LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
stgsja.f
Go to the documentation of this file.
1 *> \brief \b STGSJA
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download STGSJA + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsja.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsja.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsja.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
22 * LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
23 * Q, LDQ, WORK, NCYCLE, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER JOBQ, JOBU, JOBV
27 * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
28 * $ NCYCLE, P
29 * REAL TOLA, TOLB
30 * ..
31 * .. Array Arguments ..
32 * REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
33 * $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
34 * $ V( LDV, * ), WORK( * )
35 * ..
36 *
37 *
38 *> \par Purpose:
39 * =============
40 *>
41 *> \verbatim
42 *>
43 *> STGSJA computes the generalized singular value decomposition (GSVD)
44 *> of two real upper triangular (or trapezoidal) matrices A and B.
45 *>
46 *> On entry, it is assumed that matrices A and B have the following
47 *> forms, which may be obtained by the preprocessing subroutine SGGSVP
48 *> from a general M-by-N matrix A and P-by-N matrix B:
49 *>
50 *> N-K-L K L
51 *> A = K ( 0 A12 A13 ) if M-K-L >= 0;
52 *> L ( 0 0 A23 )
53 *> M-K-L ( 0 0 0 )
54 *>
55 *> N-K-L K L
56 *> A = K ( 0 A12 A13 ) if M-K-L < 0;
57 *> M-K ( 0 0 A23 )
58 *>
59 *> N-K-L K L
60 *> B = L ( 0 0 B13 )
61 *> P-L ( 0 0 0 )
62 *>
63 *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
64 *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
65 *> otherwise A23 is (M-K)-by-L upper trapezoidal.
66 *>
67 *> On exit,
68 *>
69 *> U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ),
70 *>
71 *> where U, V and Q are orthogonal matrices.
72 *> R is a nonsingular upper triangular matrix, and D1 and D2 are
73 *> ``diagonal'' matrices, which are of the following structures:
74 *>
75 *> If M-K-L >= 0,
76 *>
77 *> K L
78 *> D1 = K ( I 0 )
79 *> L ( 0 C )
80 *> M-K-L ( 0 0 )
81 *>
82 *> K L
83 *> D2 = L ( 0 S )
84 *> P-L ( 0 0 )
85 *>
86 *> N-K-L K L
87 *> ( 0 R ) = K ( 0 R11 R12 ) K
88 *> L ( 0 0 R22 ) L
89 *>
90 *> where
91 *>
92 *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
93 *> S = diag( BETA(K+1), ... , BETA(K+L) ),
94 *> C**2 + S**2 = I.
95 *>
96 *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
97 *>
98 *> If M-K-L < 0,
99 *>
100 *> K M-K K+L-M
101 *> D1 = K ( I 0 0 )
102 *> M-K ( 0 C 0 )
103 *>
104 *> K M-K K+L-M
105 *> D2 = M-K ( 0 S 0 )
106 *> K+L-M ( 0 0 I )
107 *> P-L ( 0 0 0 )
108 *>
109 *> N-K-L K M-K K+L-M
110 *> ( 0 R ) = K ( 0 R11 R12 R13 )
111 *> M-K ( 0 0 R22 R23 )
112 *> K+L-M ( 0 0 0 R33 )
113 *>
114 *> where
115 *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
116 *> S = diag( BETA(K+1), ... , BETA(M) ),
117 *> C**2 + S**2 = I.
118 *>
119 *> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
120 *> ( 0 R22 R23 )
121 *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
122 *>
123 *> The computation of the orthogonal transformation matrices U, V or Q
124 *> is optional. These matrices may either be formed explicitly, or they
125 *> may be postmultiplied into input matrices U1, V1, or Q1.
126 *> \endverbatim
127 *
128 * Arguments:
129 * ==========
130 *
131 *> \param[in] JOBU
132 *> \verbatim
133 *> JOBU is CHARACTER*1
134 *> = 'U': U must contain an orthogonal matrix U1 on entry, and
135 *> the product U1*U is returned;
136 *> = 'I': U is initialized to the unit matrix, and the
137 *> orthogonal matrix U is returned;
138 *> = 'N': U is not computed.
139 *> \endverbatim
140 *>
141 *> \param[in] JOBV
142 *> \verbatim
143 *> JOBV is CHARACTER*1
144 *> = 'V': V must contain an orthogonal matrix V1 on entry, and
145 *> the product V1*V is returned;
146 *> = 'I': V is initialized to the unit matrix, and the
147 *> orthogonal matrix V is returned;
148 *> = 'N': V is not computed.
149 *> \endverbatim
150 *>
151 *> \param[in] JOBQ
152 *> \verbatim
153 *> JOBQ is CHARACTER*1
154 *> = 'Q': Q must contain an orthogonal matrix Q1 on entry, and
155 *> the product Q1*Q is returned;
156 *> = 'I': Q is initialized to the unit matrix, and the
157 *> orthogonal matrix Q is returned;
158 *> = 'N': Q is not computed.
159 *> \endverbatim
160 *>
161 *> \param[in] M
162 *> \verbatim
163 *> M is INTEGER
164 *> The number of rows of the matrix A. M >= 0.
165 *> \endverbatim
166 *>
167 *> \param[in] P
168 *> \verbatim
169 *> P is INTEGER
170 *> The number of rows of the matrix B. P >= 0.
171 *> \endverbatim
172 *>
173 *> \param[in] N
174 *> \verbatim
175 *> N is INTEGER
176 *> The number of columns of the matrices A and B. N >= 0.
177 *> \endverbatim
178 *>
179 *> \param[in] K
180 *> \verbatim
181 *> K is INTEGER
182 *> \endverbatim
183 *>
184 *> \param[in] L
185 *> \verbatim
186 *> L is INTEGER
187 *>
188 *> K and L specify the subblocks in the input matrices A and B:
189 *> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
190 *> of A and B, whose GSVD is going to be computed by STGSJA.
191 *> See Further Details.
192 *> \endverbatim
193 *>
194 *> \param[in,out] A
195 *> \verbatim
196 *> A is REAL array, dimension (LDA,N)
197 *> On entry, the M-by-N matrix A.
198 *> On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
199 *> matrix R or part of R. See Purpose for details.
200 *> \endverbatim
201 *>
202 *> \param[in] LDA
203 *> \verbatim
204 *> LDA is INTEGER
205 *> The leading dimension of the array A. LDA >= max(1,M).
206 *> \endverbatim
207 *>
208 *> \param[in,out] B
209 *> \verbatim
210 *> B is REAL array, dimension (LDB,N)
211 *> On entry, the P-by-N matrix B.
212 *> On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
213 *> a part of R. See Purpose for details.
214 *> \endverbatim
215 *>
216 *> \param[in] LDB
217 *> \verbatim
218 *> LDB is INTEGER
219 *> The leading dimension of the array B. LDB >= max(1,P).
220 *> \endverbatim
221 *>
222 *> \param[in] TOLA
223 *> \verbatim
224 *> TOLA is REAL
225 *> \endverbatim
226 *>
227 *> \param[in] TOLB
228 *> \verbatim
229 *> TOLB is REAL
230 *>
231 *> TOLA and TOLB are the convergence criteria for the Jacobi-
232 *> Kogbetliantz iteration procedure. Generally, they are the
233 *> same as used in the preprocessing step, say
234 *> TOLA = max(M,N)*norm(A)*MACHEPS,
235 *> TOLB = max(P,N)*norm(B)*MACHEPS.
236 *> \endverbatim
237 *>
238 *> \param[out] ALPHA
239 *> \verbatim
240 *> ALPHA is REAL array, dimension (N)
241 *> \endverbatim
242 *>
243 *> \param[out] BETA
244 *> \verbatim
245 *> BETA is REAL array, dimension (N)
246 *>
247 *> On exit, ALPHA and BETA contain the generalized singular
248 *> value pairs of A and B;
249 *> ALPHA(1:K) = 1,
250 *> BETA(1:K) = 0,
251 *> and if M-K-L >= 0,
252 *> ALPHA(K+1:K+L) = diag(C),
253 *> BETA(K+1:K+L) = diag(S),
254 *> or if M-K-L < 0,
255 *> ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
256 *> BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
257 *> Furthermore, if K+L < N,
258 *> ALPHA(K+L+1:N) = 0 and
259 *> BETA(K+L+1:N) = 0.
260 *> \endverbatim
261 *>
262 *> \param[in,out] U
263 *> \verbatim
264 *> U is REAL array, dimension (LDU,M)
265 *> On entry, if JOBU = 'U', U must contain a matrix U1 (usually
266 *> the orthogonal matrix returned by SGGSVP).
267 *> On exit,
268 *> if JOBU = 'I', U contains the orthogonal matrix U;
269 *> if JOBU = 'U', U contains the product U1*U.
270 *> If JOBU = 'N', U is not referenced.
271 *> \endverbatim
272 *>
273 *> \param[in] LDU
274 *> \verbatim
275 *> LDU is INTEGER
276 *> The leading dimension of the array U. LDU >= max(1,M) if
277 *> JOBU = 'U'; LDU >= 1 otherwise.
278 *> \endverbatim
279 *>
280 *> \param[in,out] V
281 *> \verbatim
282 *> V is REAL array, dimension (LDV,P)
283 *> On entry, if JOBV = 'V', V must contain a matrix V1 (usually
284 *> the orthogonal matrix returned by SGGSVP).
285 *> On exit,
286 *> if JOBV = 'I', V contains the orthogonal matrix V;
287 *> if JOBV = 'V', V contains the product V1*V.
288 *> If JOBV = 'N', V is not referenced.
289 *> \endverbatim
290 *>
291 *> \param[in] LDV
292 *> \verbatim
293 *> LDV is INTEGER
294 *> The leading dimension of the array V. LDV >= max(1,P) if
295 *> JOBV = 'V'; LDV >= 1 otherwise.
296 *> \endverbatim
297 *>
298 *> \param[in,out] Q
299 *> \verbatim
300 *> Q is REAL array, dimension (LDQ,N)
301 *> On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
302 *> the orthogonal matrix returned by SGGSVP).
303 *> On exit,
304 *> if JOBQ = 'I', Q contains the orthogonal matrix Q;
305 *> if JOBQ = 'Q', Q contains the product Q1*Q.
306 *> If JOBQ = 'N', Q is not referenced.
307 *> \endverbatim
308 *>
309 *> \param[in] LDQ
310 *> \verbatim
311 *> LDQ is INTEGER
312 *> The leading dimension of the array Q. LDQ >= max(1,N) if
313 *> JOBQ = 'Q'; LDQ >= 1 otherwise.
314 *> \endverbatim
315 *>
316 *> \param[out] WORK
317 *> \verbatim
318 *> WORK is REAL array, dimension (2*N)
319 *> \endverbatim
320 *>
321 *> \param[out] NCYCLE
322 *> \verbatim
323 *> NCYCLE is INTEGER
324 *> The number of cycles required for convergence.
325 *> \endverbatim
326 *>
327 *> \param[out] INFO
328 *> \verbatim
329 *> INFO is INTEGER
330 *> = 0: successful exit
331 *> < 0: if INFO = -i, the i-th argument had an illegal value.
332 *> = 1: the procedure does not converge after MAXIT cycles.
333 *> \endverbatim
334 *>
335 *> \verbatim
336 *> Internal Parameters
337 *> ===================
338 *>
339 *> MAXIT INTEGER
340 *> MAXIT specifies the total loops that the iterative procedure
341 *> may take. If after MAXIT cycles, the routine fails to
342 *> converge, we return INFO = 1.
343 *> \endverbatim
344 *
345 * Authors:
346 * ========
347 *
348 *> \author Univ. of Tennessee
349 *> \author Univ. of California Berkeley
350 *> \author Univ. of Colorado Denver
351 *> \author NAG Ltd.
352 *
353 *> \date December 2016
354 *
355 *> \ingroup realOTHERcomputational
356 *
357 *> \par Further Details:
358 * =====================
359 *>
360 *> \verbatim
361 *>
362 *> STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
363 *> min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
364 *> matrix B13 to the form:
365 *>
366 *> U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
367 *>
368 *> where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
369 *> of Z. C1 and S1 are diagonal matrices satisfying
370 *>
371 *> C1**2 + S1**2 = I,
372 *>
373 *> and R1 is an L-by-L nonsingular upper triangular matrix.
374 *> \endverbatim
375 *>
376 * =====================================================================
377  SUBROUTINE stgsja( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
378  $ LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
379  $ Q, LDQ, WORK, NCYCLE, INFO )
380 *
381 * -- LAPACK computational routine (version 3.7.0) --
382 * -- LAPACK is a software package provided by Univ. of Tennessee, --
383 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
384 * December 2016
385 *
386 * .. Scalar Arguments ..
387  CHARACTER JOBQ, JOBU, JOBV
388  INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
389  $ ncycle, p
390  REAL TOLA, TOLB
391 * ..
392 * .. Array Arguments ..
393  REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
394  $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
395  $ v( ldv, * ), work( * )
396 * ..
397 *
398 * =====================================================================
399 *
400 * .. Parameters ..
401  INTEGER MAXIT
402  PARAMETER ( MAXIT = 40 )
403  REAL ZERO, ONE
404  parameter( zero = 0.0e+0, one = 1.0e+0 )
405 * ..
406 * .. Local Scalars ..
407 *
408  LOGICAL INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
409  INTEGER I, J, KCYCLE
410  REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, ERROR,
411  $ gamma, rwk, snq, snu, snv, ssmin
412 * ..
413 * .. External Functions ..
414  LOGICAL LSAME
415  EXTERNAL LSAME
416 * ..
417 * .. External Subroutines ..
418  EXTERNAL scopy, slags2, slapll, slartg, slaset, srot,
419  $ sscal, xerbla
420 * ..
421 * .. Intrinsic Functions ..
422  INTRINSIC abs, max, min
423 * ..
424 * .. Executable Statements ..
425 *
426 * Decode and test the input parameters
427 *
428  initu = lsame( jobu, 'I' )
429  wantu = initu .OR. lsame( jobu, 'U' )
430 *
431  initv = lsame( jobv, 'I' )
432  wantv = initv .OR. lsame( jobv, 'V' )
433 *
434  initq = lsame( jobq, 'I' )
435  wantq = initq .OR. lsame( jobq, 'Q' )
436 *
437  info = 0
438  IF( .NOT.( initu .OR. wantu .OR. lsame( jobu, 'N' ) ) ) THEN
439  info = -1
440  ELSE IF( .NOT.( initv .OR. wantv .OR. lsame( jobv, 'N' ) ) ) THEN
441  info = -2
442  ELSE IF( .NOT.( initq .OR. wantq .OR. lsame( jobq, 'N' ) ) ) THEN
443  info = -3
444  ELSE IF( m.LT.0 ) THEN
445  info = -4
446  ELSE IF( p.LT.0 ) THEN
447  info = -5
448  ELSE IF( n.LT.0 ) THEN
449  info = -6
450  ELSE IF( lda.LT.max( 1, m ) ) THEN
451  info = -10
452  ELSE IF( ldb.LT.max( 1, p ) ) THEN
453  info = -12
454  ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
455  info = -18
456  ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
457  info = -20
458  ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
459  info = -22
460  END IF
461  IF( info.NE.0 ) THEN
462  CALL xerbla( 'STGSJA', -info )
463  RETURN
464  END IF
465 *
466 * Initialize U, V and Q, if necessary
467 *
468  IF( initu )
469  $ CALL slaset( 'Full', m, m, zero, one, u, ldu )
470  IF( initv )
471  $ CALL slaset( 'Full', p, p, zero, one, v, ldv )
472  IF( initq )
473  $ CALL slaset( 'Full', n, n, zero, one, q, ldq )
474 *
475 * Loop until convergence
476 *
477  upper = .false.
478  DO 40 kcycle = 1, maxit
479 *
480  upper = .NOT.upper
481 *
482  DO 20 i = 1, l - 1
483  DO 10 j = i + 1, l
484 *
485  a1 = zero
486  a2 = zero
487  a3 = zero
488  IF( k+i.LE.m )
489  $ a1 = a( k+i, n-l+i )
490  IF( k+j.LE.m )
491  $ a3 = a( k+j, n-l+j )
492 *
493  b1 = b( i, n-l+i )
494  b3 = b( j, n-l+j )
495 *
496  IF( upper ) THEN
497  IF( k+i.LE.m )
498  $ a2 = a( k+i, n-l+j )
499  b2 = b( i, n-l+j )
500  ELSE
501  IF( k+j.LE.m )
502  $ a2 = a( k+j, n-l+i )
503  b2 = b( j, n-l+i )
504  END IF
505 *
506  CALL slags2( upper, a1, a2, a3, b1, b2, b3, csu, snu,
507  $ csv, snv, csq, snq )
508 *
509 * Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A
510 *
511  IF( k+j.LE.m )
512  $ CALL srot( l, a( k+j, n-l+1 ), lda, a( k+i, n-l+1 ),
513  $ lda, csu, snu )
514 *
515 * Update I-th and J-th rows of matrix B: V**T *B
516 *
517  CALL srot( l, b( j, n-l+1 ), ldb, b( i, n-l+1 ), ldb,
518  $ csv, snv )
519 *
520 * Update (N-L+I)-th and (N-L+J)-th columns of matrices
521 * A and B: A*Q and B*Q
522 *
523  CALL srot( min( k+l, m ), a( 1, n-l+j ), 1,
524  $ a( 1, n-l+i ), 1, csq, snq )
525 *
526  CALL srot( l, b( 1, n-l+j ), 1, b( 1, n-l+i ), 1, csq,
527  $ snq )
528 *
529  IF( upper ) THEN
530  IF( k+i.LE.m )
531  $ a( k+i, n-l+j ) = zero
532  b( i, n-l+j ) = zero
533  ELSE
534  IF( k+j.LE.m )
535  $ a( k+j, n-l+i ) = zero
536  b( j, n-l+i ) = zero
537  END IF
538 *
539 * Update orthogonal matrices U, V, Q, if desired.
540 *
541  IF( wantu .AND. k+j.LE.m )
542  $ CALL srot( m, u( 1, k+j ), 1, u( 1, k+i ), 1, csu,
543  $ snu )
544 *
545  IF( wantv )
546  $ CALL srot( p, v( 1, j ), 1, v( 1, i ), 1, csv, snv )
547 *
548  IF( wantq )
549  $ CALL srot( n, q( 1, n-l+j ), 1, q( 1, n-l+i ), 1, csq,
550  $ snq )
551 *
552  10 CONTINUE
553  20 CONTINUE
554 *
555  IF( .NOT.upper ) THEN
556 *
557 * The matrices A13 and B13 were lower triangular at the start
558 * of the cycle, and are now upper triangular.
559 *
560 * Convergence test: test the parallelism of the corresponding
561 * rows of A and B.
562 *
563  error = zero
564  DO 30 i = 1, min( l, m-k )
565  CALL scopy( l-i+1, a( k+i, n-l+i ), lda, work, 1 )
566  CALL scopy( l-i+1, b( i, n-l+i ), ldb, work( l+1 ), 1 )
567  CALL slapll( l-i+1, work, 1, work( l+1 ), 1, ssmin )
568  error = max( error, ssmin )
569  30 CONTINUE
570 *
571  IF( abs( error ).LE.min( tola, tolb ) )
572  $ GO TO 50
573  END IF
574 *
575 * End of cycle loop
576 *
577  40 CONTINUE
578 *
579 * The algorithm has not converged after MAXIT cycles.
580 *
581  info = 1
582  GO TO 100
583 *
584  50 CONTINUE
585 *
586 * If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
587 * Compute the generalized singular value pairs (ALPHA, BETA), and
588 * set the triangular matrix R to array A.
589 *
590  DO 60 i = 1, k
591  alpha( i ) = one
592  beta( i ) = zero
593  60 CONTINUE
594 *
595  DO 70 i = 1, min( l, m-k )
596 *
597  a1 = a( k+i, n-l+i )
598  b1 = b( i, n-l+i )
599 *
600  IF( a1.NE.zero ) THEN
601  gamma = b1 / a1
602 *
603 * change sign if necessary
604 *
605  IF( gamma.LT.zero ) THEN
606  CALL sscal( l-i+1, -one, b( i, n-l+i ), ldb )
607  IF( wantv )
608  $ CALL sscal( p, -one, v( 1, i ), 1 )
609  END IF
610 *
611  CALL slartg( abs( gamma ), one, beta( k+i ), alpha( k+i ),
612  $ rwk )
613 *
614  IF( alpha( k+i ).GE.beta( k+i ) ) THEN
615  CALL sscal( l-i+1, one / alpha( k+i ), a( k+i, n-l+i ),
616  $ lda )
617  ELSE
618  CALL sscal( l-i+1, one / beta( k+i ), b( i, n-l+i ),
619  $ ldb )
620  CALL scopy( l-i+1, b( i, n-l+i ), ldb, a( k+i, n-l+i ),
621  $ lda )
622  END IF
623 *
624  ELSE
625 *
626  alpha( k+i ) = zero
627  beta( k+i ) = one
628  CALL scopy( l-i+1, b( i, n-l+i ), ldb, a( k+i, n-l+i ),
629  $ lda )
630 *
631  END IF
632 *
633  70 CONTINUE
634 *
635 * Post-assignment
636 *
637  DO 80 i = m + 1, k + l
638  alpha( i ) = zero
639  beta( i ) = one
640  80 CONTINUE
641 *
642  IF( k+l.LT.n ) THEN
643  DO 90 i = k + l + 1, n
644  alpha( i ) = zero
645  beta( i ) = zero
646  90 CONTINUE
647  END IF
648 *
649  100 CONTINUE
650  ncycle = kcycle
651  RETURN
652 *
653 * End of STGSJA
654 *
655  END
stgsja
subroutine stgsja(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, INFO)
STGSJA
Definition: stgsja.f:380
slapll
subroutine slapll(N, X, INCX, Y, INCY, SSMIN)
SLAPLL measures the linear dependence of two vectors.
Definition: slapll.f:104
srot
subroutine srot(N, SX, INCX, SY, INCY, C, S)
SROT
Definition: srot.f:94
scopy
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:84
sscal
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:81
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
slaset
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: slaset.f:112
slartg
subroutine slartg(F, G, CS, SN, R)
SLARTG generates a plane rotation with real cosine and real sine.
Definition: slartg.f:99
slags2
subroutine slags2(UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ)
SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such tha...
Definition: slags2.f:154