LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
cla_porfsx_extended.f
Go to the documentation of this file.
1 *> \brief \b CLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CLA_PORFSX_EXTENDED + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_porfsx_extended.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_porfsx_extended.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_porfsx_extended.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
22 * AF, LDAF, COLEQU, C, B, LDB, Y,
23 * LDY, BERR_OUT, N_NORMS,
24 * ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
25 * AYB, DY, Y_TAIL, RCOND, ITHRESH,
26 * RTHRESH, DZ_UB, IGNORE_CWISE,
27 * INFO )
28 *
29 * .. Scalar Arguments ..
30 * INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
31 * $ N_NORMS, ITHRESH
32 * CHARACTER UPLO
33 * LOGICAL COLEQU, IGNORE_CWISE
34 * REAL RTHRESH, DZ_UB
35 * ..
36 * .. Array Arguments ..
37 * COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
38 * $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
39 * REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ),
40 * $ ERR_BNDS_NORM( NRHS, * ),
41 * $ ERR_BNDS_COMP( NRHS, * )
42 * ..
43 *
44 *
45 *> \par Purpose:
46 * =============
47 *>
48 *> \verbatim
49 *>
50 *> CLA_PORFSX_EXTENDED improves the computed solution to a system of
51 *> linear equations by performing extra-precise iterative refinement
52 *> and provides error bounds and backward error estimates for the solution.
53 *> This subroutine is called by CPORFSX to perform iterative refinement.
54 *> In addition to normwise error bound, the code provides maximum
55 *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
56 *> and ERR_BNDS_COMP for details of the error bounds. Note that this
57 *> subroutine is only resonsible for setting the second fields of
58 *> ERR_BNDS_NORM and ERR_BNDS_COMP.
59 *> \endverbatim
60 *
61 * Arguments:
62 * ==========
63 *
64 *> \param[in] PREC_TYPE
65 *> \verbatim
66 *> PREC_TYPE is INTEGER
67 *> Specifies the intermediate precision to be used in refinement.
68 *> The value is defined by ILAPREC(P) where P is a CHARACTER and P
69 *> = 'S': Single
70 *> = 'D': Double
71 *> = 'I': Indigenous
72 *> = 'X' or 'E': Extra
73 *> \endverbatim
74 *>
75 *> \param[in] UPLO
76 *> \verbatim
77 *> UPLO is CHARACTER*1
78 *> = 'U': Upper triangle of A is stored;
79 *> = 'L': Lower triangle of A is stored.
80 *> \endverbatim
81 *>
82 *> \param[in] N
83 *> \verbatim
84 *> N is INTEGER
85 *> The number of linear equations, i.e., the order of the
86 *> matrix A. N >= 0.
87 *> \endverbatim
88 *>
89 *> \param[in] NRHS
90 *> \verbatim
91 *> NRHS is INTEGER
92 *> The number of right-hand-sides, i.e., the number of columns of the
93 *> matrix B.
94 *> \endverbatim
95 *>
96 *> \param[in] A
97 *> \verbatim
98 *> A is COMPLEX array, dimension (LDA,N)
99 *> On entry, the N-by-N matrix A.
100 *> \endverbatim
101 *>
102 *> \param[in] LDA
103 *> \verbatim
104 *> LDA is INTEGER
105 *> The leading dimension of the array A. LDA >= max(1,N).
106 *> \endverbatim
107 *>
108 *> \param[in] AF
109 *> \verbatim
110 *> AF is COMPLEX array, dimension (LDAF,N)
111 *> The triangular factor U or L from the Cholesky factorization
112 *> A = U**T*U or A = L*L**T, as computed by CPOTRF.
113 *> \endverbatim
114 *>
115 *> \param[in] LDAF
116 *> \verbatim
117 *> LDAF is INTEGER
118 *> The leading dimension of the array AF. LDAF >= max(1,N).
119 *> \endverbatim
120 *>
121 *> \param[in] COLEQU
122 *> \verbatim
123 *> COLEQU is LOGICAL
124 *> If .TRUE. then column equilibration was done to A before calling
125 *> this routine. This is needed to compute the solution and error
126 *> bounds correctly.
127 *> \endverbatim
128 *>
129 *> \param[in] C
130 *> \verbatim
131 *> C is REAL array, dimension (N)
132 *> The column scale factors for A. If COLEQU = .FALSE., C
133 *> is not accessed. If C is input, each element of C should be a power
134 *> of the radix to ensure a reliable solution and error estimates.
135 *> Scaling by powers of the radix does not cause rounding errors unless
136 *> the result underflows or overflows. Rounding errors during scaling
137 *> lead to refining with a matrix that is not equivalent to the
138 *> input matrix, producing error estimates that may not be
139 *> reliable.
140 *> \endverbatim
141 *>
142 *> \param[in] B
143 *> \verbatim
144 *> B is COMPLEX array, dimension (LDB,NRHS)
145 *> The right-hand-side matrix B.
146 *> \endverbatim
147 *>
148 *> \param[in] LDB
149 *> \verbatim
150 *> LDB is INTEGER
151 *> The leading dimension of the array B. LDB >= max(1,N).
152 *> \endverbatim
153 *>
154 *> \param[in,out] Y
155 *> \verbatim
156 *> Y is COMPLEX array, dimension (LDY,NRHS)
157 *> On entry, the solution matrix X, as computed by CPOTRS.
158 *> On exit, the improved solution matrix Y.
159 *> \endverbatim
160 *>
161 *> \param[in] LDY
162 *> \verbatim
163 *> LDY is INTEGER
164 *> The leading dimension of the array Y. LDY >= max(1,N).
165 *> \endverbatim
166 *>
167 *> \param[out] BERR_OUT
168 *> \verbatim
169 *> BERR_OUT is REAL array, dimension (NRHS)
170 *> On exit, BERR_OUT(j) contains the componentwise relative backward
171 *> error for right-hand-side j from the formula
172 *> max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
173 *> where abs(Z) is the componentwise absolute value of the matrix
174 *> or vector Z. This is computed by CLA_LIN_BERR.
175 *> \endverbatim
176 *>
177 *> \param[in] N_NORMS
178 *> \verbatim
179 *> N_NORMS is INTEGER
180 *> Determines which error bounds to return (see ERR_BNDS_NORM
181 *> and ERR_BNDS_COMP).
182 *> If N_NORMS >= 1 return normwise error bounds.
183 *> If N_NORMS >= 2 return componentwise error bounds.
184 *> \endverbatim
185 *>
186 *> \param[in,out] ERR_BNDS_NORM
187 *> \verbatim
188 *> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
189 *> For each right-hand side, this array contains information about
190 *> various error bounds and condition numbers corresponding to the
191 *> normwise relative error, which is defined as follows:
192 *>
193 *> Normwise relative error in the ith solution vector:
194 *> max_j (abs(XTRUE(j,i) - X(j,i)))
195 *> ------------------------------
196 *> max_j abs(X(j,i))
197 *>
198 *> The array is indexed by the type of error information as described
199 *> below. There currently are up to three pieces of information
200 *> returned.
201 *>
202 *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
203 *> right-hand side.
204 *>
205 *> The second index in ERR_BNDS_NORM(:,err) contains the following
206 *> three fields:
207 *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
208 *> reciprocal condition number is less than the threshold
209 *> sqrt(n) * slamch('Epsilon').
210 *>
211 *> err = 2 "Guaranteed" error bound: The estimated forward error,
212 *> almost certainly within a factor of 10 of the true error
213 *> so long as the next entry is greater than the threshold
214 *> sqrt(n) * slamch('Epsilon'). This error bound should only
215 *> be trusted if the previous boolean is true.
216 *>
217 *> err = 3 Reciprocal condition number: Estimated normwise
218 *> reciprocal condition number. Compared with the threshold
219 *> sqrt(n) * slamch('Epsilon') to determine if the error
220 *> estimate is "guaranteed". These reciprocal condition
221 *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
222 *> appropriately scaled matrix Z.
223 *> Let Z = S*A, where S scales each row by a power of the
224 *> radix so all absolute row sums of Z are approximately 1.
225 *>
226 *> This subroutine is only responsible for setting the second field
227 *> above.
228 *> See Lapack Working Note 165 for further details and extra
229 *> cautions.
230 *> \endverbatim
231 *>
232 *> \param[in,out] ERR_BNDS_COMP
233 *> \verbatim
234 *> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
235 *> For each right-hand side, this array contains information about
236 *> various error bounds and condition numbers corresponding to the
237 *> componentwise relative error, which is defined as follows:
238 *>
239 *> Componentwise relative error in the ith solution vector:
240 *> abs(XTRUE(j,i) - X(j,i))
241 *> max_j ----------------------
242 *> abs(X(j,i))
243 *>
244 *> The array is indexed by the right-hand side i (on which the
245 *> componentwise relative error depends), and the type of error
246 *> information as described below. There currently are up to three
247 *> pieces of information returned for each right-hand side. If
248 *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
249 *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
250 *> the first (:,N_ERR_BNDS) entries are returned.
251 *>
252 *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
253 *> right-hand side.
254 *>
255 *> The second index in ERR_BNDS_COMP(:,err) contains the following
256 *> three fields:
257 *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
258 *> reciprocal condition number is less than the threshold
259 *> sqrt(n) * slamch('Epsilon').
260 *>
261 *> err = 2 "Guaranteed" error bound: The estimated forward error,
262 *> almost certainly within a factor of 10 of the true error
263 *> so long as the next entry is greater than the threshold
264 *> sqrt(n) * slamch('Epsilon'). This error bound should only
265 *> be trusted if the previous boolean is true.
266 *>
267 *> err = 3 Reciprocal condition number: Estimated componentwise
268 *> reciprocal condition number. Compared with the threshold
269 *> sqrt(n) * slamch('Epsilon') to determine if the error
270 *> estimate is "guaranteed". These reciprocal condition
271 *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
272 *> appropriately scaled matrix Z.
273 *> Let Z = S*(A*diag(x)), where x is the solution for the
274 *> current right-hand side and S scales each row of
275 *> A*diag(x) by a power of the radix so all absolute row
276 *> sums of Z are approximately 1.
277 *>
278 *> This subroutine is only responsible for setting the second field
279 *> above.
280 *> See Lapack Working Note 165 for further details and extra
281 *> cautions.
282 *> \endverbatim
283 *>
284 *> \param[in] RES
285 *> \verbatim
286 *> RES is COMPLEX array, dimension (N)
287 *> Workspace to hold the intermediate residual.
288 *> \endverbatim
289 *>
290 *> \param[in] AYB
291 *> \verbatim
292 *> AYB is REAL array, dimension (N)
293 *> Workspace.
294 *> \endverbatim
295 *>
296 *> \param[in] DY
297 *> \verbatim
298 *> DY is COMPLEX array, dimension (N)
299 *> Workspace to hold the intermediate solution.
300 *> \endverbatim
301 *>
302 *> \param[in] Y_TAIL
303 *> \verbatim
304 *> Y_TAIL is COMPLEX array, dimension (N)
305 *> Workspace to hold the trailing bits of the intermediate solution.
306 *> \endverbatim
307 *>
308 *> \param[in] RCOND
309 *> \verbatim
310 *> RCOND is REAL
311 *> Reciprocal scaled condition number. This is an estimate of the
312 *> reciprocal Skeel condition number of the matrix A after
313 *> equilibration (if done). If this is less than the machine
314 *> precision (in particular, if it is zero), the matrix is singular
315 *> to working precision. Note that the error may still be small even
316 *> if this number is very small and the matrix appears ill-
317 *> conditioned.
318 *> \endverbatim
319 *>
320 *> \param[in] ITHRESH
321 *> \verbatim
322 *> ITHRESH is INTEGER
323 *> The maximum number of residual computations allowed for
324 *> refinement. The default is 10. For 'aggressive' set to 100 to
325 *> permit convergence using approximate factorizations or
326 *> factorizations other than LU. If the factorization uses a
327 *> technique other than Gaussian elimination, the guarantees in
328 *> ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
329 *> \endverbatim
330 *>
331 *> \param[in] RTHRESH
332 *> \verbatim
333 *> RTHRESH is REAL
334 *> Determines when to stop refinement if the error estimate stops
335 *> decreasing. Refinement will stop when the next solution no longer
336 *> satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
337 *> the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
338 *> default value is 0.5. For 'aggressive' set to 0.9 to permit
339 *> convergence on extremely ill-conditioned matrices. See LAWN 165
340 *> for more details.
341 *> \endverbatim
342 *>
343 *> \param[in] DZ_UB
344 *> \verbatim
345 *> DZ_UB is REAL
346 *> Determines when to start considering componentwise convergence.
347 *> Componentwise convergence is only considered after each component
348 *> of the solution Y is stable, which we definte as the relative
349 *> change in each component being less than DZ_UB. The default value
350 *> is 0.25, requiring the first bit to be stable. See LAWN 165 for
351 *> more details.
352 *> \endverbatim
353 *>
354 *> \param[in] IGNORE_CWISE
355 *> \verbatim
356 *> IGNORE_CWISE is LOGICAL
357 *> If .TRUE. then ignore componentwise convergence. Default value
358 *> is .FALSE..
359 *> \endverbatim
360 *>
361 *> \param[out] INFO
362 *> \verbatim
363 *> INFO is INTEGER
364 *> = 0: Successful exit.
365 *> < 0: if INFO = -i, the ith argument to CPOTRS had an illegal
366 *> value
367 *> \endverbatim
368 *
369 * Authors:
370 * ========
371 *
372 *> \author Univ. of Tennessee
373 *> \author Univ. of California Berkeley
374 *> \author Univ. of Colorado Denver
375 *> \author NAG Ltd.
376 *
377 *> \date June 2017
378 *
379 *> \ingroup complexPOcomputational
380 *
381 * =====================================================================
382  SUBROUTINE cla_porfsx_extended( PREC_TYPE, UPLO, N, NRHS, A, LDA,
383  $ AF, LDAF, COLEQU, C, B, LDB, Y,
384  $ LDY, BERR_OUT, N_NORMS,
385  $ ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
386  $ AYB, DY, Y_TAIL, RCOND, ITHRESH,
387  $ RTHRESH, DZ_UB, IGNORE_CWISE,
388  $ INFO )
389 *
390 * -- LAPACK computational routine (version 3.7.1) --
391 * -- LAPACK is a software package provided by Univ. of Tennessee, --
392 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
393 * June 2017
394 *
395 * .. Scalar Arguments ..
396  INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
397  $ N_NORMS, ITHRESH
398  CHARACTER UPLO
399  LOGICAL COLEQU, IGNORE_CWISE
400  REAL RTHRESH, DZ_UB
401 * ..
402 * .. Array Arguments ..
403  COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
404  $ y( ldy, * ), res( * ), dy( * ), y_tail( * )
405  REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ),
406  $ err_bnds_norm( nrhs, * ),
407  $ err_bnds_comp( nrhs, * )
408 * ..
409 *
410 * =====================================================================
411 *
412 * .. Local Scalars ..
413  INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE,
414  $ Y_PREC_STATE
415  REAL YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
416  $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
417  $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
418  $ EPS, HUGEVAL, INCR_THRESH
419  LOGICAL INCR_PREC
420  COMPLEX ZDUM
421 * ..
422 * .. Parameters ..
423  INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
424  $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
425  $ extra_y
426  parameter( unstable_state = 0, working_state = 1,
427  $ conv_state = 2, noprog_state = 3 )
428  parameter( base_residual = 0, extra_residual = 1,
429  $ extra_y = 2 )
430  INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
431  INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
432  INTEGER CMP_ERR_I, PIV_GROWTH_I
433  PARAMETER ( FINAL_NRM_ERR_I = 1, final_cmp_err_i = 2,
434  $ berr_i = 3 )
435  parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
436  parameter( cmp_rcond_i = 7, cmp_err_i = 8,
437  $ piv_growth_i = 9 )
438  INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
439  $ la_linrx_cwise_i
440  parameter( la_linrx_itref_i = 1,
441  $ la_linrx_ithresh_i = 2 )
442  parameter( la_linrx_cwise_i = 3 )
443  INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
444  $ la_linrx_rcond_i
445  parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
446  parameter( la_linrx_rcond_i = 3 )
447 * ..
448 * .. External Functions ..
449  LOGICAL LSAME
450  EXTERNAL ILAUPLO
451  INTEGER ILAUPLO
452 * ..
453 * .. External Subroutines ..
454  EXTERNAL caxpy, ccopy, cpotrs, chemv, blas_chemv_x,
455  $ blas_chemv2_x, cla_heamv, cla_wwaddw,
457  REAL SLAMCH
458 * ..
459 * .. Intrinsic Functions ..
460  INTRINSIC abs, real, aimag, max, min
461 * ..
462 * .. Statement Functions ..
463  REAL CABS1
464 * ..
465 * .. Statement Function Definitions ..
466  cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
467 * ..
468 * .. Executable Statements ..
469 *
470  IF (info.NE.0) RETURN
471  eps = slamch( 'Epsilon' )
472  hugeval = slamch( 'Overflow' )
473 * Force HUGEVAL to Inf
474  hugeval = hugeval * hugeval
475 * Using HUGEVAL may lead to spurious underflows.
476  incr_thresh = real(n) * eps
477 
478  IF (lsame(uplo, 'L')) THEN
479  uplo2 = ilauplo( 'L' )
480  ELSE
481  uplo2 = ilauplo( 'U' )
482  ENDIF
483 
484  DO j = 1, nrhs
485  y_prec_state = extra_residual
486  IF (y_prec_state .EQ. extra_y) THEN
487  DO i = 1, n
488  y_tail( i ) = 0.0
489  END DO
490  END IF
491 
492  dxrat = 0.0
493  dxratmax = 0.0
494  dzrat = 0.0
495  dzratmax = 0.0
496  final_dx_x = hugeval
497  final_dz_z = hugeval
498  prevnormdx = hugeval
499  prev_dz_z = hugeval
500  dz_z = hugeval
501  dx_x = hugeval
502 
503  x_state = working_state
504  z_state = unstable_state
505  incr_prec = .false.
506 
507  DO cnt = 1, ithresh
508 *
509 * Compute residual RES = B_s - op(A_s) * Y,
510 * op(A) = A, A**T, or A**H depending on TRANS (and type).
511 *
512  CALL ccopy( n, b( 1, j ), 1, res, 1 )
513  IF (y_prec_state .EQ. base_residual) THEN
514  CALL chemv(uplo, n, cmplx(-1.0), a, lda, y(1,j), 1,
515  $ cmplx(1.0), res, 1)
516  ELSE IF (y_prec_state .EQ. extra_residual) THEN
517  CALL blas_chemv_x(uplo2, n, cmplx(-1.0), a, lda,
518  $ y( 1, j ), 1, cmplx(1.0), res, 1, prec_type)
519  ELSE
520  CALL blas_chemv2_x(uplo2, n, cmplx(-1.0), a, lda,
521  $ y(1, j), y_tail, 1, cmplx(1.0), res, 1, prec_type)
522  END IF
523 
524 ! XXX: RES is no longer needed.
525  CALL ccopy( n, res, 1, dy, 1 )
526  CALL cpotrs( uplo, n, 1, af, ldaf, dy, n, info)
527 *
528 * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
529 *
530  normx = 0.0
531  normy = 0.0
532  normdx = 0.0
533  dz_z = 0.0
534  ymin = hugeval
535 
536  DO i = 1, n
537  yk = cabs1(y(i, j))
538  dyk = cabs1(dy(i))
539 
540  IF (yk .NE. 0.0) THEN
541  dz_z = max( dz_z, dyk / yk )
542  ELSE IF (dyk .NE. 0.0) THEN
543  dz_z = hugeval
544  END IF
545 
546  ymin = min( ymin, yk )
547 
548  normy = max( normy, yk )
549 
550  IF ( colequ ) THEN
551  normx = max(normx, yk * c(i))
552  normdx = max(normdx, dyk * c(i))
553  ELSE
554  normx = normy
555  normdx = max(normdx, dyk)
556  END IF
557  END DO
558 
559  IF (normx .NE. 0.0) THEN
560  dx_x = normdx / normx
561  ELSE IF (normdx .EQ. 0.0) THEN
562  dx_x = 0.0
563  ELSE
564  dx_x = hugeval
565  END IF
566 
567  dxrat = normdx / prevnormdx
568  dzrat = dz_z / prev_dz_z
569 *
570 * Check termination criteria.
571 *
572  IF (ymin*rcond .LT. incr_thresh*normy
573  $ .AND. y_prec_state .LT. extra_y)
574  $ incr_prec = .true.
575 
576  IF (x_state .EQ. noprog_state .AND. dxrat .LE. rthresh)
577  $ x_state = working_state
578  IF (x_state .EQ. working_state) THEN
579  IF (dx_x .LE. eps) THEN
580  x_state = conv_state
581  ELSE IF (dxrat .GT. rthresh) THEN
582  IF (y_prec_state .NE. extra_y) THEN
583  incr_prec = .true.
584  ELSE
585  x_state = noprog_state
586  END IF
587  ELSE
588  IF (dxrat .GT. dxratmax) dxratmax = dxrat
589  END IF
590  IF (x_state .GT. working_state) final_dx_x = dx_x
591  END IF
592 
593  IF (z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub)
594  $ z_state = working_state
595  IF (z_state .EQ. noprog_state .AND. dzrat .LE. rthresh)
596  $ z_state = working_state
597  IF (z_state .EQ. working_state) THEN
598  IF (dz_z .LE. eps) THEN
599  z_state = conv_state
600  ELSE IF (dz_z .GT. dz_ub) THEN
601  z_state = unstable_state
602  dzratmax = 0.0
603  final_dz_z = hugeval
604  ELSE IF (dzrat .GT. rthresh) THEN
605  IF (y_prec_state .NE. extra_y) THEN
606  incr_prec = .true.
607  ELSE
608  z_state = noprog_state
609  END IF
610  ELSE
611  IF (dzrat .GT. dzratmax) dzratmax = dzrat
612  END IF
613  IF (z_state .GT. working_state) final_dz_z = dz_z
614  END IF
615 
616  IF ( x_state.NE.working_state.AND.
617  $ (ignore_cwise.OR.z_state.NE.working_state) )
618  $ GOTO 666
619 
620  IF (incr_prec) THEN
621  incr_prec = .false.
622  y_prec_state = y_prec_state + 1
623  DO i = 1, n
624  y_tail( i ) = 0.0
625  END DO
626  END IF
627 
628  prevnormdx = normdx
629  prev_dz_z = dz_z
630 *
631 * Update soluton.
632 *
633  IF (y_prec_state .LT. extra_y) THEN
634  CALL caxpy( n, cmplx(1.0), dy, 1, y(1,j), 1 )
635  ELSE
636  CALL cla_wwaddw(n, y(1,j), y_tail, dy)
637  END IF
638 
639  END DO
640 * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
641  666 CONTINUE
642 *
643 * Set final_* when cnt hits ithresh.
644 *
645  IF (x_state .EQ. working_state) final_dx_x = dx_x
646  IF (z_state .EQ. working_state) final_dz_z = dz_z
647 *
648 * Compute error bounds.
649 *
650  IF (n_norms .GE. 1) THEN
651  err_bnds_norm( j, la_linrx_err_i ) =
652  $ final_dx_x / (1 - dxratmax)
653  END IF
654  IF (n_norms .GE. 2) THEN
655  err_bnds_comp( j, la_linrx_err_i ) =
656  $ final_dz_z / (1 - dzratmax)
657  END IF
658 *
659 * Compute componentwise relative backward error from formula
660 * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
661 * where abs(Z) is the componentwise absolute value of the matrix
662 * or vector Z.
663 *
664 * Compute residual RES = B_s - op(A_s) * Y,
665 * op(A) = A, A**T, or A**H depending on TRANS (and type).
666 *
667  CALL ccopy( n, b( 1, j ), 1, res, 1 )
668  CALL chemv(uplo, n, cmplx(-1.0), a, lda, y(1,j), 1, cmplx(1.0),
669  $ res, 1)
670 
671  DO i = 1, n
672  ayb( i ) = cabs1( b( i, j ) )
673  END DO
674 *
675 * Compute abs(op(A_s))*abs(Y) + abs(B_s).
676 *
677  CALL cla_heamv (uplo2, n, 1.0,
678  $ a, lda, y(1, j), 1, 1.0, ayb, 1)
679 
680  CALL cla_lin_berr (n, n, 1, res, ayb, berr_out(j))
681 *
682 * End of loop for each RHS.
683 *
684  END DO
685 *
686  RETURN
687  END
cla_lin_berr
subroutine cla_lin_berr(N, NZ, NRHS, RES, AYB, BERR)
CLA_LIN_BERR computes a component-wise relative backward error.
Definition: cla_lin_berr.f:103
cpotrs
subroutine cpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOTRS
Definition: cpotrs.f:112
chemv
subroutine chemv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CHEMV
Definition: chemv.f:156
cla_heamv
subroutine cla_heamv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bou...
Definition: cla_heamv.f:180
cla_porfsx_extended
subroutine cla_porfsx_extended(PREC_TYPE, UPLO, N, NRHS, A, LDA, AF, LDAF, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO)
CLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or H...
Definition: cla_porfsx_extended.f:389
slamch
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:70
ccopy
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:83
caxpy
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:90
cla_wwaddw
subroutine cla_wwaddw(N, X, Y, W)
CLA_WWADDW adds a vector into a doubled-single vector.
Definition: cla_wwaddw.f:83