Folding Paths that start at a single Secondary Structure
Implementation of gradient- and random walks starting from a single secondary structure.
Defines
-
VRNA_PATH_STEEPEST_DESCENT
- #include <ViennaRNA/landscape/walk.h>
Option flag to request a steepest descent / gradient path.
See also
-
VRNA_PATH_RANDOM
- #include <ViennaRNA/landscape/walk.h>
Option flag to request a random walk path.
See also
-
VRNA_PATH_NO_TRANSITION_OUTPUT
- #include <ViennaRNA/landscape/walk.h>
Option flag to omit returning the transition path.
See also
-
VRNA_PATH_DEFAULT
- #include <ViennaRNA/landscape/walk.h>
Option flag to request defaults (steepest descent / default move set)
Functions
-
vrna_move_t *vrna_path(vrna_fold_compound_t *fc, short *pt, unsigned int steps, unsigned int options)
- #include <ViennaRNA/landscape/walk.h>
Compute a path, store the final structure, and return a list of transition moves from the start to the final structure.
This function computes, given a start structure in pair table format, a transition path, updates the pair table to the final structure of the path. Finally, if not requested otherwise by using the VRNA_PATH_NO_TRANSITION_OUTPUT flag in the
options
field, this function returns a list of individual transitions that lead from the start to the final structure if requested.The currently available transition paths are
Steepest Descent / Gradient walk (flag: VRNA_PATH_STEEPEST_DESCENT)
Random walk (flag: VRNA_PATH_RANDOM)
The type of transitions must be set through the
options
parameter- SWIG Wrapper Notes:
This function is attached as an overloaded method
path()
to objects of typefold_compound
. The optional parameteroptions
defaults to VRNA_PATH_DEFAULT if it is omitted. See, e.g.RNA.fold_compound.path()
in the Python API.
See also
vrna_path_gradient(), vrna_path_random(), vrna_ptable(), vrna_ptable_copy(), vrna_fold_compound() VRNA_PATH_STEEPEST_DESCENT, VRNA_PATH_RANDOM, VRNA_MOVESET_DEFAULT, VRNA_MOVESET_SHIFT, VRNA_PATH_NO_TRANSITION_OUTPUT
Note
Since the result is written to the input structure you may want to use vrna_ptable_copy() before calling this function to keep the initial structure
- Parameters
fc – [in] A vrna_fold_compound_t containing the energy parameters and model details
pt – [inout] The pair table containing the start structure. Used to update to the final structure after execution of this function
options – [in] Options to modify the behavior of this function
- Returns
A list of transition moves (default), or NULL (if options & VRNA_PATH_NO_TRANSITION_OUTPUT)
-
vrna_move_t *vrna_path_gradient(vrna_fold_compound_t *fc, short *pt, unsigned int options)
- #include <ViennaRNA/landscape/walk.h>
Compute a steepest descent / gradient path, store the final structure, and return a list of transition moves from the start to the final structure.
This function computes, given a start structure in pair table format, a steepest descent path, updates the pair table to the final structure of the path. Finally, if not requested otherwise by using the VRNA_PATH_NO_TRANSITION_OUTPUT flag in the
options
field, this function returns a list of individual transitions that lead from the start to the final structure if requested.- SWIG Wrapper Notes:
This function is attached as an overloaded method
path_gradient()
to objects of typefold_compound
. The optional parameteroptions
defaults to VRNA_PATH_DEFAULT if it is omitted. See, e.g.RNA.fold_compound.path_gradient()
in the Python API.
See also
vrna_path_random(), vrna_path(), vrna_ptable(), vrna_ptable_copy(), vrna_fold_compound() VRNA_MOVESET_DEFAULT, VRNA_MOVESET_SHIFT, VRNA_PATH_NO_TRANSITION_OUTPUT
Note
Since the result is written to the input structure you may want to use vrna_ptable_copy() before calling this function to keep the initial structure
- Parameters
fc – [in] A vrna_fold_compound_t containing the energy parameters and model details
pt – [inout] The pair table containing the start structure. Used to update to the final structure after execution of this function
options – [in] Options to modify the behavior of this function
- Returns
A list of transition moves (default), or NULL (if options & VRNA_PATH_NO_TRANSITION_OUTPUT)
-
vrna_move_t *vrna_path_random(vrna_fold_compound_t *fc, short *pt, unsigned int steps, unsigned int options)
- #include <ViennaRNA/landscape/walk.h>
Generate a random walk / path of a given length, store the final structure, and return a list of transition moves from the start to the final structure.
This function generates, given a start structure in pair table format, a random walk / path, updates the pair table to the final structure of the path. Finally, if not requested otherwise by using the VRNA_PATH_NO_TRANSITION_OUTPUT flag in the
options
field, this function returns a list of individual transitions that lead from the start to the final structure if requested.- SWIG Wrapper Notes:
This function is attached as an overloaded method
path_gradient()
to objects of typefold_compound
. The optional parameteroptions
defaults to VRNA_PATH_DEFAULT if it is omitted. See, e.g.RNA.fold_compound.path_random()
in the Python API.
See also
vrna_path_gradient(), vrna_path(), vrna_ptable(), vrna_ptable_copy(), vrna_fold_compound() VRNA_MOVESET_DEFAULT, VRNA_MOVESET_SHIFT, VRNA_PATH_NO_TRANSITION_OUTPUT
Note
Since the result is written to the input structure you may want to use vrna_ptable_copy() before calling this function to keep the initial structure
- Parameters
fc – [in] A vrna_fold_compound_t containing the energy parameters and model details
pt – [inout] The pair table containing the start structure. Used to update to the final structure after execution of this function
steps – [in] The length of the path, i.e. the total number of transitions / moves
options – [in] Options to modify the behavior of this function
- Returns
A list of transition moves (default), or NULL (if options & VRNA_PATH_NO_TRANSITION_OUTPUT)
-
VRNA_PATH_STEEPEST_DESCENT