LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
chpt21.f
Go to the documentation of this file.
1 *> \brief \b CHPT21
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CHPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
12 * TAU, WORK, RWORK, RESULT )
13 *
14 * .. Scalar Arguments ..
15 * CHARACTER UPLO
16 * INTEGER ITYPE, KBAND, LDU, N
17 * ..
18 * .. Array Arguments ..
19 * REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
20 * COMPLEX AP( * ), TAU( * ), U( LDU, * ), VP( * ),
21 * $ WORK( * )
22 * ..
23 *
24 *
25 *> \par Purpose:
26 * =============
27 *>
28 *> \verbatim
29 *>
30 *> CHPT21 generally checks a decomposition of the form
31 *>
32 *> A = U S U**H
33 *>
34 *> where **H means conjugate transpose, A is hermitian, U is
35 *> unitary, and S is diagonal (if KBAND=0) or (real) symmetric
36 *> tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as
37 *> a dense matrix, otherwise the U is expressed as a product of
38 *> Householder transformations, whose vectors are stored in the
39 *> array "V" and whose scaling constants are in "TAU"; we shall
40 *> use the letter "V" to refer to the product of Householder
41 *> transformations (which should be equal to U).
42 *>
43 *> Specifically, if ITYPE=1, then:
44 *>
45 *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
46 *> RESULT(2) = | I - U U**H | / ( n ulp )
47 *>
48 *> If ITYPE=2, then:
49 *>
50 *> RESULT(1) = | A - V S V**H | / ( |A| n ulp )
51 *>
52 *> If ITYPE=3, then:
53 *>
54 *> RESULT(1) = | I - U V**H | / ( n ulp )
55 *>
56 *> Packed storage means that, for example, if UPLO='U', then the columns
57 *> of the upper triangle of A are stored one after another, so that
58 *> A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if
59 *> UPLO='L', then the columns of the lower triangle of A are stored one
60 *> after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
61 *> in the array AP. This means that A(i,j) is stored in:
62 *>
63 *> AP( i + j*(j-1)/2 ) if UPLO='U'
64 *>
65 *> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L'
66 *>
67 *> The array VP bears the same relation to the matrix V that A does to
68 *> AP.
69 *>
70 *> For ITYPE > 1, the transformation U is expressed as a product
71 *> of Householder transformations:
72 *>
73 *> If UPLO='U', then V = H(n-1)...H(1), where
74 *>
75 *> H(j) = I - tau(j) v(j) v(j)**H
76 *>
77 *> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
78 *> (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
79 *> the j-th element is 1, and the last n-j elements are 0.
80 *>
81 *> If UPLO='L', then V = H(1)...H(n-1), where
82 *>
83 *> H(j) = I - tau(j) v(j) v(j)**H
84 *>
85 *> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
86 *> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
87 *> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
88 *> \endverbatim
89 *
90 * Arguments:
91 * ==========
92 *
93 *> \param[in] ITYPE
94 *> \verbatim
95 *> ITYPE is INTEGER
96 *> Specifies the type of tests to be performed.
97 *> 1: U expressed as a dense unitary matrix:
98 *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
99 *> RESULT(2) = | I - U U**H | / ( n ulp )
100 *>
101 *> 2: U expressed as a product V of Housholder transformations:
102 *> RESULT(1) = | A - V S V**H | / ( |A| n ulp )
103 *>
104 *> 3: U expressed both as a dense unitary matrix and
105 *> as a product of Housholder transformations:
106 *> RESULT(1) = | I - U V**H | / ( n ulp )
107 *> \endverbatim
108 *>
109 *> \param[in] UPLO
110 *> \verbatim
111 *> UPLO is CHARACTER
112 *> If UPLO='U', the upper triangle of A and V will be used and
113 *> the (strictly) lower triangle will not be referenced.
114 *> If UPLO='L', the lower triangle of A and V will be used and
115 *> the (strictly) upper triangle will not be referenced.
116 *> \endverbatim
117 *>
118 *> \param[in] N
119 *> \verbatim
120 *> N is INTEGER
121 *> The size of the matrix. If it is zero, CHPT21 does nothing.
122 *> It must be at least zero.
123 *> \endverbatim
124 *>
125 *> \param[in] KBAND
126 *> \verbatim
127 *> KBAND is INTEGER
128 *> The bandwidth of the matrix. It may only be zero or one.
129 *> If zero, then S is diagonal, and E is not referenced. If
130 *> one, then S is symmetric tri-diagonal.
131 *> \endverbatim
132 *>
133 *> \param[in] AP
134 *> \verbatim
135 *> AP is COMPLEX array, dimension (N*(N+1)/2)
136 *> The original (unfactored) matrix. It is assumed to be
137 *> hermitian, and contains the columns of just the upper
138 *> triangle (UPLO='U') or only the lower triangle (UPLO='L'),
139 *> packed one after another.
140 *> \endverbatim
141 *>
142 *> \param[in] D
143 *> \verbatim
144 *> D is REAL array, dimension (N)
145 *> The diagonal of the (symmetric tri-) diagonal matrix.
146 *> \endverbatim
147 *>
148 *> \param[in] E
149 *> \verbatim
150 *> E is REAL array, dimension (N)
151 *> The off-diagonal of the (symmetric tri-) diagonal matrix.
152 *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
153 *> (3,2) element, etc.
154 *> Not referenced if KBAND=0.
155 *> \endverbatim
156 *>
157 *> \param[in] U
158 *> \verbatim
159 *> U is COMPLEX array, dimension (LDU, N)
160 *> If ITYPE=1 or 3, this contains the unitary matrix in
161 *> the decomposition, expressed as a dense matrix. If ITYPE=2,
162 *> then it is not referenced.
163 *> \endverbatim
164 *>
165 *> \param[in] LDU
166 *> \verbatim
167 *> LDU is INTEGER
168 *> The leading dimension of U. LDU must be at least N and
169 *> at least 1.
170 *> \endverbatim
171 *>
172 *> \param[in] VP
173 *> \verbatim
174 *> VP is REAL array, dimension (N*(N+1)/2)
175 *> If ITYPE=2 or 3, the columns of this array contain the
176 *> Householder vectors used to describe the unitary matrix
177 *> in the decomposition, as described in purpose.
178 *> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
179 *> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
180 *> is set to one, and later reset to its original value, during
181 *> the course of the calculation.
182 *> If ITYPE=1, then it is neither referenced nor modified.
183 *> \endverbatim
184 *>
185 *> \param[in] TAU
186 *> \verbatim
187 *> TAU is COMPLEX array, dimension (N)
188 *> If ITYPE >= 2, then TAU(j) is the scalar factor of
189 *> v(j) v(j)**H in the Householder transformation H(j) of
190 *> the product U = H(1)...H(n-2)
191 *> If ITYPE < 2, then TAU is not referenced.
192 *> \endverbatim
193 *>
194 *> \param[out] WORK
195 *> \verbatim
196 *> WORK is COMPLEX array, dimension (N**2)
197 *> Workspace.
198 *> \endverbatim
199 *>
200 *> \param[out] RWORK
201 *> \verbatim
202 *> RWORK is REAL array, dimension (N)
203 *> Workspace.
204 *> \endverbatim
205 *>
206 *> \param[out] RESULT
207 *> \verbatim
208 *> RESULT is REAL array, dimension (2)
209 *> The values computed by the two tests described above. The
210 *> values are currently limited to 1/ulp, to avoid overflow.
211 *> RESULT(1) is always modified. RESULT(2) is modified only
212 *> if ITYPE=1.
213 *> \endverbatim
214 *
215 * Authors:
216 * ========
217 *
218 *> \author Univ. of Tennessee
219 *> \author Univ. of California Berkeley
220 *> \author Univ. of Colorado Denver
221 *> \author NAG Ltd.
222 *
223 *> \date December 2016
224 *
225 *> \ingroup complex_eig
226 *
227 * =====================================================================
228  SUBROUTINE chpt21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
229  $ TAU, WORK, RWORK, RESULT )
230 *
231 * -- LAPACK test routine (version 3.7.0) --
232 * -- LAPACK is a software package provided by Univ. of Tennessee, --
233 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
234 * December 2016
235 *
236 * .. Scalar Arguments ..
237  CHARACTER UPLO
238  INTEGER ITYPE, KBAND, LDU, N
239 * ..
240 * .. Array Arguments ..
241  REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
242  COMPLEX AP( * ), TAU( * ), U( LDU, * ), VP( * ),
243  $ work( * )
244 * ..
245 *
246 * =====================================================================
247 *
248 * .. Parameters ..
249  REAL ZERO, ONE, TEN
250  parameter( zero = 0.0e+0, one = 1.0e+0, ten = 10.0e+0 )
251  REAL HALF
252  parameter( half = 1.0e+0 / 2.0e+0 )
253  COMPLEX CZERO, CONE
254  parameter( czero = ( 0.0e+0, 0.0e+0 ),
255  $ cone = ( 1.0e+0, 0.0e+0 ) )
256 * ..
257 * .. Local Scalars ..
258  LOGICAL LOWER
259  CHARACTER CUPLO
260  INTEGER IINFO, J, JP, JP1, JR, LAP
261  REAL ANORM, ULP, UNFL, WNORM
262  COMPLEX TEMP, VSAVE
263 * ..
264 * .. External Functions ..
265  LOGICAL LSAME
266  REAL CLANGE, CLANHP, SLAMCH
267  COMPLEX CDOTC
268  EXTERNAL lsame, clange, clanhp, slamch, cdotc
269 * ..
270 * .. External Subroutines ..
271  EXTERNAL caxpy, ccopy, cgemm, chpmv, chpr, chpr2,
272  $ clacpy, claset, cupmtr
273 * ..
274 * .. Intrinsic Functions ..
275  INTRINSIC cmplx, max, min, real
276 * ..
277 * .. Executable Statements ..
278 *
279 * Constants
280 *
281  result( 1 ) = zero
282  IF( itype.EQ.1 )
283  $ result( 2 ) = zero
284  IF( n.LE.0 )
285  $ RETURN
286 *
287  lap = ( n*( n+1 ) ) / 2
288 *
289  IF( lsame( uplo, 'U' ) ) THEN
290  lower = .false.
291  cuplo = 'U'
292  ELSE
293  lower = .true.
294  cuplo = 'L'
295  END IF
296 *
297  unfl = slamch( 'Safe minimum' )
298  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
299 *
300 * Some Error Checks
301 *
302  IF( itype.LT.1 .OR. itype.GT.3 ) THEN
303  result( 1 ) = ten / ulp
304  RETURN
305  END IF
306 *
307 * Do Test 1
308 *
309 * Norm of A:
310 *
311  IF( itype.EQ.3 ) THEN
312  anorm = one
313  ELSE
314  anorm = max( clanhp( '1', cuplo, n, ap, rwork ), unfl )
315  END IF
316 *
317 * Compute error matrix:
318 *
319  IF( itype.EQ.1 ) THEN
320 *
321 * ITYPE=1: error = A - U S U**H
322 *
323  CALL claset( 'Full', n, n, czero, czero, work, n )
324  CALL ccopy( lap, ap, 1, work, 1 )
325 *
326  DO 10 j = 1, n
327  CALL chpr( cuplo, n, -d( j ), u( 1, j ), 1, work )
328  10 CONTINUE
329 *
330  IF( n.GT.1 .AND. kband.EQ.1 ) THEN
331  DO 20 j = 1, n - 1
332  CALL chpr2( cuplo, n, -cmplx( e( j ) ), u( 1, j ), 1,
333  $ u( 1, j-1 ), 1, work )
334  20 CONTINUE
335  END IF
336  wnorm = clanhp( '1', cuplo, n, work, rwork )
337 *
338  ELSE IF( itype.EQ.2 ) THEN
339 *
340 * ITYPE=2: error = V S V**H - A
341 *
342  CALL claset( 'Full', n, n, czero, czero, work, n )
343 *
344  IF( lower ) THEN
345  work( lap ) = d( n )
346  DO 40 j = n - 1, 1, -1
347  jp = ( ( 2*n-j )*( j-1 ) ) / 2
348  jp1 = jp + n - j
349  IF( kband.EQ.1 ) THEN
350  work( jp+j+1 ) = ( cone-tau( j ) )*e( j )
351  DO 30 jr = j + 2, n
352  work( jp+jr ) = -tau( j )*e( j )*vp( jp+jr )
353  30 CONTINUE
354  END IF
355 *
356  IF( tau( j ).NE.czero ) THEN
357  vsave = vp( jp+j+1 )
358  vp( jp+j+1 ) = cone
359  CALL chpmv( 'L', n-j, cone, work( jp1+j+1 ),
360  $ vp( jp+j+1 ), 1, czero, work( lap+1 ), 1 )
361  temp = -half*tau( j )*cdotc( n-j, work( lap+1 ), 1,
362  $ vp( jp+j+1 ), 1 )
363  CALL caxpy( n-j, temp, vp( jp+j+1 ), 1, work( lap+1 ),
364  $ 1 )
365  CALL chpr2( 'L', n-j, -tau( j ), vp( jp+j+1 ), 1,
366  $ work( lap+1 ), 1, work( jp1+j+1 ) )
367 *
368  vp( jp+j+1 ) = vsave
369  END IF
370  work( jp+j ) = d( j )
371  40 CONTINUE
372  ELSE
373  work( 1 ) = d( 1 )
374  DO 60 j = 1, n - 1
375  jp = ( j*( j-1 ) ) / 2
376  jp1 = jp + j
377  IF( kband.EQ.1 ) THEN
378  work( jp1+j ) = ( cone-tau( j ) )*e( j )
379  DO 50 jr = 1, j - 1
380  work( jp1+jr ) = -tau( j )*e( j )*vp( jp1+jr )
381  50 CONTINUE
382  END IF
383 *
384  IF( tau( j ).NE.czero ) THEN
385  vsave = vp( jp1+j )
386  vp( jp1+j ) = cone
387  CALL chpmv( 'U', j, cone, work, vp( jp1+1 ), 1, czero,
388  $ work( lap+1 ), 1 )
389  temp = -half*tau( j )*cdotc( j, work( lap+1 ), 1,
390  $ vp( jp1+1 ), 1 )
391  CALL caxpy( j, temp, vp( jp1+1 ), 1, work( lap+1 ),
392  $ 1 )
393  CALL chpr2( 'U', j, -tau( j ), vp( jp1+1 ), 1,
394  $ work( lap+1 ), 1, work )
395  vp( jp1+j ) = vsave
396  END IF
397  work( jp1+j+1 ) = d( j+1 )
398  60 CONTINUE
399  END IF
400 *
401  DO 70 j = 1, lap
402  work( j ) = work( j ) - ap( j )
403  70 CONTINUE
404  wnorm = clanhp( '1', cuplo, n, work, rwork )
405 *
406  ELSE IF( itype.EQ.3 ) THEN
407 *
408 * ITYPE=3: error = U V**H - I
409 *
410  IF( n.LT.2 )
411  $ RETURN
412  CALL clacpy( ' ', n, n, u, ldu, work, n )
413  CALL cupmtr( 'R', cuplo, 'C', n, n, vp, tau, work, n,
414  $ work( n**2+1 ), iinfo )
415  IF( iinfo.NE.0 ) THEN
416  result( 1 ) = ten / ulp
417  RETURN
418  END IF
419 *
420  DO 80 j = 1, n
421  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - cone
422  80 CONTINUE
423 *
424  wnorm = clange( '1', n, n, work, n, rwork )
425  END IF
426 *
427  IF( anorm.GT.wnorm ) THEN
428  result( 1 ) = ( wnorm / anorm ) / ( n*ulp )
429  ELSE
430  IF( anorm.LT.one ) THEN
431  result( 1 ) = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
432  ELSE
433  result( 1 ) = min( wnorm / anorm, real( n ) ) / ( n*ulp )
434  END IF
435  END IF
436 *
437 * Do Test 2
438 *
439 * Compute U U**H - I
440 *
441  IF( itype.EQ.1 ) THEN
442  CALL cgemm( 'N', 'C', n, n, n, cone, u, ldu, u, ldu, czero,
443  $ work, n )
444 *
445  DO 90 j = 1, n
446  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - cone
447  90 CONTINUE
448 *
449  result( 2 ) = min( clange( '1', n, n, work, n, rwork ),
450  $ real( n ) ) / ( n*ulp )
451  END IF
452 *
453  RETURN
454 *
455 * End of CHPT21
456 *
457  END
cgemm
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
chpt21
subroutine chpt21(ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP, TAU, WORK, RWORK, RESULT)
CHPT21
Definition: chpt21.f:230
chpmv
subroutine chpmv(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
CHPMV
Definition: chpmv.f:151
clacpy
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
chpr
subroutine chpr(UPLO, N, ALPHA, X, INCX, AP)
CHPR
Definition: chpr.f:132
cupmtr
subroutine cupmtr(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
CUPMTR
Definition: cupmtr.f:152
chpr2
subroutine chpr2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHPR2
Definition: chpr2.f:147
claset
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:108
ccopy
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:83
caxpy
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:90