LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
cchksy_aa.f
Go to the documentation of this file.
1 *> \brief \b CCHKSY_AA
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCHKSY_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
24 * $ RWORK( * ), WORK( * ), X( * ), XACT( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> CCHKSY_AA tests CSYTRF_AA, -TRS_AA.
34 *> \endverbatim
35 *
36 * Arguments:
37 * ==========
38 *
39 *> \param[in] DOTYPE
40 *> \verbatim
41 *> DOTYPE is LOGICAL array, dimension (NTYPES)
42 *> The matrix types to be used for testing. Matrices of type j
43 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
44 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
45 *> \endverbatim
46 *>
47 *> \param[in] NN
48 *> \verbatim
49 *> NN is INTEGER
50 *> The number of values of N contained in the vector NVAL.
51 *> \endverbatim
52 *>
53 *> \param[in] NVAL
54 *> \verbatim
55 *> NVAL is INTEGER array, dimension (NN)
56 *> The values of the matrix dimension N.
57 *> \endverbatim
58 *>
59 *> \param[in] NNB
60 *> \verbatim
61 *> NNB is INTEGER
62 *> The number of values of NB contained in the vector NBVAL.
63 *> \endverbatim
64 *>
65 *> \param[in] NBVAL
66 *> \verbatim
67 *> NBVAL is INTEGER array, dimension (NBVAL)
68 *> The values of the blocksize NB.
69 *> \endverbatim
70 *>
71 *> \param[in] NNS
72 *> \verbatim
73 *> NNS is INTEGER
74 *> The number of values of NRHS contained in the vector NSVAL.
75 *> \endverbatim
76 *>
77 *> \param[in] NSVAL
78 *> \verbatim
79 *> NSVAL is INTEGER array, dimension (NNS)
80 *> The values of the number of right hand sides NRHS.
81 *> \endverbatim
82 *>
83 *> \param[in] THRESH
84 *> \verbatim
85 *> THRESH is REAL
86 *> The threshold value for the test ratios. A result is
87 *> included in the output file if RESULT >= THRESH. To have
88 *> every test ratio printed, use THRESH = 0.
89 *> \endverbatim
90 *>
91 *> \param[in] TSTERR
92 *> \verbatim
93 *> TSTERR is LOGICAL
94 *> Flag that indicates whether error exits are to be tested.
95 *> \endverbatim
96 *>
97 *> \param[in] NMAX
98 *> \verbatim
99 *> NMAX is INTEGER
100 *> The maximum value permitted for N, used in dimensioning the
101 *> work arrays.
102 *> \endverbatim
103 *>
104 *> \param[out] A
105 *> \verbatim
106 *> A is REAL array, dimension (NMAX*NMAX)
107 *> \endverbatim
108 *>
109 *> \param[out] AFAC
110 *> \verbatim
111 *> AFAC is REAL array, dimension (NMAX*NMAX)
112 *> \endverbatim
113 *>
114 *> \param[out] AINV
115 *> \verbatim
116 *> AINV is REAL array, dimension (NMAX*NMAX)
117 *> \endverbatim
118 *>
119 *> \param[out] B
120 *> \verbatim
121 *> B is REAL array, dimension (NMAX*NSMAX)
122 *> where NSMAX is the largest entry in NSVAL.
123 *> \endverbatim
124 *>
125 *> \param[out] X
126 *> \verbatim
127 *> X is REAL array, dimension (NMAX*NSMAX)
128 *> \endverbatim
129 *>
130 *> \param[out] XACT
131 *> \verbatim
132 *> XACT is REAL array, dimension (NMAX*NSMAX)
133 *> \endverbatim
134 *>
135 *> \param[out] WORK
136 *> \verbatim
137 *> WORK is REAL array, dimension (NMAX*max(3,NSMAX))
138 *> \endverbatim
139 *>
140 *> \param[out] RWORK
141 *> \verbatim
142 *> RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
143 *> \endverbatim
144 *>
145 *> \param[out] IWORK
146 *> \verbatim
147 *> IWORK is INTEGER array, dimension (2*NMAX)
148 *> \endverbatim
149 *>
150 *> \param[in] NOUT
151 *> \verbatim
152 *> NOUT is INTEGER
153 *> The unit number for output.
154 *> \endverbatim
155 *
156 * Authors:
157 * ========
158 *
159 *> \author Univ. of Tennessee
160 *> \author Univ. of California Berkeley
161 *> \author Univ. of Colorado Denver
162 *> \author NAG Ltd.
163 *
164 *> \date November 2017
165 *
166 * @generated from LIN/dchksy_aa.f, fortran d -> c, Wed Nov 16 21:34:18 2016
167 *
168 *> \ingroup complex_lin
169 *
170 * =====================================================================
171  SUBROUTINE cchksy_aa( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
172  $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B,
173  $ X, XACT, WORK, RWORK, IWORK, NOUT )
174 *
175 * -- LAPACK test routine (version 3.8.0) --
176 * -- LAPACK is a software package provided by Univ. of Tennessee, --
177 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178 * November 2017
179 *
180  IMPLICIT NONE
181 *
182 * .. Scalar Arguments ..
183  LOGICAL tsterr
184  INTEGER nn, nnb, nns, nmax, nout
185  REAL thresh
186 * ..
187 * .. Array Arguments ..
188  LOGICAL dotype( * )
189  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
190  REAL RWORK( * )
191  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
192  $ work( * ), x( * ), xact( * )
193 * ..
194 *
195 * =====================================================================
196 *
197 * .. Parameters ..
198  REAL ZERO
199  PARAMETER ( ZERO = 0.0d+0 )
200  COMPLEX CZERO
201  parameter( czero = 0.0e+0 )
202  INTEGER NTYPES
203  parameter( ntypes = 10 )
204  INTEGER NTESTS
205  parameter( ntests = 9 )
206 * ..
207 * .. Local Scalars ..
208  LOGICAL ZEROT
209  CHARACTER DIST, TYPE, UPLO, XTYPE
210  CHARACTER*3 PATH, MATPATH
211  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
212  $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
213  $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
214  REAL ANORM, CNDNUM
215 * ..
216 * .. Local Arrays ..
217  CHARACTER UPLOS( 2 )
218  INTEGER ISEED( 4 ), ISEEDY( 4 )
219  REAL RESULT( NTESTS )
220 * ..
221 * .. External Subroutines ..
222  EXTERNAL alaerh, alahd, alasum, cerrsy, clacpy, clarhs,
224  $ csytrs_aa, xlaenv
225 * ..
226 * .. Intrinsic Functions ..
227  INTRINSIC max, min
228 * ..
229 * .. Scalars in Common ..
230  LOGICAL LERR, OK
231  CHARACTER*32 SRNAMT
232  INTEGER INFOT, NUNIT
233 * ..
234 * .. Common blocks ..
235  COMMON / infoc / infot, nunit, ok, lerr
236  COMMON / srnamc / srnamt
237 * ..
238 * .. Data statements ..
239  DATA iseedy / 1988, 1989, 1990, 1991 /
240  DATA uplos / 'U', 'L' /
241 * ..
242 * .. Executable Statements ..
243 *
244 * Initialize constants and the random number seed.
245 *
246 * Test path
247 *
248  path( 1: 1 ) = 'Complex precision'
249  path( 2: 3 ) = 'SA'
250 *
251 * Path to generate matrices
252 *
253  matpath( 1: 1 ) = 'Complex precision'
254  matpath( 2: 3 ) = 'SY'
255  nrun = 0
256  nfail = 0
257  nerrs = 0
258  DO 10 i = 1, 4
259  iseed( i ) = iseedy( i )
260  10 CONTINUE
261 *
262 * Test the error exits
263 *
264  IF( tsterr )
265  $ CALL cerrsy( path, nout )
266  infot = 0
267 *
268 * Set the minimum block size for which the block routine should
269 * be used, which will be later returned by ILAENV
270 *
271  CALL xlaenv( 2, 2 )
272 *
273 * Do for each value of N in NVAL
274 *
275  DO 180 in = 1, nn
276  n = nval( in )
277  IF( n .GT. nmax ) THEN
278  nfail = nfail + 1
279  WRITE(nout, 9995) 'M ', n, nmax
280  GO TO 180
281  END IF
282  lda = max( n, 1 )
283  xtype = 'N'
284  nimat = ntypes
285  IF( n.LE.0 )
286  $ nimat = 1
287 *
288  izero = 0
289 *
290 * Do for each value of matrix type IMAT
291 *
292  DO 170 imat = 1, nimat
293 *
294 * Do the tests only if DOTYPE( IMAT ) is true.
295 *
296  IF( .NOT.dotype( imat ) )
297  $ GO TO 170
298 *
299 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
300 *
301  zerot = imat.GE.3 .AND. imat.LE.6
302  IF( zerot .AND. n.LT.imat-2 )
303  $ GO TO 170
304 *
305 * Do first for UPLO = 'U', then for UPLO = 'L'
306 *
307  DO 160 iuplo = 1, 2
308  uplo = uplos( iuplo )
309 *
310 * Begin generate the test matrix A.
311 *
312 *
313 * Set up parameters with CLATB4 for the matrix generator
314 * based on the type of matrix to be generated.
315 *
316  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku,
317  $ anorm, mode, cndnum, dist )
318 *
319 * Generate a matrix with CLATMS.
320 *
321  srnamt = 'CLATMS'
322  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
323  $ cndnum, anorm, kl, ku, uplo, a, lda, work,
324  $ info )
325 *
326 * Check error code from CLATMS and handle error.
327 *
328  IF( info.NE.0 ) THEN
329  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
330  $ -1, -1, imat, nfail, nerrs, nout )
331 *
332 * Skip all tests for this generated matrix
333 *
334  GO TO 160
335  END IF
336 *
337 * For matrix types 3-6, zero one or more rows and
338 * columns of the matrix to test that INFO is returned
339 * correctly.
340 *
341  IF( zerot ) THEN
342  IF( imat.EQ.3 ) THEN
343  izero = 1
344  ELSE IF( imat.EQ.4 ) THEN
345  izero = n
346  ELSE
347  izero = n / 2 + 1
348  END IF
349 *
350  IF( imat.LT.6 ) THEN
351 *
352 * Set row and column IZERO to zero.
353 *
354  IF( iuplo.EQ.1 ) THEN
355  ioff = ( izero-1 )*lda
356  DO 20 i = 1, izero - 1
357  a( ioff+i ) = czero
358  20 CONTINUE
359  ioff = ioff + izero
360  DO 30 i = izero, n
361  a( ioff ) = czero
362  ioff = ioff + lda
363  30 CONTINUE
364  ELSE
365  ioff = izero
366  DO 40 i = 1, izero - 1
367  a( ioff ) = czero
368  ioff = ioff + lda
369  40 CONTINUE
370  ioff = ioff - izero
371  DO 50 i = izero, n
372  a( ioff+i ) = czero
373  50 CONTINUE
374  END IF
375  ELSE
376  IF( iuplo.EQ.1 ) THEN
377 *
378 * Set the first IZERO rows and columns to zero.
379 *
380  ioff = 0
381  DO 70 j = 1, n
382  i2 = min( j, izero )
383  DO 60 i = 1, i2
384  a( ioff+i ) = czero
385  60 CONTINUE
386  ioff = ioff + lda
387  70 CONTINUE
388  izero = 1
389  ELSE
390 *
391 * Set the last IZERO rows and columns to zero.
392 *
393  ioff = 0
394  DO 90 j = 1, n
395  i1 = max( j, izero )
396  DO 80 i = i1, n
397  a( ioff+i ) = czero
398  80 CONTINUE
399  ioff = ioff + lda
400  90 CONTINUE
401  END IF
402  END IF
403  ELSE
404  izero = 0
405  END IF
406 *
407 * End generate the test matrix A.
408 *
409 * Do for each value of NB in NBVAL
410 *
411  DO 150 inb = 1, nnb
412 *
413 * Set the optimal blocksize, which will be later
414 * returned by ILAENV.
415 *
416  nb = nbval( inb )
417  CALL xlaenv( 1, nb )
418 *
419 * Copy the test matrix A into matrix AFAC which
420 * will be factorized in place. This is needed to
421 * preserve the test matrix A for subsequent tests.
422 *
423  CALL clacpy( uplo, n, n, a, lda, afac, lda )
424 *
425 * Compute the L*D*L**T or U*D*U**T factorization of the
426 * matrix. IWORK stores details of the interchanges and
427 * the block structure of D. AINV is a work array for
428 * block factorization, LWORK is the length of AINV.
429 *
430  srnamt = 'CSYTRF_AA'
431  lwork = max( 1, n*nb + n )
432  CALL csytrf_aa( uplo, n, afac, lda, iwork, ainv,
433  $ lwork, info )
434 *
435 * Adjust the expected value of INFO to account for
436 * pivoting.
437 *
438 c IF( IZERO.GT.0 ) THEN
439 c J = 1
440 c K = IZERO
441 c 100 CONTINUE
442 c IF( J.EQ.K ) THEN
443 c K = IWORK( J )
444 c ELSE IF( IWORK( J ).EQ.K ) THEN
445 c K = J
446 c END IF
447 c IF( J.LT.K ) THEN
448 c J = J + 1
449 c GO TO 100
450 c END IF
451 c ELSE
452  k = 0
453 c END IF
454 *
455 * Check error code from CSYTRF and handle error.
456 *
457  IF( info.NE.k ) THEN
458  CALL alaerh( path, 'CSYTRF_AA', info, k, uplo,
459  $ n, n, -1, -1, nb, imat, nfail, nerrs,
460  $ nout )
461  END IF
462 *
463 *+ TEST 1
464 * Reconstruct matrix from factors and compute residual.
465 *
466  CALL csyt01_aa( uplo, n, a, lda, afac, lda, iwork,
467  $ ainv, lda, rwork, result( 1 ) )
468  nt = 1
469 *
470 *
471 * Print information about the tests that did not pass
472 * the threshold.
473 *
474  DO 110 k = 1, nt
475  IF( result( k ).GE.thresh ) THEN
476  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
477  $ CALL alahd( nout, path )
478  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
479  $ result( k )
480  nfail = nfail + 1
481  END IF
482  110 CONTINUE
483  nrun = nrun + nt
484 *
485 * Skip solver test if INFO is not 0.
486 *
487  IF( info.NE.0 ) THEN
488  GO TO 140
489  END IF
490 *
491 * Do for each value of NRHS in NSVAL.
492 *
493  DO 130 irhs = 1, nns
494  nrhs = nsval( irhs )
495 *
496 *+ TEST 2 (Using TRS)
497 * Solve and compute residual for A * X = B.
498 *
499 * Choose a set of NRHS random solution vectors
500 * stored in XACT and set up the right hand side B
501 *
502  srnamt = 'CLARHS'
503  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
504  $ kl, ku, nrhs, a, lda, xact, lda,
505  $ b, lda, iseed, info )
506  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
507 *
508  srnamt = 'CSYTRS_AA'
509  lwork = max( 1, 3*n-2 )
510  CALL csytrs_aa( uplo, n, nrhs, afac, lda,
511  $ iwork, x, lda, work, lwork,
512  $ info )
513 *
514 * Check error code from CSYTRS and handle error.
515 *
516  IF( info.NE.0 ) THEN
517  IF( izero.EQ.0 ) THEN
518  CALL alaerh( path, 'CSYTRS_AA', info, 0,
519  $ uplo, n, n, -1, -1, nrhs, imat,
520  $ nfail, nerrs, nout )
521  END IF
522  ELSE
523  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda
524  $ )
525 *
526 * Compute the residual for the solution
527 *
528  CALL csyt02( uplo, n, nrhs, a, lda, x, lda,
529  $ work, lda, rwork, result( 2 ) )
530 *
531 *
532 * Print information about the tests that did not pass
533 * the threshold.
534 *
535  DO 120 k = 2, 2
536  IF( result( k ).GE.thresh ) THEN
537  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
538  $ CALL alahd( nout, path )
539  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
540  $ imat, k, result( k )
541  nfail = nfail + 1
542  END IF
543  120 CONTINUE
544  END IF
545  nrun = nrun + 1
546 *
547 * End do for each value of NRHS in NSVAL.
548 *
549  130 CONTINUE
550  140 CONTINUE
551  150 CONTINUE
552  160 CONTINUE
553  170 CONTINUE
554  180 CONTINUE
555 *
556 * Print a summary of the results.
557 *
558  CALL alasum( path, nout, nfail, nrun, nerrs )
559 *
560  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
561  $ i2, ', test ', i2, ', ratio =', g12.5 )
562  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
563  $ i2, ', test(', i2, ') =', g12.5 )
564  9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
565  $ i6 )
566  RETURN
567 *
568 * End of CCHKSY_AA
569 *
570  END
csyt02
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
cerrsy
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
cchksy_aa
subroutine cchksy_aa(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CCHKSY_AA
Definition: cchksy_aa.f:174
alahd
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:109
csytrf_aa
subroutine csytrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF_AA
Definition: csytrf_aa.f:134
csyt01_aa
subroutine csyt01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01_aa.f:128
clacpy
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
csytrs_aa
subroutine csytrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CSYTRS_AA
Definition: csytrs_aa.f:133
clatms
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
alaerh
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
alasum
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
clarhs
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
clatb4
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
xlaenv
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83