LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
clangb.f
Go to the documentation of this file.
1 *> \brief \b CLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CLANGB + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clangb.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clangb.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clangb.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * REAL FUNCTION CLANGB( NORM, N, KL, KU, AB, LDAB,
22 * WORK )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER NORM
26 * INTEGER KL, KU, LDAB, N
27 * ..
28 * .. Array Arguments ..
29 * REAL WORK( * )
30 * COMPLEX AB( LDAB, * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> CLANGB returns the value of the one norm, or the Frobenius norm, or
40 *> the infinity norm, or the element of largest absolute value of an
41 *> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
42 *> \endverbatim
43 *>
44 *> \return CLANGB
45 *> \verbatim
46 *>
47 *> CLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
48 *> (
49 *> ( norm1(A), NORM = '1', 'O' or 'o'
50 *> (
51 *> ( normI(A), NORM = 'I' or 'i'
52 *> (
53 *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
54 *>
55 *> where norm1 denotes the one norm of a matrix (maximum column sum),
56 *> normI denotes the infinity norm of a matrix (maximum row sum) and
57 *> normF denotes the Frobenius norm of a matrix (square root of sum of
58 *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
59 *> \endverbatim
60 *
61 * Arguments:
62 * ==========
63 *
64 *> \param[in] NORM
65 *> \verbatim
66 *> NORM is CHARACTER*1
67 *> Specifies the value to be returned in CLANGB as described
68 *> above.
69 *> \endverbatim
70 *>
71 *> \param[in] N
72 *> \verbatim
73 *> N is INTEGER
74 *> The order of the matrix A. N >= 0. When N = 0, CLANGB is
75 *> set to zero.
76 *> \endverbatim
77 *>
78 *> \param[in] KL
79 *> \verbatim
80 *> KL is INTEGER
81 *> The number of sub-diagonals of the matrix A. KL >= 0.
82 *> \endverbatim
83 *>
84 *> \param[in] KU
85 *> \verbatim
86 *> KU is INTEGER
87 *> The number of super-diagonals of the matrix A. KU >= 0.
88 *> \endverbatim
89 *>
90 *> \param[in] AB
91 *> \verbatim
92 *> AB is COMPLEX array, dimension (LDAB,N)
93 *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
94 *> column of A is stored in the j-th column of the array AB as
95 *> follows:
96 *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
97 *> \endverbatim
98 *>
99 *> \param[in] LDAB
100 *> \verbatim
101 *> LDAB is INTEGER
102 *> The leading dimension of the array AB. LDAB >= KL+KU+1.
103 *> \endverbatim
104 *>
105 *> \param[out] WORK
106 *> \verbatim
107 *> WORK is REAL array, dimension (MAX(1,LWORK)),
108 *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
109 *> referenced.
110 *> \endverbatim
111 *
112 * Authors:
113 * ========
114 *
115 *> \author Univ. of Tennessee
116 *> \author Univ. of California Berkeley
117 *> \author Univ. of Colorado Denver
118 *> \author NAG Ltd.
119 *
120 *> \date December 2016
121 *
122 *> \ingroup complexGBauxiliary
123 *
124 * =====================================================================
125  REAL FUNCTION CLANGB( NORM, N, KL, KU, AB, LDAB,
126  $ WORK )
127 *
128 * -- LAPACK auxiliary routine (version 3.7.0) --
129 * -- LAPACK is a software package provided by Univ. of Tennessee, --
130 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131 * December 2016
132 *
133  IMPLICIT NONE
134 * .. Scalar Arguments ..
135  CHARACTER norm
136  INTEGER kl, ku, ldab, n
137 * ..
138 * .. Array Arguments ..
139  REAL work( * )
140  COMPLEX ab( ldab, * )
141 * ..
142 *
143 * =====================================================================
144 *
145 * .. Parameters ..
146  REAL one, zero
147  parameter( one = 1.0e+0, zero = 0.0e+0 )
148 * ..
149 * .. Local Scalars ..
150  INTEGER i, j, k, l
151  REAL sum, VALUE, temp
152 * ..
153 * .. Local Arrays ..
154  REAL ssq( 2 ), colssq( 2 )
155 * ..
156 * .. External Functions ..
157  LOGICAL lsame, sisnan
158  EXTERNAL lsame, sisnan
159 * ..
160 * .. External Subroutines ..
161  EXTERNAL classq, scombssq
162 * ..
163 * .. Intrinsic Functions ..
164  INTRINSIC abs, max, min, sqrt
165 * ..
166 * .. Executable Statements ..
167 *
168  IF( n.EQ.0 ) THEN
169  VALUE = zero
170  ELSE IF( lsame( norm, 'M' ) ) THEN
171 *
172 * Find max(abs(A(i,j))).
173 *
174  VALUE = zero
175  DO 20 j = 1, n
176  DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
177  temp = abs( ab( i, j ) )
178  IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
179  10 CONTINUE
180  20 CONTINUE
181  ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
182 *
183 * Find norm1(A).
184 *
185  VALUE = zero
186  DO 40 j = 1, n
187  sum = zero
188  DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
189  sum = sum + abs( ab( i, j ) )
190  30 CONTINUE
191  IF( VALUE.LT.sum .OR. sisnan( sum ) ) VALUE = sum
192  40 CONTINUE
193  ELSE IF( lsame( norm, 'I' ) ) THEN
194 *
195 * Find normI(A).
196 *
197  DO 50 i = 1, n
198  work( i ) = zero
199  50 CONTINUE
200  DO 70 j = 1, n
201  k = ku + 1 - j
202  DO 60 i = max( 1, j-ku ), min( n, j+kl )
203  work( i ) = work( i ) + abs( ab( k+i, j ) )
204  60 CONTINUE
205  70 CONTINUE
206  VALUE = zero
207  DO 80 i = 1, n
208  temp = work( i )
209  IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
210  80 CONTINUE
211  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
212 *
213 * Find normF(A).
214 * SSQ(1) is scale
215 * SSQ(2) is sum-of-squares
216 * For better accuracy, sum each column separately.
217 *
218  ssq( 1 ) = zero
219  ssq( 2 ) = one
220  DO 90 j = 1, n
221  l = max( 1, j-ku )
222  k = ku + 1 - j + l
223  colssq( 1 ) = zero
224  colssq( 2 ) = one
225  CALL classq( min( n, j+kl )-l+1, ab( k, j ), 1,
226  $ colssq( 1 ), colssq( 2 ) )
227  CALL scombssq( ssq, colssq )
228  90 CONTINUE
229  VALUE = ssq( 1 )*sqrt( ssq( 2 ) )
230  END IF
231 *
232  clangb = VALUE
233  RETURN
234 *
235 * End of CLANGB
236 *
237  END
classq
subroutine classq(N, X, INCX, SCALE, SUMSQ)
CLASSQ updates a sum of squares represented in scaled form.
Definition: classq.f:108
sisnan
logical function sisnan(SIN)
SISNAN tests input for NaN.
Definition: sisnan.f:61
lsame
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
scombssq
subroutine scombssq(V1, V2)
SCOMBSSQ adds two scaled sum of squares quantities
Definition: scombssq.f:62
clangb
real function clangb(NORM, N, KL, KU, AB, LDAB, WORK)
CLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clangb.f:127