LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
cdrvsy_aa.f
Go to the documentation of this file.
1 *> \brief \b CDRVSY_AA
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CDRVSY_AA( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
13 * NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * REAL RWORK( * )
24 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CDRVSY_AA tests the driver routine CSYSV_AA.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is REAL
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is REAL array, dimension (NMAX*NMAX)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is REAL array, dimension (NMAX*NMAX)
96 *> \endverbatim
97 *>
98 *> \param[out] AINV
99 *> \verbatim
100 *> AINV is REAL array, dimension (NMAX*NMAX)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is REAL array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] X
109 *> \verbatim
110 *> X is REAL array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] XACT
114 *> \verbatim
115 *> XACT is REAL array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] WORK
119 *> \verbatim
120 *> WORK is REAL array, dimension (NMAX*max(2,NRHS))
121 *> \endverbatim
122 *>
123 *> \param[out] RWORK
124 *> \verbatim
125 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
126 *> \endverbatim
127 *>
128 *> \param[out] IWORK
129 *> \verbatim
130 *> IWORK is INTEGER array, dimension (2*NMAX)
131 *> \endverbatim
132 *>
133 *> \param[in] NOUT
134 *> \verbatim
135 *> NOUT is INTEGER
136 *> The unit number for output.
137 *> \endverbatim
138 *
139 * Authors:
140 * ========
141 *
142 *> \author Univ. of Tennessee
143 *> \author Univ. of California Berkeley
144 *> \author Univ. of Colorado Denver
145 *> \author NAG Ltd.
146 *
147 *> \date November 2017
148 *
149 * @generated from LIN/ddrvsy_aa.f, fortran d -> c, Thu Nov 17 12:14:51 2016
150 *
151 *> \ingroup complex_lin
152 *
153 * =====================================================================
154  SUBROUTINE cdrvsy_aa( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
155  $ NMAX, A, AFAC, AINV, B, X, XACT, WORK,
156  $ RWORK, IWORK, NOUT )
157 *
158 * -- LAPACK test routine (version 3.8.0) --
159 * -- LAPACK is a software package provided by Univ. of Tennessee, --
160 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161 * November 2017
162 *
163 * .. Scalar Arguments ..
164  LOGICAL tsterr
165  INTEGER nmax, nn, nout, nrhs
166  REAL thresh
167 * ..
168 * .. Array Arguments ..
169  LOGICAL dotype( * )
170  INTEGER IWORK( * ), NVAL( * )
171  REAL RWORK( * )
172  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
173  $ work( * ), x( * ), xact( * )
174 * ..
175 *
176 * =====================================================================
177 *
178 * .. Parameters ..
179  REAL ZERO
180  PARAMETER ( ZERO = 0.0d+0 )
181  COMPLEX CZERO
182  parameter( czero = 0.0e+0 )
183  INTEGER NTYPES, NTESTS
184  parameter( ntypes = 10, ntests = 3 )
185  INTEGER NFACT
186  parameter( nfact = 2 )
187 * ..
188 * .. Local Scalars ..
189  LOGICAL ZEROT
190  CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
191  CHARACTER*3 MATPATH, PATH
192  INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
193  $ izero, j, k, kl, ku, lda, lwork, mode, n,
194  $ nb, nbmin, nerrs, nfail, nimat, nrun, nt
195  REAL ANORM, CNDNUM
196 * ..
197 * .. Local Arrays ..
198  CHARACTER FACTS( NFACT ), UPLOS( 2 )
199  INTEGER ISEED( 4 ), ISEEDY( 4 )
200  REAL RESULT( NTESTS )
201 * ..
202 * .. External Functions ..
203  REAL DGET06, CLANSY
204  EXTERNAL DGET06, CLANSY
205 * ..
206 * .. External Subroutines ..
207  EXTERNAL aladhd, alaerh, alasvm, cerrvx, cget04, clacpy,
210 * ..
211 * .. Scalars in Common ..
212  LOGICAL LERR, OK
213  CHARACTER*32 SRNAMT
214  INTEGER INFOT, NUNIT
215 * ..
216 * .. Common blocks ..
217  COMMON / infoc / infot, nunit, ok, lerr
218  COMMON / srnamc / srnamt
219 * ..
220 * .. Intrinsic Functions ..
221  INTRINSIC max, min
222 * ..
223 * .. Data statements ..
224  DATA iseedy / 1988, 1989, 1990, 1991 /
225  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
226 * ..
227 * .. Executable Statements ..
228 *
229 * Initialize constants and the random number seed.
230 *
231 * Test path
232 *
233  path( 1: 1 ) = 'Complex precision'
234  path( 2: 3 ) = 'SA'
235 *
236 * Path to generate matrices
237 *
238  matpath( 1: 1 ) = 'Complex precision'
239  matpath( 2: 3 ) = 'SY'
240 *
241  nrun = 0
242  nfail = 0
243  nerrs = 0
244  DO 10 i = 1, 4
245  iseed( i ) = iseedy( i )
246  10 CONTINUE
247 *
248 * Test the error exits
249 *
250  IF( tsterr )
251  $ CALL cerrvx( path, nout )
252  infot = 0
253 *
254 * Set the block size and minimum block size for testing.
255 *
256  nb = 1
257  nbmin = 2
258  CALL xlaenv( 1, nb )
259  CALL xlaenv( 2, nbmin )
260 *
261 * Do for each value of N in NVAL
262 *
263  DO 180 in = 1, nn
264  n = nval( in )
265  lwork = max( 3*n-2, n*(1+nb) )
266  lwork = max( lwork, 1 )
267  lda = max( n, 1 )
268  xtype = 'N'
269  nimat = ntypes
270  IF( n.LE.0 )
271  $ nimat = 1
272 *
273  DO 170 imat = 1, nimat
274 *
275 * Do the tests only if DOTYPE( IMAT ) is true.
276 *
277  IF( .NOT.dotype( imat ) )
278  $ GO TO 170
279 *
280 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
281 *
282  zerot = imat.GE.3 .AND. imat.LE.6
283  IF( zerot .AND. n.LT.imat-2 )
284  $ GO TO 170
285 *
286 * Do first for UPLO = 'U', then for UPLO = 'L'
287 *
288  DO 160 iuplo = 1, 2
289  uplo = uplos( iuplo )
290 *
291 * Set up parameters with CLATB4 and generate a test matrix
292 * with CLATMS.
293 *
294  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
295  $ mode, cndnum, dist )
296 *
297  srnamt = 'CLATMS'
298  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
299  $ cndnum, anorm, kl, ku, uplo, a, lda, work,
300  $ info )
301 *
302 * Check error code from CLATMS.
303 *
304  IF( info.NE.0 ) THEN
305  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
306  $ -1, -1, imat, nfail, nerrs, nout )
307  GO TO 160
308  END IF
309 *
310 * For types 3-6, zero one or more rows and columns of the
311 * matrix to test that INFO is returned correctly.
312 *
313  IF( zerot ) THEN
314  IF( imat.EQ.3 ) THEN
315  izero = 1
316  ELSE IF( imat.EQ.4 ) THEN
317  izero = n
318  ELSE
319  izero = n / 2 + 1
320  END IF
321 *
322  IF( imat.LT.6 ) THEN
323 *
324 * Set row and column IZERO to zero.
325 *
326  IF( iuplo.EQ.1 ) THEN
327  ioff = ( izero-1 )*lda
328  DO 20 i = 1, izero - 1
329  a( ioff+i ) = czero
330  20 CONTINUE
331  ioff = ioff + izero
332  DO 30 i = izero, n
333  a( ioff ) = czero
334  ioff = ioff + lda
335  30 CONTINUE
336  ELSE
337  ioff = izero
338  DO 40 i = 1, izero - 1
339  a( ioff ) = czero
340  ioff = ioff + lda
341  40 CONTINUE
342  ioff = ioff - izero
343  DO 50 i = izero, n
344  a( ioff+i ) = czero
345  50 CONTINUE
346  END IF
347  ELSE
348  ioff = 0
349  IF( iuplo.EQ.1 ) THEN
350 *
351 * Set the first IZERO rows and columns to zero.
352 *
353  DO 70 j = 1, n
354  i2 = min( j, izero )
355  DO 60 i = 1, i2
356  a( ioff+i ) = czero
357  60 CONTINUE
358  ioff = ioff + lda
359  70 CONTINUE
360  izero = 1
361  ELSE
362 *
363 * Set the last IZERO rows and columns to zero.
364 *
365  DO 90 j = 1, n
366  i1 = max( j, izero )
367  DO 80 i = i1, n
368  a( ioff+i ) = czero
369  80 CONTINUE
370  ioff = ioff + lda
371  90 CONTINUE
372  END IF
373  END IF
374  ELSE
375  izero = 0
376  END IF
377 *
378  DO 150 ifact = 1, nfact
379 *
380 * Do first for FACT = 'F', then for other values.
381 *
382  fact = facts( ifact )
383 *
384 * Form an exact solution and set the right hand side.
385 *
386  srnamt = 'CLARHS'
387  CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
388  $ nrhs, a, lda, xact, lda, b, lda, iseed,
389  $ info )
390  xtype = 'C'
391 *
392 * --- Test CSYSV_AA ---
393 *
394  IF( ifact.EQ.2 ) THEN
395  CALL clacpy( uplo, n, n, a, lda, afac, lda )
396  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
397 *
398 * Factor the matrix and solve the system using CSYSV_AA.
399 *
400  srnamt = 'CSYSV_AA'
401  CALL csysv_aa( uplo, n, nrhs, afac, lda, iwork,
402  $ x, lda, work, lwork, info )
403 *
404 * Adjust the expected value of INFO to account for
405 * pivoting.
406 *
407  IF( izero.GT.0 ) THEN
408  j = 1
409  k = izero
410  100 CONTINUE
411  IF( j.EQ.k ) THEN
412  k = iwork( j )
413  ELSE IF( iwork( j ).EQ.k ) THEN
414  k = j
415  END IF
416  IF( j.LT.k ) THEN
417  j = j + 1
418  GO TO 100
419  END IF
420  ELSE
421  k = 0
422  END IF
423 *
424 * Check error code from CSYSV_AA .
425 *
426  IF( info.NE.k ) THEN
427  CALL alaerh( path, 'CSYSV_AA ', info, k,
428  $ uplo, n, n, -1, -1, nrhs,
429  $ imat, nfail, nerrs, nout )
430  GO TO 120
431  ELSE IF( info.NE.0 ) THEN
432  GO TO 120
433  END IF
434 *
435 * Reconstruct matrix from factors and compute
436 * residual.
437 *
438  CALL csyt01_aa( uplo, n, a, lda, afac, lda,
439  $ iwork, ainv, lda, rwork,
440  $ result( 1 ) )
441 *
442 * Compute residual of the computed solution.
443 *
444  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
445  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
446  $ lda, rwork, result( 2 ) )
447  nt = 2
448 *
449 * Print information about the tests that did not pass
450 * the threshold.
451 *
452  DO 110 k = 1, nt
453  IF( result( k ).GE.thresh ) THEN
454  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
455  $ CALL aladhd( nout, path )
456  WRITE( nout, fmt = 9999 )'CSYSV_AA ',
457  $ uplo, n, imat, k, result( k )
458  nfail = nfail + 1
459  END IF
460  110 CONTINUE
461  nrun = nrun + nt
462  120 CONTINUE
463  END IF
464 *
465  150 CONTINUE
466 *
467  160 CONTINUE
468  170 CONTINUE
469  180 CONTINUE
470 *
471 * Print a summary of the results.
472 *
473  CALL alasvm( path, nout, nfail, nrun, nerrs )
474 *
475  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
476  $ ', test ', i2, ', ratio =', g12.5 )
477  RETURN
478 *
479 * End of CDRVSY_AA
480 *
481  END
csyt02
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
alasvm
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
cerrvx
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:57
cdrvsy_aa
subroutine cdrvsy_aa(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CDRVSY_AA
Definition: cdrvsy_aa.f:157
cget04
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
csytrf_aa
subroutine csytrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF_AA
Definition: csytrf_aa.f:134
csyt01_aa
subroutine csyt01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01_aa.f:128
clacpy
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
clatms
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
aladhd
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:92
claset
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:108
alaerh
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
csysv_aa
subroutine csysv_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices
Definition: csysv_aa.f:164
clarhs
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
clatb4
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
xlaenv
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83