LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ claunhr_col_getrfnp2()

recursive subroutine claunhr_col_getrfnp2 ( integer  M,
integer  N,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( * )  D,
integer  INFO 
)

CLAUNHR_COL_GETRFNP2

Download CLAUNHR_COL_GETRFNP2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
 pivoting of a complex general M-by-N matrix A. The factorization has
 the form:

     A - S = L * U,

 where:
    S is a m-by-n diagonal sign matrix with the diagonal D, so that
    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
    i-1 steps of Gaussian elimination. This means that the diagonal
    element at each step of "modified" Gaussian elimination is at
    least one in absolute value (so that division-by-zero not
    possible during the division by the diagonal element);

    L is a M-by-N lower triangular matrix with unit diagonal elements
    (lower trapezoidal if M > N);

    and U is a M-by-N upper triangular matrix
    (upper trapezoidal if M < N).

 This routine is an auxiliary routine used in the Householder
 reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is
 applied to an M-by-N matrix A with orthonormal columns, where each
 element is bounded by one in absolute value. With the choice of
 the matrix S above, one can show that the diagonal element at each
 step of Gaussian elimination is the largest (in absolute value) in
 the column on or below the diagonal, so that no pivoting is required
 for numerical stability [1].

 For more details on the Householder reconstruction algorithm,
 including the modified LU factorization, see [1].

 This is the recursive version of the LU factorization algorithm.
 Denote A - S by B. The algorithm divides the matrix B into four
 submatrices:

        [  B11 | B12  ]  where B11 is n1 by n1,
    B = [ --&mdash;|--&mdash; ]        B21 is (m-n1) by n1,
        [  B21 | B22  ]        B12 is n1 by n2,
                               B22 is (m-n1) by n2,
                               with n1 = min(m,n)/2, n2 = n-n1.


 The subroutine calls itself to factor B11, solves for B21,
 solves for B12, updates B22, then calls itself to factor B22.

 For more details on the recursive LU algorithm, see [2].

 CLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
 routine CLAUNHR_COL_GETRFNP, which uses blocked code calling
is self-sufficient and can be used without CLAUNHR_COL_GETRFNP.

 [1] "Reconstructing Householder vectors from tall-skinny QR",
     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
     E. Solomonik, J. Parallel Distrib. Comput.,
     vol. 85, pp. 3-31, 2015.

 [2] "Recursion leads to automatic variable blocking for dense linear
     algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
     vol. 41, no. 6, pp. 737-755, 1997.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A-S=L*U; the unit diagonal elements of L are not stored.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]D
          D is COMPLEX array, dimension min(M,N)
          The diagonal elements of the diagonal M-by-N sign matrix S,
          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
          only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2019
Contributors:
 November 2019, Igor Kozachenko,
                Computer Science Division,
                University of California, Berkeley

Definition at line 169 of file claunhr_col_getrfnp2.f.

169  IMPLICIT NONE
170 *
171 * -- LAPACK computational routine (version 3.9.0) --
172 * -- LAPACK is a software package provided by Univ. of Tennessee, --
173 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174 * November 2019
175 *
176 * .. Scalar Arguments ..
177  INTEGER INFO, LDA, M, N
178 * ..
179 * .. Array Arguments ..
180  COMPLEX A( LDA, * ), D( * )
181 * ..
182 *
183 * =====================================================================
184 *
185 * .. Parameters ..
186  REAL ONE
187  parameter( one = 1.0e+0 )
188  COMPLEX CONE
189  parameter( cone = ( 1.0e+0, 0.0e+0 ) )
190 * ..
191 * .. Local Scalars ..
192  REAL SFMIN
193  INTEGER I, IINFO, N1, N2
194  COMPLEX Z
195 * ..
196 * .. External Functions ..
197  REAL SLAMCH
198  EXTERNAL slamch
199 * ..
200 * .. External Subroutines ..
201  EXTERNAL cgemm, cscal, ctrsm, xerbla
202 * ..
203 * .. Intrinsic Functions ..
204  INTRINSIC abs, real, cmplx, aimag, sign, max, min
205 * ..
206 * .. Statement Functions ..
207  DOUBLE PRECISION CABS1
208 * ..
209 * .. Statement Function definitions ..
210  cabs1( z ) = abs( real( z ) ) + abs( aimag( z ) )
211 * ..
212 * .. Executable Statements ..
213 *
214 * Test the input parameters
215 *
216  info = 0
217  IF( m.LT.0 ) THEN
218  info = -1
219  ELSE IF( n.LT.0 ) THEN
220  info = -2
221  ELSE IF( lda.LT.max( 1, m ) ) THEN
222  info = -4
223  END IF
224  IF( info.NE.0 ) THEN
225  CALL xerbla( 'CLAUNHR_COL_GETRFNP2', -info )
226  RETURN
227  END IF
228 *
229 * Quick return if possible
230 *
231  IF( min( m, n ).EQ.0 )
232  $ RETURN
233 
234  IF ( m.EQ.1 ) THEN
235 *
236 * One row case, (also recursion termination case),
237 * use unblocked code
238 *
239 * Transfer the sign
240 *
241  d( 1 ) = cmplx( -sign( one, real( a( 1, 1 ) ) ) )
242 *
243 * Construct the row of U
244 *
245  a( 1, 1 ) = a( 1, 1 ) - d( 1 )
246 *
247  ELSE IF( n.EQ.1 ) THEN
248 *
249 * One column case, (also recursion termination case),
250 * use unblocked code
251 *
252 * Transfer the sign
253 *
254  d( 1 ) = cmplx( -sign( one, real( a( 1, 1 ) ) ) )
255 *
256 * Construct the row of U
257 *
258  a( 1, 1 ) = a( 1, 1 ) - d( 1 )
259 *
260 * Scale the elements 2:M of the column
261 *
262 * Determine machine safe minimum
263 *
264  sfmin = slamch('S')
265 *
266 * Construct the subdiagonal elements of L
267 *
268  IF( cabs1( a( 1, 1 ) ) .GE. sfmin ) THEN
269  CALL cscal( m-1, cone / a( 1, 1 ), a( 2, 1 ), 1 )
270  ELSE
271  DO i = 2, m
272  a( i, 1 ) = a( i, 1 ) / a( 1, 1 )
273  END DO
274  END IF
275 *
276  ELSE
277 *
278 * Divide the matrix B into four submatrices
279 *
280  n1 = min( m, n ) / 2
281  n2 = n-n1
282 
283 *
284 * Factor B11, recursive call
285 *
286  CALL claunhr_col_getrfnp2( n1, n1, a, lda, d, iinfo )
287 *
288 * Solve for B21
289 *
290  CALL ctrsm( 'R', 'U', 'N', 'N', m-n1, n1, cone, a, lda,
291  $ a( n1+1, 1 ), lda )
292 *
293 * Solve for B12
294 *
295  CALL ctrsm( 'L', 'L', 'N', 'U', n1, n2, cone, a, lda,
296  $ a( 1, n1+1 ), lda )
297 *
298 * Update B22, i.e. compute the Schur complement
299 * B22 := B22 - B21*B12
300 *
301  CALL cgemm( 'N', 'N', m-n1, n2, n1, -cone, a( n1+1, 1 ), lda,
302  $ a( 1, n1+1 ), lda, cone, a( n1+1, n1+1 ), lda )
303 *
304 * Factor B22, recursive call
305 *
306  CALL claunhr_col_getrfnp2( m-n1, n2, a( n1+1, n1+1 ), lda,
307  $ d( n1+1 ), iinfo )
308 *
309  END IF
310  RETURN
311 *
312 * End of CLAUNHR_COL_GETRFNP2
313 *
Here is the call graph for this function:
Here is the caller graph for this function:
cgemm
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
ctrsm
subroutine ctrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRSM
Definition: ctrsm.f:182
cscal
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:80
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
slamch
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:70
claunhr_col_getrfnp2
recursive subroutine claunhr_col_getrfnp2(M, N, A, LDA, D, INFO)
CLAUNHR_COL_GETRFNP2
Definition: claunhr_col_getrfnp2.f:169