LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
clanhb.f
Go to the documentation of this file.
1 *> \brief \b CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CLANHB + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhb.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhb.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhb.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * REAL FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
22 * WORK )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER NORM, UPLO
26 * INTEGER K, LDAB, N
27 * ..
28 * .. Array Arguments ..
29 * REAL WORK( * )
30 * COMPLEX AB( LDAB, * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> CLANHB returns the value of the one norm, or the Frobenius norm, or
40 *> the infinity norm, or the element of largest absolute value of an
41 *> n by n hermitian band matrix A, with k super-diagonals.
42 *> \endverbatim
43 *>
44 *> \return CLANHB
45 *> \verbatim
46 *>
47 *> CLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
48 *> (
49 *> ( norm1(A), NORM = '1', 'O' or 'o'
50 *> (
51 *> ( normI(A), NORM = 'I' or 'i'
52 *> (
53 *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
54 *>
55 *> where norm1 denotes the one norm of a matrix (maximum column sum),
56 *> normI denotes the infinity norm of a matrix (maximum row sum) and
57 *> normF denotes the Frobenius norm of a matrix (square root of sum of
58 *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
59 *> \endverbatim
60 *
61 * Arguments:
62 * ==========
63 *
64 *> \param[in] NORM
65 *> \verbatim
66 *> NORM is CHARACTER*1
67 *> Specifies the value to be returned in CLANHB as described
68 *> above.
69 *> \endverbatim
70 *>
71 *> \param[in] UPLO
72 *> \verbatim
73 *> UPLO is CHARACTER*1
74 *> Specifies whether the upper or lower triangular part of the
75 *> band matrix A is supplied.
76 *> = 'U': Upper triangular
77 *> = 'L': Lower triangular
78 *> \endverbatim
79 *>
80 *> \param[in] N
81 *> \verbatim
82 *> N is INTEGER
83 *> The order of the matrix A. N >= 0. When N = 0, CLANHB is
84 *> set to zero.
85 *> \endverbatim
86 *>
87 *> \param[in] K
88 *> \verbatim
89 *> K is INTEGER
90 *> The number of super-diagonals or sub-diagonals of the
91 *> band matrix A. K >= 0.
92 *> \endverbatim
93 *>
94 *> \param[in] AB
95 *> \verbatim
96 *> AB is COMPLEX array, dimension (LDAB,N)
97 *> The upper or lower triangle of the hermitian band matrix A,
98 *> stored in the first K+1 rows of AB. The j-th column of A is
99 *> stored in the j-th column of the array AB as follows:
100 *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
101 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
102 *> Note that the imaginary parts of the diagonal elements need
103 *> not be set and are assumed to be zero.
104 *> \endverbatim
105 *>
106 *> \param[in] LDAB
107 *> \verbatim
108 *> LDAB is INTEGER
109 *> The leading dimension of the array AB. LDAB >= K+1.
110 *> \endverbatim
111 *>
112 *> \param[out] WORK
113 *> \verbatim
114 *> WORK is REAL array, dimension (MAX(1,LWORK)),
115 *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
116 *> WORK is not referenced.
117 *> \endverbatim
118 *
119 * Authors:
120 * ========
121 *
122 *> \author Univ. of Tennessee
123 *> \author Univ. of California Berkeley
124 *> \author Univ. of Colorado Denver
125 *> \author NAG Ltd.
126 *
127 *> \date December 2016
128 *
129 *> \ingroup complexOTHERauxiliary
130 *
131 * =====================================================================
132  REAL FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
133  $ WORK )
134 *
135 * -- LAPACK auxiliary routine (version 3.7.0) --
136 * -- LAPACK is a software package provided by Univ. of Tennessee, --
137 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138 * December 2016
139 *
140  IMPLICIT NONE
141 * .. Scalar Arguments ..
142  CHARACTER norm, uplo
143  INTEGER k, ldab, n
144 * ..
145 * .. Array Arguments ..
146  REAL work( * )
147  COMPLEX ab( ldab, * )
148 * ..
149 *
150 * =====================================================================
151 *
152 * .. Parameters ..
153  REAL one, zero
154  parameter( one = 1.0e+0, zero = 0.0e+0 )
155 * ..
156 * .. Local Scalars ..
157  INTEGER i, j, l
158  REAL absa, sum, value
159 * ..
160 * .. Local Arrays ..
161  REAL ssq( 2 ), colssq( 2 )
162 * ..
163 * .. External Functions ..
164  LOGICAL lsame, sisnan
165  EXTERNAL lsame, sisnan
166 * ..
167 * .. External Subroutines ..
168  EXTERNAL classq, scombssq
169 * ..
170 * .. Intrinsic Functions ..
171  INTRINSIC abs, max, min, real, sqrt
172 * ..
173 * .. Executable Statements ..
174 *
175  IF( n.EQ.0 ) THEN
176  VALUE = zero
177  ELSE IF( lsame( norm, 'M' ) ) THEN
178 *
179 * Find max(abs(A(i,j))).
180 *
181  VALUE = zero
182  IF( lsame( uplo, 'U' ) ) THEN
183  DO 20 j = 1, n
184  DO 10 i = max( k+2-j, 1 ), k
185  sum = abs( ab( i, j ) )
186  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
187  10 CONTINUE
188  sum = abs( real( ab( k+1, j ) ) )
189  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
190  20 CONTINUE
191  ELSE
192  DO 40 j = 1, n
193  sum = abs( real( ab( 1, j ) ) )
194  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
195  DO 30 i = 2, min( n+1-j, k+1 )
196  sum = abs( ab( i, j ) )
197  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
198  30 CONTINUE
199  40 CONTINUE
200  END IF
201  ELSE IF( ( lsame( norm, 'I' ) ) .OR. ( lsame( norm, 'O' ) ) .OR.
202  $ ( norm.EQ.'1' ) ) THEN
203 *
204 * Find normI(A) ( = norm1(A), since A is hermitian).
205 *
206  VALUE = zero
207  IF( lsame( uplo, 'U' ) ) THEN
208  DO 60 j = 1, n
209  sum = zero
210  l = k + 1 - j
211  DO 50 i = max( 1, j-k ), j - 1
212  absa = abs( ab( l+i, j ) )
213  sum = sum + absa
214  work( i ) = work( i ) + absa
215  50 CONTINUE
216  work( j ) = sum + abs( real( ab( k+1, j ) ) )
217  60 CONTINUE
218  DO 70 i = 1, n
219  sum = work( i )
220  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
221  70 CONTINUE
222  ELSE
223  DO 80 i = 1, n
224  work( i ) = zero
225  80 CONTINUE
226  DO 100 j = 1, n
227  sum = work( j ) + abs( real( ab( 1, j ) ) )
228  l = 1 - j
229  DO 90 i = j + 1, min( n, j+k )
230  absa = abs( ab( l+i, j ) )
231  sum = sum + absa
232  work( i ) = work( i ) + absa
233  90 CONTINUE
234  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
235  100 CONTINUE
236  END IF
237  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
238 *
239 * Find normF(A).
240 * SSQ(1) is scale
241 * SSQ(2) is sum-of-squares
242 * For better accuracy, sum each column separately.
243 *
244  ssq( 1 ) = zero
245  ssq( 2 ) = one
246 *
247 * Sum off-diagonals
248 *
249  IF( k.GT.0 ) THEN
250  IF( lsame( uplo, 'U' ) ) THEN
251  DO 110 j = 2, n
252  colssq( 1 ) = zero
253  colssq( 2 ) = one
254  CALL classq( min( j-1, k ), ab( max( k+2-j, 1 ), j ),
255  $ 1, colssq( 1 ), colssq( 2 ) )
256  CALL scombssq( ssq, colssq )
257  110 CONTINUE
258  l = k + 1
259  ELSE
260  DO 120 j = 1, n - 1
261  colssq( 1 ) = zero
262  colssq( 2 ) = one
263  CALL classq( min( n-j, k ), ab( 2, j ), 1,
264  $ colssq( 1 ), colssq( 2 ) )
265  CALL scombssq( ssq, colssq )
266  120 CONTINUE
267  l = 1
268  END IF
269  ssq( 2 ) = 2*ssq( 2 )
270  ELSE
271  l = 1
272  END IF
273 *
274 * Sum diagonal
275 *
276  colssq( 1 ) = zero
277  colssq( 2 ) = one
278  DO 130 j = 1, n
279  IF( real( ab( l, j ) ).NE.zero ) THEN
280  absa = abs( real( ab( l, j ) ) )
281  IF( colssq( 1 ).LT.absa ) THEN
282  colssq( 2 ) = one + colssq(2)*( colssq(1) / absa )**2
283  colssq( 1 ) = absa
284  ELSE
285  colssq( 2 ) = colssq( 2 ) + ( absa / colssq( 1 ) )**2
286  END IF
287  END IF
288  130 CONTINUE
289  CALL scombssq( ssq, colssq )
290  VALUE = ssq( 1 )*sqrt( ssq( 2 ) )
291  END IF
292 *
293  clanhb = VALUE
294  RETURN
295 *
296 * End of CLANHB
297 *
298  END
classq
subroutine classq(N, X, INCX, SCALE, SUMSQ)
CLASSQ updates a sum of squares represented in scaled form.
Definition: classq.f:108
clanhb
real function clanhb(NORM, UPLO, N, K, AB, LDAB, WORK)
CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhb.f:134
sisnan
logical function sisnan(SIN)
SISNAN tests input for NaN.
Definition: sisnan.f:61
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
scombssq
subroutine scombssq(V1, V2)
SCOMBSSQ adds two scaled sum of squares quantities
Definition: scombssq.f:62