ZLANSP
44 *> \verbatim
45 *>
46 *> ZLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
47 *> (
48 *> ( norm1(A), NORM = '1', 'O' or 'o'
49 *> (
50 *> ( normI(A), NORM = 'I' or 'i'
51 *> (
52 *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
53 *>
54 *> where norm1 denotes the one norm of a matrix (maximum column sum),
55 *> normI denotes the infinity norm of a matrix (maximum row sum) and
56 *> normF denotes the Frobenius norm of a matrix (square root of sum of
57 *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
58 *> \endverbatim
59 *
60 * Arguments:
61 * ==========
62 *
63 *> \param[in] NORM
64 *> \verbatim
65 *> NORM is CHARACTER*1
66 *> Specifies the value to be returned in ZLANSP as described
67 *> above.
68 *> \endverbatim
69 *>
70 *> \param[in] UPLO
71 *> \verbatim
72 *> UPLO is CHARACTER*1
73 *> Specifies whether the upper or lower triangular part of the
74 *> symmetric matrix A is supplied.
75 *> = 'U': Upper triangular part of A is supplied
76 *> = 'L': Lower triangular part of A is supplied
77 *> \endverbatim
78 *>
79 *> \param[in] N
80 *> \verbatim
81 *> N is INTEGER
82 *> The order of the matrix A. N >= 0. When N = 0, ZLANSP is
83 *> set to zero.
84 *> \endverbatim
85 *>
86 *> \param[in] AP
87 *> \verbatim
88 *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
89 *> The upper or lower triangle of the symmetric matrix A, packed
90 *> columnwise in a linear array. The j-th column of A is stored
91 *> in the array AP as follows:
92 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
93 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
94 *> \endverbatim
95 *>
96 *> \param[out] WORK
97 *> \verbatim
98 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
99 *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
100 *> WORK is not referenced.
101 *> \endverbatim
102 *
103 * Authors:
104 * ========
105 *
106 *> \author Univ. of Tennessee
107 *> \author Univ. of California Berkeley
108 *> \author Univ. of Colorado Denver
109 *> \author NAG Ltd.
110 *
111 *> \date December 2016
112 *
113 *> \ingroup complex16OTHERauxiliary
114 *
115 * =====================================================================
116  DOUBLE PRECISION FUNCTION zlansp( NORM, UPLO, N, AP, WORK )
117 *
118 * -- LAPACK auxiliary routine (version 3.7.0) --
119 * -- LAPACK is a software package provided by Univ. of Tennessee, --
120 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
121 * December 2016
122 *
123  IMPLICIT NONE
124 * .. Scalar Arguments ..
125  CHARACTER norm, uplo
126  INTEGER n
127 * ..
128 * .. Array Arguments ..
129  DOUBLE PRECISION work( * )
130  COMPLEX*16 ap( * )
131 * ..
132 *
133 * =====================================================================
134 *
135 * .. Parameters ..
136  DOUBLE PRECISION one, zero
137  parameter( one = 1.0d+0, zero = 0.0d+0 )
138 * ..
139 * .. Local Scalars ..
140  INTEGER i, j, k
141  DOUBLE PRECISION absa, sum, value
142 * ..
143 * .. Local Arrays ..
144  DOUBLE PRECISION ssq( 2 ), colssq( 2 )
145 * ..
146 * .. External Functions ..
147  LOGICAL lsame, disnan
148  EXTERNAL lsame, disnan
149 * ..
150 * .. External Subroutines ..
151  EXTERNAL zlassq, dcombssq
152 * ..
153 * .. Intrinsic Functions ..
154  INTRINSIC abs, dble, dimag, sqrt
155 * ..
156 * .. Executable Statements ..
157 *
158  IF( n.EQ.0 ) THEN
159  VALUE = zero
160  ELSE IF( lsame( norm, 'M' ) ) THEN
161 *
162 * Find max(abs(A(i,j))).
163 *
164  VALUE = zero
165  IF( lsame( uplo, 'U' ) ) THEN
166  k = 1
167  DO 20 j = 1, n
168  DO 10 i = k, k + j - 1
169  sum = abs( ap( i ) )
170  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
171  10 CONTINUE
172  k = k + j
173  20 CONTINUE
174  ELSE
175  k = 1
176  DO 40 j = 1, n
177  DO 30 i = k, k + n - j
178  sum = abs( ap( i ) )
179  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
180  30 CONTINUE
181  k = k + n - j + 1
182  40 CONTINUE
183  END IF
184  ELSE IF( ( lsame( norm, 'I' ) ) .OR. ( lsame( norm, 'O' ) ) .OR.
185  $ ( norm.EQ.'1' ) ) THEN
186 *
187 * Find normI(A) ( = norm1(A), since A is symmetric).
188 *
189  VALUE = zero
190  k = 1
191  IF( lsame( uplo, 'U' ) ) THEN
192  DO 60 j = 1, n
193  sum = zero
194  DO 50 i = 1, j - 1
195  absa = abs( ap( k ) )
196  sum = sum + absa
197  work( i ) = work( i ) + absa
198  k = k + 1
199  50 CONTINUE
200  work( j ) = sum + abs( ap( k ) )
201  k = k + 1
202  60 CONTINUE
203  DO 70 i = 1, n
204  sum = work( i )
205  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
206  70 CONTINUE
207  ELSE
208  DO 80 i = 1, n
209  work( i ) = zero
210  80 CONTINUE
211  DO 100 j = 1, n
212  sum = work( j ) + abs( ap( k ) )
213  k = k + 1
214  DO 90 i = j + 1, n
215  absa = abs( ap( k ) )
216  sum = sum + absa
217  work( i ) = work( i ) + absa
218  k = k + 1
219  90 CONTINUE
220  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
221  100 CONTINUE
222  END IF
223  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
224 *
225 * Find normF(A).
226 * SSQ(1) is scale
227 * SSQ(2) is sum-of-squares
228 * For better accuracy, sum each column separately.
229 *
230  ssq( 1 ) = zero
231  ssq( 2 ) = one
232 *
233 * Sum off-diagonals
234 *
235  k = 2
236  IF( lsame( uplo, 'U' ) ) THEN
237  DO 110 j = 2, n
238  colssq( 1 ) = zero
239  colssq( 2 ) = one
240  CALL zlassq( j-1, ap( k ), 1, colssq( 1 ), colssq( 2 ) )
241  CALL dcombssq( ssq, colssq )
242  k = k + j
243  110 CONTINUE
244  ELSE
245  DO 120 j = 1, n - 1
246  colssq( 1 ) = zero
247  colssq( 2 ) = one
248  CALL zlassq( n-j, ap( k ), 1, colssq( 1 ), colssq( 2 ) )
249  CALL dcombssq( ssq, colssq )
250  k = k + n - j + 1
251  120 CONTINUE
252  END IF
253  ssq( 2 ) = 2*ssq( 2 )
254 *
255 * Sum diagonal
256 *
257  k = 1
258  colssq( 1 ) = zero
259  colssq( 2 ) = one
260  DO 130 i = 1, n
261  IF( dble( ap( k ) ).NE.zero ) THEN
262  absa = abs( dble( ap( k ) ) )
263  IF( colssq( 1 ).LT.absa ) THEN
264  colssq( 2 ) = one + colssq(2)*( colssq(1) / absa )**2
265  colssq( 1 ) = absa
266  ELSE
267  colssq( 2 ) = colssq( 2 ) + ( absa / colssq( 1 ) )**2
268  END IF
269  END IF
270  IF( dimag( ap( k ) ).NE.zero ) THEN
271  absa = abs( dimag( ap( k ) ) )
272  IF( colssq( 1 ).LT.absa ) THEN
273  colssq( 2 ) = one + colssq(2)*( colssq(1) / absa )**2
274  colssq( 1 ) = absa
275  ELSE
276  colssq( 2 ) = colssq( 2 ) + ( absa / colssq( 1 ) )**2
277  END IF
278  END IF
279  IF( lsame( uplo, 'U' ) ) THEN
280  k = k + i + 1
281  ELSE
282  k = k + n - i + 1
283  END IF
284  130 CONTINUE
285  CALL dcombssq( ssq, colssq )
286  VALUE = ssq( 1 )*sqrt( ssq( 2 ) )
287  END IF
288 *
289  zlansp = VALUE
290  RETURN
291 *
292 * End of ZLANSP
293 *
294  END
zlassq
subroutine zlassq(N, X, INCX, SCALE, SUMSQ)
ZLASSQ updates a sum of squares represented in scaled form.
Definition: zlassq.f:108
disnan
logical function disnan(DIN)
DISNAN tests input for NaN.
Definition: disnan.f:61
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
zlansp
double precision function zlansp(NORM, UPLO, N, AP, WORK)
ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlansp.f:117
dcombssq
subroutine dcombssq(V1, V2)
DCOMBSSQ adds two scaled sum of squares quantities.
Definition: dcombssq.f:62