LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
sorgtsqr.f
Go to the documentation of this file.
1 *> \brief \b SORGTSQR
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SORGTSQR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr.f">
15 *> [TXT]</a>
16 *>
17 * Definition:
18 * ===========
19 *
20 * SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
21 * $ INFO )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
25 * ..
26 * .. Array Arguments ..
27 * REAL A( LDA, * ), T( LDT, * ), WORK( * )
28 * ..
29 *
30 *> \par Purpose:
31 * =============
32 *>
33 *> \verbatim
34 *>
35 *> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
36 *> which are the first N columns of a product of real orthogonal
37 *> matrices of order M which are returned by SLATSQR
38 *>
39 *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
40 *>
41 *> See the documentation for SLATSQR.
42 *> \endverbatim
43 *
44 * Arguments:
45 * ==========
46 *
47 *> \param[in] M
48 *> \verbatim
49 *> M is INTEGER
50 *> The number of rows of the matrix A. M >= 0.
51 *> \endverbatim
52 *>
53 *> \param[in] N
54 *> \verbatim
55 *> N is INTEGER
56 *> The number of columns of the matrix A. M >= N >= 0.
57 *> \endverbatim
58 *>
59 *> \param[in] MB
60 *> \verbatim
61 *> MB is INTEGER
62 *> The row block size used by SLATSQR to return
63 *> arrays A and T. MB > N.
64 *> (Note that if MB > M, then M is used instead of MB
65 *> as the row block size).
66 *> \endverbatim
67 *>
68 *> \param[in] NB
69 *> \verbatim
70 *> NB is INTEGER
71 *> The column block size used by SLATSQR to return
72 *> arrays A and T. NB >= 1.
73 *> (Note that if NB > N, then N is used instead of NB
74 *> as the column block size).
75 *> \endverbatim
76 *>
77 *> \param[in,out] A
78 *> \verbatim
79 *> A is REAL array, dimension (LDA,N)
80 *>
81 *> On entry:
82 *>
83 *> The elements on and above the diagonal are not accessed.
84 *> The elements below the diagonal represent the unit
85 *> lower-trapezoidal blocked matrix V computed by SLATSQR
86 *> that defines the input matrices Q_in(k) (ones on the
87 *> diagonal are not stored) (same format as the output A
88 *> below the diagonal in SLATSQR).
89 *>
90 *> On exit:
91 *>
92 *> The array A contains an M-by-N orthonormal matrix Q_out,
93 *> i.e the columns of A are orthogonal unit vectors.
94 *> \endverbatim
95 *>
96 *> \param[in] LDA
97 *> \verbatim
98 *> LDA is INTEGER
99 *> The leading dimension of the array A. LDA >= max(1,M).
100 *> \endverbatim
101 *>
102 *> \param[in] T
103 *> \verbatim
104 *> T is REAL array,
105 *> dimension (LDT, N * NIRB)
106 *> where NIRB = Number_of_input_row_blocks
107 *> = MAX( 1, CEIL((M-N)/(MB-N)) )
108 *> Let NICB = Number_of_input_col_blocks
109 *> = CEIL(N/NB)
110 *>
111 *> The upper-triangular block reflectors used to define the
112 *> input matrices Q_in(k), k=(1:NIRB*NICB). The block
113 *> reflectors are stored in compact form in NIRB block
114 *> reflector sequences. Each of NIRB block reflector sequences
115 *> is stored in a larger NB-by-N column block of T and consists
116 *> of NICB smaller NB-by-NB upper-triangular column blocks.
117 *> (same format as the output T in SLATSQR).
118 *> \endverbatim
119 *>
120 *> \param[in] LDT
121 *> \verbatim
122 *> LDT is INTEGER
123 *> The leading dimension of the array T.
124 *> LDT >= max(1,min(NB1,N)).
125 *> \endverbatim
126 *>
127 *> \param[out] WORK
128 *> \verbatim
129 *> (workspace) REAL array, dimension (MAX(2,LWORK))
130 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
131 *> \endverbatim
132 *>
133 *> \param[in] LWORK
134 *> \verbatim
135 *> The dimension of the array WORK. LWORK >= (M+NB)*N.
136 *> If LWORK = -1, then a workspace query is assumed.
137 *> The routine only calculates the optimal size of the WORK
138 *> array, returns this value as the first entry of the WORK
139 *> array, and no error message related to LWORK is issued
140 *> by XERBLA.
141 *> \endverbatim
142 *>
143 *> \param[out] INFO
144 *> \verbatim
145 *> INFO is INTEGER
146 *> = 0: successful exit
147 *> < 0: if INFO = -i, the i-th argument had an illegal value
148 *> \endverbatim
149 *>
150 * Authors:
151 * ========
152 *
153 *> \author Univ. of Tennessee
154 *> \author Univ. of California Berkeley
155 *> \author Univ. of Colorado Denver
156 *> \author NAG Ltd.
157 *
158 *> \date November 2019
159 *
160 *> \ingroup singleOTHERcomputational
161 *
162 *> \par Contributors:
163 * ==================
164 *>
165 *> \verbatim
166 *>
167 *> November 2019, Igor Kozachenko,
168 *> Computer Science Division,
169 *> University of California, Berkeley
170 *>
171 *> \endverbatim
172 *
173 * =====================================================================
174  SUBROUTINE sorgtsqr( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
175  $ INFO )
176  IMPLICIT NONE
177 *
178 * -- LAPACK computational routine (version 3.9.0) --
179 * -- LAPACK is a software package provided by Univ. of Tennessee, --
180 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181 * November 2019
182 *
183 * .. Scalar Arguments ..
184  INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
185 * ..
186 * .. Array Arguments ..
187  REAL A( LDA, * ), T( LDT, * ), WORK( * )
188 * ..
189 *
190 * =====================================================================
191 *
192 * .. Parameters ..
193  REAL ONE, ZERO
194  parameter( one = 1.0e+0, zero = 0.0e+0 )
195 * ..
196 * .. Local Scalars ..
197  LOGICAL LQUERY
198  INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
199 * ..
200 * .. External Subroutines ..
201  EXTERNAL scopy, slamtsqr, slaset, xerbla
202 * ..
203 * .. Intrinsic Functions ..
204  INTRINSIC real, max, min
205 * ..
206 * .. Executable Statements ..
207 *
208 * Test the input parameters
209 *
210  lquery = lwork.EQ.-1
211  info = 0
212  IF( m.LT.0 ) THEN
213  info = -1
214  ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
215  info = -2
216  ELSE IF( mb.LE.n ) THEN
217  info = -3
218  ELSE IF( nb.LT.1 ) THEN
219  info = -4
220  ELSE IF( lda.LT.max( 1, m ) ) THEN
221  info = -6
222  ELSE IF( ldt.LT.max( 1, min( nb, n ) ) ) THEN
223  info = -8
224  ELSE
225 *
226 * Test the input LWORK for the dimension of the array WORK.
227 * This workspace is used to store array C(LDC, N) and WORK(LWORK)
228 * in the call to DLAMTSQR. See the documentation for DLAMTSQR.
229 *
230  IF( lwork.LT.2 .AND. (.NOT.lquery) ) THEN
231  info = -10
232  ELSE
233 *
234 * Set block size for column blocks
235 *
236  nblocal = min( nb, n )
237 *
238 * LWORK = -1, then set the size for the array C(LDC,N)
239 * in DLAMTSQR call and set the optimal size of the work array
240 * WORK(LWORK) in DLAMTSQR call.
241 *
242  ldc = m
243  lc = ldc*n
244  lw = n * nblocal
245 *
246  lworkopt = lc+lw
247 *
248  IF( ( lwork.LT.max( 1, lworkopt ) ).AND.(.NOT.lquery) ) THEN
249  info = -10
250  END IF
251  END IF
252 *
253  END IF
254 *
255 * Handle error in the input parameters and return workspace query.
256 *
257  IF( info.NE.0 ) THEN
258  CALL xerbla( 'SORGTSQR', -info )
259  RETURN
260  ELSE IF ( lquery ) THEN
261  work( 1 ) = real( lworkopt )
262  RETURN
263  END IF
264 *
265 * Quick return if possible
266 *
267  IF( min( m, n ).EQ.0 ) THEN
268  work( 1 ) = real( lworkopt )
269  RETURN
270  END IF
271 *
272 * (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
273 * of M-by-M orthogonal matrix Q_in, which is implicitly stored in
274 * the subdiagonal part of input array A and in the input array T.
275 * Perform by the following operation using the routine DLAMTSQR.
276 *
277 * Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
278 * ( 0 ) 0 is a (M-N)-by-N zero matrix.
279 *
280 * (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
281 * on the diagonal and zeros elsewhere.
282 *
283  CALL slaset( 'F', m, n, zero, one, work, ldc )
284 *
285 * (1b) On input, WORK(1:LDC*N) stores ( I );
286 * ( 0 )
287 *
288 * On output, WORK(1:LDC*N) stores Q1_in.
289 *
290  CALL slamtsqr( 'L', 'N', m, n, n, mb, nblocal, a, lda, t, ldt,
291  $ work, ldc, work( lc+1 ), lw, iinfo )
292 *
293 * (2) Copy the result from the part of the work array (1:M,1:N)
294 * with the leading dimension LDC that starts at WORK(1) into
295 * the output array A(1:M,1:N) column-by-column.
296 *
297  DO j = 1, n
298  CALL scopy( m, work( (j-1)*ldc + 1 ), 1, a( 1, j ), 1 )
299  END DO
300 *
301  work( 1 ) = real( lworkopt )
302  RETURN
303 *
304 * End of SORGTSQR
305 *
306  END
sorgtsqr
subroutine sorgtsqr(M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO)
SORGTSQR
Definition: sorgtsqr.f:176
slamtsqr
subroutine slamtsqr(SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, LDT, C, LDC, WORK, LWORK, INFO)
SLAMTSQR
Definition: slamtsqr.f:198
scopy
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:84
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
slaset
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: slaset.f:112