Picking OTUs for use in PICRUStΒΆ
PICRUSt (doi: 10.1038/nbt.2676) is a software designed to predict metagenome functional content from marker gene (e.g., 16S rRNA) surveys and full genomes. This tutorial covers how to pick OTUs from 16S rRNA sequences data to use with PICRUSt.
Note
Requires Quality filtering in Single-end sequencing to
be done and the PICRUSt software to be installed in your system.
Warning: PICRUSt 1.0.0 requires the biom-format package v1.3.1 to
be installed in your system (from the command line run: pip
install biom-format==1.3.1
, for more information see
http://biom-format.org/).
PICRUSt requires an Closed-reference OTU table computed against the Greengenes reference (clustered at 97% identity). Download the reference database (Greengenes, version 2013/05), clustered at 97% identity:
wget ftp://ftp.fmach.it/metagenomics/micca/dbs/gg_2013_05.tar.gz
tar -zxvf gg_2013_05.tar.gz
Run the micca closed-reference protocol:
micca otu -m closed_ref -i filtered.fasta -o closed_ref_otus -r 97_otus.fasta -d 0.97 -t 4
cd closed_ref_otus
Report the sample summary:
micca tablestats -i otutable.txt -o tablestats
head tablestats/tablestats_samplesumm.txt
Sample Depth NOTU NSingle
Mw_03 1084 132 39
Mw_06 1387 122 27
Mw_11 1485 155 44
Mw_07 1528 150 36
Mw_01 1537 143 35
Mw_15 1565 144 35
Mw_14 1610 149 42
Mw_02 1670 143 43
Mw_12 1710 153 54
Rarefy the OTU table for the PICRUSt analysis is always a good idea (see https://groups.google.com/forum/#!topic/picrust-users/ev5uZGUIPrQ), so we will rarefy the table at 1084 sequences per sample using tablerare:
micca tablerare -i otutable.txt -o otutable_rare.txt -d 1084
Convert the rarefied OTU table into the BIOM format replacing the OTU IDs with the original sequence IDs using the tobiom command:
micca tobiom -i otutable_rare.txt -o tables.biom -u otuids.txt
Normalize the OTU table by dividing each OTU by the known/predicted 16S copy
number abundance using the PICRUSt script normalize_by_copy_number.py
:
normalize_by_copy_number.py -i tables.biom -o normalized_otus.biom
Create the final metagenome functional predictions using the PICRUSt script
predict_metagenomes.py
:
predict_metagenomes.py -i normalized_otus.biom -o metagenome_predictions.biom
Now you can analyze the PICRUSt predicted metagenome as described in http://picrust.github.io/picrust/tutorials/downstream_analysis.html#downstream-analysis-guide.