LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ slangb()

real function slangb ( character  NORM,
integer  N,
integer  KL,
integer  KU,
real, dimension( ldab, * )  AB,
integer  LDAB,
real, dimension( * )  WORK 
)

SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

Download SLANGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SLANGB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
Returns
SLANGB
    SLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in SLANGB as described
          above.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, SLANGB is
          set to zero.
[in]KL
          KL is INTEGER
          The number of sub-diagonals of the matrix A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of super-diagonals of the matrix A.  KU >= 0.
[in]AB
          AB is REAL array, dimension (LDAB,N)
          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
          column of A is stored in the j-th column of the array AB as
          follows:
          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KL+KU+1.
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
          referenced.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 126 of file slangb.f.

126 *
127 * -- LAPACK auxiliary routine (version 3.7.0) --
128 * -- LAPACK is a software package provided by Univ. of Tennessee, --
129 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130 * December 2016
131 *
132  IMPLICIT NONE
133 * .. Scalar Arguments ..
134  CHARACTER NORM
135  INTEGER KL, KU, LDAB, N
136 * ..
137 * .. Array Arguments ..
138  REAL AB( LDAB, * ), WORK( * )
139 * ..
140 *
141 * =====================================================================
142 *
143 * .. Parameters ..
144  REAL ONE, ZERO
145  parameter( one = 1.0e+0, zero = 0.0e+0 )
146 * ..
147 * .. Local Scalars ..
148  INTEGER I, J, K, L
149  REAL SUM, VALUE, TEMP
150 * ..
151 * .. Local Arrays ..
152  REAL SSQ( 2 ), COLSSQ( 2 )
153 * ..
154 * .. External Functions ..
155  LOGICAL LSAME, SISNAN
156  EXTERNAL lsame, sisnan
157 * ..
158 * .. External Subroutines ..
159  EXTERNAL slassq, scombssq
160 * ..
161 * .. Intrinsic Functions ..
162  INTRINSIC abs, max, min, sqrt
163 * ..
164 * .. Executable Statements ..
165 *
166  IF( n.EQ.0 ) THEN
167  VALUE = zero
168  ELSE IF( lsame( norm, 'M' ) ) THEN
169 *
170 * Find max(abs(A(i,j))).
171 *
172  VALUE = zero
173  DO 20 j = 1, n
174  DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
175  temp = abs( ab( i, j ) )
176  IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
177  10 CONTINUE
178  20 CONTINUE
179  ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
180 *
181 * Find norm1(A).
182 *
183  VALUE = zero
184  DO 40 j = 1, n
185  sum = zero
186  DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
187  sum = sum + abs( ab( i, j ) )
188  30 CONTINUE
189  IF( VALUE.LT.sum .OR. sisnan( sum ) ) VALUE = sum
190  40 CONTINUE
191  ELSE IF( lsame( norm, 'I' ) ) THEN
192 *
193 * Find normI(A).
194 *
195  DO 50 i = 1, n
196  work( i ) = zero
197  50 CONTINUE
198  DO 70 j = 1, n
199  k = ku + 1 - j
200  DO 60 i = max( 1, j-ku ), min( n, j+kl )
201  work( i ) = work( i ) + abs( ab( k+i, j ) )
202  60 CONTINUE
203  70 CONTINUE
204  VALUE = zero
205  DO 80 i = 1, n
206  temp = work( i )
207  IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
208  80 CONTINUE
209  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
210 *
211 * Find normF(A).
212 * SSQ(1) is scale
213 * SSQ(2) is sum-of-squares
214 * For better accuracy, sum each column separately.
215 *
216  ssq( 1 ) = zero
217  ssq( 2 ) = one
218  DO 90 j = 1, n
219  l = max( 1, j-ku )
220  k = ku + 1 - j + l
221  colssq( 1 ) = zero
222  colssq( 2 ) = one
223  CALL slassq( min( n, j+kl )-l+1, ab( k, j ), 1,
224  $ colssq( 1 ), colssq( 2 ) )
225  CALL scombssq( ssq, colssq )
226  90 CONTINUE
227  VALUE = ssq( 1 )*sqrt( ssq( 2 ) )
228  END IF
229 *
230  slangb = VALUE
231  RETURN
232 *
233 * End of SLANGB
234 *
Here is the call graph for this function:
Here is the caller graph for this function:
slangb
real function slangb(NORM, N, KL, KU, AB, LDAB, WORK)
SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slangb.f:126
slassq
subroutine slassq(N, X, INCX, SCALE, SUMSQ)
SLASSQ updates a sum of squares represented in scaled form.
Definition: slassq.f:105
sisnan
logical function sisnan(SIN)
SISNAN tests input for NaN.
Definition: sisnan.f:61
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
scombssq
subroutine scombssq(V1, V2)
SCOMBSSQ adds two scaled sum of squares quantities
Definition: scombssq.f:62