LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ cgelqt3()

recursive subroutine cgelqt3 ( integer  M,
integer  N,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldt, * )  T,
integer  LDT,
integer  INFO 
)

CGELQT3

Purpose:
 CGELQT3 recursively computes a LQ factorization of a complex M-by-N
 matrix A, using the compact WY representation of Q.

 Based on the algorithm of Elmroth and Gustavson,
 IBM J. Res. Develop. Vol 44 No. 4 July 2000.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M =< N.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the real M-by-N matrix A.  On exit, the elements on and
          below the diagonal contain the N-by-N lower triangular matrix L; the
          elements above the diagonal are the rows of V.  See below for
          further details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is COMPLEX array, dimension (LDT,N)
          The N-by-N upper triangular factor of the block reflector.
          The elements on and above the diagonal contain the block
          reflector T; the elements below the diagonal are not used.
          See below for further details.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2017
Further Details:
  The matrix V stores the elementary reflectors H(i) in the i-th row
  above the diagonal. For example, if M=5 and N=3, the matrix V is

               V = (  1  v1 v1 v1 v1 )
                   (     1  v2 v2 v2 )
                   (     1  v3 v3 v3 )


  where the vi's represent the vectors which define H(i), which are returned
  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
  block reflector H is then given by

               H = I - V * T * V**T

  where V**T is the transpose of V.

  For details of the algorithm, see Elmroth and Gustavson (cited above).

Definition at line 118 of file cgelqt3.f.

118 *
119 * -- LAPACK computational routine (version 3.8.0) --
120 * -- LAPACK is a software package provided by Univ. of Tennessee, --
121 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
122 * November 2017
123 *
124 * .. Scalar Arguments ..
125  INTEGER INFO, LDA, M, N, LDT
126 * ..
127 * .. Array Arguments ..
128  COMPLEX A( LDA, * ), T( LDT, * )
129 * ..
130 *
131 * =====================================================================
132 *
133 * .. Parameters ..
134  COMPLEX ONE, ZERO
135  parameter( one = (1.0e+00,0.0e+00) )
136  parameter( zero = (0.0e+00,0.0e+00))
137 * ..
138 * .. Local Scalars ..
139  INTEGER I, I1, J, J1, M1, M2, IINFO
140 * ..
141 * .. External Subroutines ..
142  EXTERNAL clarfg, ctrmm, cgemm, xerbla
143 * ..
144 * .. Executable Statements ..
145 *
146  info = 0
147  IF( m .LT. 0 ) THEN
148  info = -1
149  ELSE IF( n .LT. m ) THEN
150  info = -2
151  ELSE IF( lda .LT. max( 1, m ) ) THEN
152  info = -4
153  ELSE IF( ldt .LT. max( 1, m ) ) THEN
154  info = -6
155  END IF
156  IF( info.NE.0 ) THEN
157  CALL xerbla( 'CGELQT3', -info )
158  RETURN
159  END IF
160 *
161  IF( m.EQ.1 ) THEN
162 *
163 * Compute Householder transform when N=1
164 *
165  CALL clarfg( n, a, a( 1, min( 2, n ) ), lda, t )
166  t(1,1)=conjg(t(1,1))
167 *
168  ELSE
169 *
170 * Otherwise, split A into blocks...
171 *
172  m1 = m/2
173  m2 = m-m1
174  i1 = min( m1+1, m )
175  j1 = min( m+1, n )
176 *
177 * Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
178 *
179  CALL cgelqt3( m1, n, a, lda, t, ldt, iinfo )
180 *
181 * Compute A(J1:M,1:N) = A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)]
182 *
183  DO i=1,m2
184  DO j=1,m1
185  t( i+m1, j ) = a( i+m1, j )
186  END DO
187  END DO
188  CALL ctrmm( 'R', 'U', 'C', 'U', m2, m1, one,
189  & a, lda, t( i1, 1 ), ldt )
190 *
191  CALL cgemm( 'N', 'C', m2, m1, n-m1, one, a( i1, i1 ), lda,
192  & a( 1, i1 ), lda, one, t( i1, 1 ), ldt)
193 *
194  CALL ctrmm( 'R', 'U', 'N', 'N', m2, m1, one,
195  & t, ldt, t( i1, 1 ), ldt )
196 *
197  CALL cgemm( 'N', 'N', m2, n-m1, m1, -one, t( i1, 1 ), ldt,
198  & a( 1, i1 ), lda, one, a( i1, i1 ), lda )
199 *
200  CALL ctrmm( 'R', 'U', 'N', 'U', m2, m1 , one,
201  & a, lda, t( i1, 1 ), ldt )
202 *
203  DO i=1,m2
204  DO j=1,m1
205  a( i+m1, j ) = a( i+m1, j ) - t( i+m1, j )
206  t( i+m1, j )= zero
207  END DO
208  END DO
209 *
210 * Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
211 *
212  CALL cgelqt3( m2, n-m1, a( i1, i1 ), lda,
213  & t( i1, i1 ), ldt, iinfo )
214 *
215 * Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
216 *
217  DO i=1,m2
218  DO j=1,m1
219  t( j, i+m1 ) = (a( j, i+m1 ))
220  END DO
221  END DO
222 *
223  CALL ctrmm( 'R', 'U', 'C', 'U', m1, m2, one,
224  & a( i1, i1 ), lda, t( 1, i1 ), ldt )
225 *
226  CALL cgemm( 'N', 'C', m1, m2, n-m, one, a( 1, j1 ), lda,
227  & a( i1, j1 ), lda, one, t( 1, i1 ), ldt )
228 *
229  CALL ctrmm( 'L', 'U', 'N', 'N', m1, m2, -one, t, ldt,
230  & t( 1, i1 ), ldt )
231 *
232  CALL ctrmm( 'R', 'U', 'N', 'N', m1, m2, one,
233  & t( i1, i1 ), ldt, t( 1, i1 ), ldt )
234 *
235 *
236 *
237 * Y = (Y1,Y2); L = [ L1 0 ]; T = [T1 T3]
238 * [ A(1:N1,J1:N) L2 ] [ 0 T2]
239 *
240  END IF
241 *
242  RETURN
243 *
244 * End of CGELQT3
245 *
Here is the call graph for this function:
Here is the caller graph for this function:
clarfg
subroutine clarfg(N, ALPHA, X, INCX, TAU)
CLARFG generates an elementary reflector (Householder matrix).
Definition: clarfg.f:108
cgemm
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
cgelqt3
recursive subroutine cgelqt3(M, N, A, LDA, T, LDT, INFO)
CGELQT3
Definition: cgelqt3.f:118
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
ctrmm
subroutine ctrmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRMM
Definition: ctrmm.f:179