![]() |
LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
|
subroutine sorgtsqr | ( | integer | M, |
integer | N, | ||
integer | MB, | ||
integer | NB, | ||
real, dimension( lda, * ) | A, | ||
integer | LDA, | ||
real, dimension( ldt, * ) | T, | ||
integer | LDT, | ||
real, dimension( * ) | WORK, | ||
integer | LWORK, | ||
integer | INFO | ||
) |
SORGTSQR
Download SORGTSQR + dependencies [TGZ] [ZIP] [TXT] \par Purpose: @verbatim SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns, which are the first N columns of a product of real orthogonal matrices of order M which are returned by SLATSQR Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). See the documentation for SLATSQR. \endverbatim @param [in] M @verbatim M is INTEGER The number of rows of the matrix A. M >= 0. \endverbatim @param [in] N @verbatim N is INTEGER The number of columns of the matrix A. M >= N >= 0. \endverbatim @param [in] MB @verbatim MB is INTEGER The row block size used by SLATSQR to return arrays A and T. MB > N. (Note that if MB > M, then M is used instead of MB as the row block size). \endverbatim @param [in] NB @verbatim NB is INTEGER The column block size used by SLATSQR to return arrays A and T. NB >= 1. (Note that if NB > N, then N is used instead of NB as the column block size). \endverbatim @param [in,out] A @verbatim A is REAL array, dimension (LDA,N) On entry: The elements on and above the diagonal are not accessed. The elements below the diagonal represent the unit lower-trapezoidal blocked matrix V computed by SLATSQR that defines the input matrices Q_in(k) (ones on the diagonal are not stored) (same format as the output A below the diagonal in SLATSQR). On exit: The array A contains an M-by-N orthonormal matrix Q_out, i.e the columns of A are orthogonal unit vectors. \endverbatim @param [in] LDA @verbatim LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). \endverbatim @param [in] T @verbatim T is REAL array, dimension (LDT, N * NIRB) where NIRB = Number_of_input_row_blocks = MAX( 1, CEIL((M-N)/(MB-N)) ) Let NICB = Number_of_input_col_blocks = CEIL(N/NB) The upper-triangular block reflectors used to define the input matrices Q_in(k), k=(1:NIRB*NICB). The block reflectors are stored in compact form in NIRB block reflector sequences. Each of NIRB block reflector sequences is stored in a larger NB-by-N column block of T and consists of NICB smaller NB-by-NB upper-triangular column blocks. (same format as the output T in SLATSQR). \endverbatim @param [in] LDT @verbatim LDT is INTEGER The leading dimension of the array T. LDT >= max(1,min(NB1,N)). \endverbatim @param [out] WORK @verbatim (workspace) REAL array, dimension (MAX(2,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. \endverbatim @param [in] LWORK @verbatim The dimension of the array WORK. LWORK >= (M+NB)*N. If LWORK = -1, then a workspace query is assumed. The routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. \endverbatim @param [out] INFO @verbatim INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2019 \par Contributors: @verbatim November 2019, Igor Kozachenko, Computer Science Division, University of California, Berkeley \endverbatim
Definition at line 176 of file sorgtsqr.f.