LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
chet22.f
Go to the documentation of this file.
1 *> \brief \b CHET22
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
12 * V, LDV, TAU, WORK, RWORK, RESULT )
13 *
14 * .. Scalar Arguments ..
15 * CHARACTER UPLO
16 * INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
17 * ..
18 * .. Array Arguments ..
19 * REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
20 * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
21 * $ V( LDV, * ), WORK( * )
22 * ..
23 *
24 *
25 *> \par Purpose:
26 * =============
27 *>
28 *> \verbatim
29 *>
30 *> CHET22 generally checks a decomposition of the form
31 *>
32 *> A U = U S
33 *>
34 *> where A is complex Hermitian, the columns of U are orthonormal,
35 *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
36 *> KBAND=1). If ITYPE=1, then U is represented as a dense matrix,
37 *> otherwise the U is expressed as a product of Householder
38 *> transformations, whose vectors are stored in the array "V" and
39 *> whose scaling constants are in "TAU"; we shall use the letter
40 *> "V" to refer to the product of Householder transformations
41 *> (which should be equal to U).
42 *>
43 *> Specifically, if ITYPE=1, then:
44 *>
45 *> RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
46 *> RESULT(2) = | I - U**H U | / ( m ulp )
47 *> \endverbatim
48 *
49 * Arguments:
50 * ==========
51 *
52 *> \verbatim
53 *> ITYPE INTEGER
54 *> Specifies the type of tests to be performed.
55 *> 1: U expressed as a dense orthogonal matrix:
56 *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
57 *> RESULT(2) = | I - U U**H | / ( n ulp )
58 *>
59 *> UPLO CHARACTER
60 *> If UPLO='U', the upper triangle of A will be used and the
61 *> (strictly) lower triangle will not be referenced. If
62 *> UPLO='L', the lower triangle of A will be used and the
63 *> (strictly) upper triangle will not be referenced.
64 *> Not modified.
65 *>
66 *> N INTEGER
67 *> The size of the matrix. If it is zero, CHET22 does nothing.
68 *> It must be at least zero.
69 *> Not modified.
70 *>
71 *> M INTEGER
72 *> The number of columns of U. If it is zero, CHET22 does
73 *> nothing. It must be at least zero.
74 *> Not modified.
75 *>
76 *> KBAND INTEGER
77 *> The bandwidth of the matrix. It may only be zero or one.
78 *> If zero, then S is diagonal, and E is not referenced. If
79 *> one, then S is symmetric tri-diagonal.
80 *> Not modified.
81 *>
82 *> A COMPLEX array, dimension (LDA , N)
83 *> The original (unfactored) matrix. It is assumed to be
84 *> symmetric, and only the upper (UPLO='U') or only the lower
85 *> (UPLO='L') will be referenced.
86 *> Not modified.
87 *>
88 *> LDA INTEGER
89 *> The leading dimension of A. It must be at least 1
90 *> and at least N.
91 *> Not modified.
92 *>
93 *> D REAL array, dimension (N)
94 *> The diagonal of the (symmetric tri-) diagonal matrix.
95 *> Not modified.
96 *>
97 *> E REAL array, dimension (N)
98 *> The off-diagonal of the (symmetric tri-) diagonal matrix.
99 *> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
100 *> Not referenced if KBAND=0.
101 *> Not modified.
102 *>
103 *> U COMPLEX array, dimension (LDU, N)
104 *> If ITYPE=1, this contains the orthogonal matrix in
105 *> the decomposition, expressed as a dense matrix.
106 *> Not modified.
107 *>
108 *> LDU INTEGER
109 *> The leading dimension of U. LDU must be at least N and
110 *> at least 1.
111 *> Not modified.
112 *>
113 *> V COMPLEX array, dimension (LDV, N)
114 *> If ITYPE=2 or 3, the lower triangle of this array contains
115 *> the Householder vectors used to describe the orthogonal
116 *> matrix in the decomposition. If ITYPE=1, then it is not
117 *> referenced.
118 *> Not modified.
119 *>
120 *> LDV INTEGER
121 *> The leading dimension of V. LDV must be at least N and
122 *> at least 1.
123 *> Not modified.
124 *>
125 *> TAU COMPLEX array, dimension (N)
126 *> If ITYPE >= 2, then TAU(j) is the scalar factor of
127 *> v(j) v(j)**H in the Householder transformation H(j) of
128 *> the product U = H(1)...H(n-2)
129 *> If ITYPE < 2, then TAU is not referenced.
130 *> Not modified.
131 *>
132 *> WORK COMPLEX array, dimension (2*N**2)
133 *> Workspace.
134 *> Modified.
135 *>
136 *> RWORK REAL array, dimension (N)
137 *> Workspace.
138 *> Modified.
139 *>
140 *> RESULT REAL array, dimension (2)
141 *> The values computed by the two tests described above. The
142 *> values are currently limited to 1/ulp, to avoid overflow.
143 *> RESULT(1) is always modified. RESULT(2) is modified only
144 *> if LDU is at least N.
145 *> Modified.
146 *> \endverbatim
147 *
148 * Authors:
149 * ========
150 *
151 *> \author Univ. of Tennessee
152 *> \author Univ. of California Berkeley
153 *> \author Univ. of Colorado Denver
154 *> \author NAG Ltd.
155 *
156 *> \date December 2016
157 *
158 *> \ingroup complex_eig
159 *
160 * =====================================================================
161  SUBROUTINE chet22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
162  $ V, LDV, TAU, WORK, RWORK, RESULT )
163 *
164 * -- LAPACK test routine (version 3.7.0) --
165 * -- LAPACK is a software package provided by Univ. of Tennessee, --
166 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
167 * December 2016
168 *
169 * .. Scalar Arguments ..
170  CHARACTER UPLO
171  INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
172 * ..
173 * .. Array Arguments ..
174  REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
175  COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
176  $ v( ldv, * ), work( * )
177 * ..
178 *
179 * =====================================================================
180 *
181 * .. Parameters ..
182  REAL ZERO, ONE
183  parameter( zero = 0.0e0, one = 1.0e0 )
184  COMPLEX CZERO, CONE
185  parameter( czero = ( 0.0e0, 0.0e0 ),
186  $ cone = ( 1.0e0, 0.0e0 ) )
187 * ..
188 * .. Local Scalars ..
189  INTEGER J, JJ, JJ1, JJ2, NN, NNP1
190  REAL ANORM, ULP, UNFL, WNORM
191 * ..
192 * .. External Functions ..
193  REAL CLANHE, SLAMCH
194  EXTERNAL clanhe, slamch
195 * ..
196 * .. External Subroutines ..
197  EXTERNAL cgemm, chemm
198 * ..
199 * .. Intrinsic Functions ..
200  INTRINSIC max, min, real
201 * ..
202 * .. Executable Statements ..
203 *
204  result( 1 ) = zero
205  result( 2 ) = zero
206  IF( n.LE.0 .OR. m.LE.0 )
207  $ RETURN
208 *
209  unfl = slamch( 'Safe minimum' )
210  ulp = slamch( 'Precision' )
211 *
212 * Do Test 1
213 *
214 * Norm of A:
215 *
216  anorm = max( clanhe( '1', uplo, n, a, lda, rwork ), unfl )
217 *
218 * Compute error matrix:
219 *
220 * ITYPE=1: error = U**H A U - S
221 *
222  CALL chemm( 'L', uplo, n, m, cone, a, lda, u, ldu, czero, work,
223  $ n )
224  nn = n*n
225  nnp1 = nn + 1
226  CALL cgemm( 'C', 'N', m, m, n, cone, u, ldu, work, n, czero,
227  $ work( nnp1 ), n )
228  DO 10 j = 1, m
229  jj = nn + ( j-1 )*n + j
230  work( jj ) = work( jj ) - d( j )
231  10 CONTINUE
232  IF( kband.EQ.1 .AND. n.GT.1 ) THEN
233  DO 20 j = 2, m
234  jj1 = nn + ( j-1 )*n + j - 1
235  jj2 = nn + ( j-2 )*n + j
236  work( jj1 ) = work( jj1 ) - e( j-1 )
237  work( jj2 ) = work( jj2 ) - e( j-1 )
238  20 CONTINUE
239  END IF
240  wnorm = clanhe( '1', uplo, m, work( nnp1 ), n, rwork )
241 *
242  IF( anorm.GT.wnorm ) THEN
243  result( 1 ) = ( wnorm / anorm ) / ( m*ulp )
244  ELSE
245  IF( anorm.LT.one ) THEN
246  result( 1 ) = ( min( wnorm, m*anorm ) / anorm ) / ( m*ulp )
247  ELSE
248  result( 1 ) = min( wnorm / anorm, real( m ) ) / ( m*ulp )
249  END IF
250  END IF
251 *
252 * Do Test 2
253 *
254 * Compute U**H U - I
255 *
256  IF( itype.EQ.1 )
257  $ CALL cunt01( 'Columns', n, m, u, ldu, work, 2*n*n, rwork,
258  $ result( 2 ) )
259 *
260  RETURN
261 *
262 * End of CHET22
263 *
264  END
chet22
subroutine chet22(ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU, V, LDV, TAU, WORK, RWORK, RESULT)
CHET22
Definition: chet22.f:163
cgemm
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
chemm
subroutine chemm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHEMM
Definition: chemm.f:193
cunt01
subroutine cunt01(ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK, RESID)
CUNT01
Definition: cunt01.f:128