LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
dlange.f
Go to the documentation of this file.
1 *> \brief \b DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download DLANGE + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER NORM
25 * INTEGER LDA, M, N
26 * ..
27 * .. Array Arguments ..
28 * DOUBLE PRECISION A( LDA, * ), WORK( * )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> DLANGE returns the value of the one norm, or the Frobenius norm, or
38 *> the infinity norm, or the element of largest absolute value of a
39 *> real matrix A.
40 *> \endverbatim
41 *>
42 *> \return DLANGE
43 *> \verbatim
44 *>
45 *> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
46 *> (
47 *> ( norm1(A), NORM = '1', 'O' or 'o'
48 *> (
49 *> ( normI(A), NORM = 'I' or 'i'
50 *> (
51 *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
52 *>
53 *> where norm1 denotes the one norm of a matrix (maximum column sum),
54 *> normI denotes the infinity norm of a matrix (maximum row sum) and
55 *> normF denotes the Frobenius norm of a matrix (square root of sum of
56 *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
57 *> \endverbatim
58 *
59 * Arguments:
60 * ==========
61 *
62 *> \param[in] NORM
63 *> \verbatim
64 *> NORM is CHARACTER*1
65 *> Specifies the value to be returned in DLANGE as described
66 *> above.
67 *> \endverbatim
68 *>
69 *> \param[in] M
70 *> \verbatim
71 *> M is INTEGER
72 *> The number of rows of the matrix A. M >= 0. When M = 0,
73 *> DLANGE is set to zero.
74 *> \endverbatim
75 *>
76 *> \param[in] N
77 *> \verbatim
78 *> N is INTEGER
79 *> The number of columns of the matrix A. N >= 0. When N = 0,
80 *> DLANGE is set to zero.
81 *> \endverbatim
82 *>
83 *> \param[in] A
84 *> \verbatim
85 *> A is DOUBLE PRECISION array, dimension (LDA,N)
86 *> The m by n matrix A.
87 *> \endverbatim
88 *>
89 *> \param[in] LDA
90 *> \verbatim
91 *> LDA is INTEGER
92 *> The leading dimension of the array A. LDA >= max(M,1).
93 *> \endverbatim
94 *>
95 *> \param[out] WORK
96 *> \verbatim
97 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
98 *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
99 *> referenced.
100 *> \endverbatim
101 *
102 * Authors:
103 * ========
104 *
105 *> \author Univ. of Tennessee
106 *> \author Univ. of California Berkeley
107 *> \author Univ. of Colorado Denver
108 *> \author NAG Ltd.
109 *
110 *> \date December 2016
111 *
112 *> \ingroup doubleGEauxiliary
113 *
114 * =====================================================================
115  DOUBLE PRECISION FUNCTION dlange( NORM, M, N, A, LDA, WORK )
116 *
117 * -- LAPACK auxiliary routine (version 3.7.0) --
118 * -- LAPACK is a software package provided by Univ. of Tennessee, --
119 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
120 * December 2016
121 *
122  IMPLICIT NONE
123 * .. Scalar Arguments ..
124  CHARACTER norm
125  INTEGER lda, m, n
126 * ..
127 * .. Array Arguments ..
128  DOUBLE PRECISION a( lda, * ), work( * )
129 * ..
130 *
131 * =====================================================================
132 *
133 * .. Parameters ..
134  DOUBLE PRECISION one, zero
135  parameter( one = 1.0d+0, zero = 0.0d+0 )
136 * ..
137 * .. Local Scalars ..
138  INTEGER i, j
139  DOUBLE PRECISION sum, VALUE, temp
140 * ..
141 * .. Local Arrays ..
142  DOUBLE PRECISION ssq( 2 ), colssq( 2 )
143 * ..
144 * .. External Subroutines ..
145  EXTERNAL dlassq, dcombssq
146 * ..
147 * .. External Functions ..
148  LOGICAL lsame, disnan
149  EXTERNAL lsame, disnan
150 * ..
151 * .. Intrinsic Functions ..
152  INTRINSIC abs, min, sqrt
153 * ..
154 * .. Executable Statements ..
155 *
156  IF( min( m, n ).EQ.0 ) THEN
157  VALUE = zero
158  ELSE IF( lsame( norm, 'M' ) ) THEN
159 *
160 * Find max(abs(A(i,j))).
161 *
162  VALUE = zero
163  DO 20 j = 1, n
164  DO 10 i = 1, m
165  temp = abs( a( i, j ) )
166  IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
167  10 CONTINUE
168  20 CONTINUE
169  ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
170 *
171 * Find norm1(A).
172 *
173  VALUE = zero
174  DO 40 j = 1, n
175  sum = zero
176  DO 30 i = 1, m
177  sum = sum + abs( a( i, j ) )
178  30 CONTINUE
179  IF( VALUE.LT.sum .OR. disnan( sum ) ) VALUE = sum
180  40 CONTINUE
181  ELSE IF( lsame( norm, 'I' ) ) THEN
182 *
183 * Find normI(A).
184 *
185  DO 50 i = 1, m
186  work( i ) = zero
187  50 CONTINUE
188  DO 70 j = 1, n
189  DO 60 i = 1, m
190  work( i ) = work( i ) + abs( a( i, j ) )
191  60 CONTINUE
192  70 CONTINUE
193  VALUE = zero
194  DO 80 i = 1, m
195  temp = work( i )
196  IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
197  80 CONTINUE
198  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
199 *
200 * Find normF(A).
201 * SSQ(1) is scale
202 * SSQ(2) is sum-of-squares
203 * For better accuracy, sum each column separately.
204 *
205  ssq( 1 ) = zero
206  ssq( 2 ) = one
207  DO 90 j = 1, n
208  colssq( 1 ) = zero
209  colssq( 2 ) = one
210  CALL dlassq( m, a( 1, j ), 1, colssq( 1 ), colssq( 2 ) )
211  CALL dcombssq( ssq, colssq )
212  90 CONTINUE
213  VALUE = ssq( 1 )*sqrt( ssq( 2 ) )
214  END IF
215 *
216  dlange = VALUE
217  RETURN
218 *
219 * End of DLANGE
220 *
221  END
disnan
logical function disnan(DIN)
DISNAN tests input for NaN.
Definition: disnan.f:61
dlange
double precision function dlange(NORM, M, N, A, LDA, WORK)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlange.f:116
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
dlassq
subroutine dlassq(N, X, INCX, SCALE, SUMSQ)
DLASSQ updates a sum of squares represented in scaled form.
Definition: dlassq.f:105
dcombssq
subroutine dcombssq(V1, V2)
DCOMBSSQ adds two scaled sum of squares quantities.
Definition: dcombssq.f:62