LAPACK  3.9.0
LAPACK: Linear Algebra PACKage

◆ zhet22()

subroutine zhet22 ( integer  ITYPE,
character  UPLO,
integer  N,
integer  M,
integer  KBAND,
complex*16, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  D,
double precision, dimension( * )  E,
complex*16, dimension( ldu, * )  U,
integer  LDU,
complex*16, dimension( ldv, * )  V,
integer  LDV,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
double precision, dimension( 2 )  RESULT 
)

ZHET22

Purpose:
      ZHET22  generally checks a decomposition of the form

              A U = U S

      where A is complex Hermitian, the columns of U are orthonormal,
      and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
      otherwise the U is expressed as a product of Householder
      transformations, whose vectors are stored in the array "V" and
      whose scaling constants are in "TAU"; we shall use the letter
      "V" to refer to the product of Householder transformations
      (which should be equal to U).

      Specifically, if ITYPE=1, then:

              RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
              RESULT(2) = | I - U**H U | / ( m ulp )
  ITYPE   INTEGER
          Specifies the type of tests to be performed.
          1: U expressed as a dense orthogonal matrix:
             RESULT(1) = | A - U S U**H | / ( |A| n ulp )   *and
             RESULT(2) = | I - U U**H | / ( n ulp )

  UPLO    CHARACTER
          If UPLO='U', the upper triangle of A will be used and the
          (strictly) lower triangle will not be referenced.  If
          UPLO='L', the lower triangle of A will be used and the
          (strictly) upper triangle will not be referenced.
          Not modified.

  N       INTEGER
          The size of the matrix.  If it is zero, ZHET22 does nothing.
          It must be at least zero.
          Not modified.

  M       INTEGER
          The number of columns of U.  If it is zero, ZHET22 does
          nothing.  It must be at least zero.
          Not modified.

  KBAND   INTEGER
          The bandwidth of the matrix.  It may only be zero or one.
          If zero, then S is diagonal, and E is not referenced.  If
          one, then S is symmetric tri-diagonal.
          Not modified.

  A       COMPLEX*16 array, dimension (LDA , N)
          The original (unfactored) matrix.  It is assumed to be
          symmetric, and only the upper (UPLO='U') or only the lower
          (UPLO='L') will be referenced.
          Not modified.

  LDA     INTEGER
          The leading dimension of A.  It must be at least 1
          and at least N.
          Not modified.

  D       DOUBLE PRECISION array, dimension (N)
          The diagonal of the (symmetric tri-) diagonal matrix.
          Not modified.

  E       DOUBLE PRECISION array, dimension (N)
          The off-diagonal of the (symmetric tri-) diagonal matrix.
          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
          Not referenced if KBAND=0.
          Not modified.

  U       COMPLEX*16 array, dimension (LDU, N)
          If ITYPE=1, this contains the orthogonal matrix in
          the decomposition, expressed as a dense matrix.
          Not modified.

  LDU     INTEGER
          The leading dimension of U.  LDU must be at least N and
          at least 1.
          Not modified.

  V       COMPLEX*16 array, dimension (LDV, N)
          If ITYPE=2 or 3, the lower triangle of this array contains
          the Householder vectors used to describe the orthogonal
          matrix in the decomposition.  If ITYPE=1, then it is not
          referenced.
          Not modified.

  LDV     INTEGER
          The leading dimension of V.  LDV must be at least N and
          at least 1.
          Not modified.

  TAU     COMPLEX*16 array, dimension (N)
          If ITYPE >= 2, then TAU(j) is the scalar factor of
          v(j) v(j)**H in the Householder transformation H(j) of
          the product  U = H(1)...H(n-2)
          If ITYPE < 2, then TAU is not referenced.
          Not modified.

  WORK    COMPLEX*16 array, dimension (2*N**2)
          Workspace.
          Modified.

  RWORK   DOUBLE PRECISION array, dimension (N)
          Workspace.
          Modified.

  RESULT  DOUBLE PRECISION array, dimension (2)
          The values computed by the two tests described above.  The
          values are currently limited to 1/ulp, to avoid overflow.
          RESULT(1) is always modified.  RESULT(2) is modified only
          if LDU is at least N.
          Modified.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 163 of file zhet22.f.

163 *
164 * -- LAPACK test routine (version 3.7.0) --
165 * -- LAPACK is a software package provided by Univ. of Tennessee, --
166 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
167 * December 2016
168 *
169 * .. Scalar Arguments ..
170  CHARACTER UPLO
171  INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
172 * ..
173 * .. Array Arguments ..
174  DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
175  COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
176  $ V( LDV, * ), WORK( * )
177 * ..
178 *
179 * =====================================================================
180 *
181 * .. Parameters ..
182  DOUBLE PRECISION ZERO, ONE
183  parameter( zero = 0.0d0, one = 1.0d0 )
184  COMPLEX*16 CZERO, CONE
185  parameter( czero = ( 0.0d0, 0.0d0 ),
186  $ cone = ( 1.0d0, 0.0d0 ) )
187 * ..
188 * .. Local Scalars ..
189  INTEGER J, JJ, JJ1, JJ2, NN, NNP1
190  DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
191 * ..
192 * .. External Functions ..
193  DOUBLE PRECISION DLAMCH, ZLANHE
194  EXTERNAL dlamch, zlanhe
195 * ..
196 * .. External Subroutines ..
197  EXTERNAL zgemm, zhemm, zunt01
198 * ..
199 * .. Intrinsic Functions ..
200  INTRINSIC dble, max, min
201 * ..
202 * .. Executable Statements ..
203 *
204  result( 1 ) = zero
205  result( 2 ) = zero
206  IF( n.LE.0 .OR. m.LE.0 )
207  $ RETURN
208 *
209  unfl = dlamch( 'Safe minimum' )
210  ulp = dlamch( 'Precision' )
211 *
212 * Do Test 1
213 *
214 * Norm of A:
215 *
216  anorm = max( zlanhe( '1', uplo, n, a, lda, rwork ), unfl )
217 *
218 * Compute error matrix:
219 *
220 * ITYPE=1: error = U**H A U - S
221 *
222  CALL zhemm( 'L', uplo, n, m, cone, a, lda, u, ldu, czero, work,
223  $ n )
224  nn = n*n
225  nnp1 = nn + 1
226  CALL zgemm( 'C', 'N', m, m, n, cone, u, ldu, work, n, czero,
227  $ work( nnp1 ), n )
228  DO 10 j = 1, m
229  jj = nn + ( j-1 )*n + j
230  work( jj ) = work( jj ) - d( j )
231  10 CONTINUE
232  IF( kband.EQ.1 .AND. n.GT.1 ) THEN
233  DO 20 j = 2, m
234  jj1 = nn + ( j-1 )*n + j - 1
235  jj2 = nn + ( j-2 )*n + j
236  work( jj1 ) = work( jj1 ) - e( j-1 )
237  work( jj2 ) = work( jj2 ) - e( j-1 )
238  20 CONTINUE
239  END IF
240  wnorm = zlanhe( '1', uplo, m, work( nnp1 ), n, rwork )
241 *
242  IF( anorm.GT.wnorm ) THEN
243  result( 1 ) = ( wnorm / anorm ) / ( m*ulp )
244  ELSE
245  IF( anorm.LT.one ) THEN
246  result( 1 ) = ( min( wnorm, m*anorm ) / anorm ) / ( m*ulp )
247  ELSE
248  result( 1 ) = min( wnorm / anorm, dble( m ) ) / ( m*ulp )
249  END IF
250  END IF
251 *
252 * Do Test 2
253 *
254 * Compute U**H U - I
255 *
256  IF( itype.EQ.1 )
257  $ CALL zunt01( 'Columns', n, m, u, ldu, work, 2*n*n, rwork,
258  $ result( 2 ) )
259 *
260  RETURN
261 *
262 * End of ZHET22
263 *
Here is the call graph for this function:
Here is the caller graph for this function:
zhemm
subroutine zhemm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZHEMM
Definition: zhemm.f:193
zgemm
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:189
zlanhe
double precision function zlanhe(NORM, UPLO, N, A, LDA, WORK)
ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlanhe.f:126
zunt01
subroutine zunt01(ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK, RESID)
ZUNT01
Definition: zunt01.f:128
dlamch
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:70